三极管知识简介
三极管的基本知识

b级会接一个大电阻RB限制电流Ib的大小,跑到b极的那 些多余的电子就只好穿越集电结,形成电流Ic
二、BJT 的电流分配和放大原理
如果基极电压翻倍,电荷分布会继续发生变化,发射结 宽度会变得更窄,这扇大门变得更宽了,将会有更多的 电子跑到b级
二、BJT 的电流分配和放大原理
由于RB是大电阻,Ib就算翻倍了也还是很小,所以更多 的电子会穿越集电结,让Ic也翻倍。
+ ui
Rb
C1 +
与二极管特性相似
+ + uCE输出 输入 uBE 回路 iE 回路
iB
Rc
+VCC
C2
RL
+ uo
iB VCC
Rb+ + uBE
Rb
iB
VCC
O
uBE
uCE 0 特性右移(因集电结开始吸引电子) uCE 1 V 特性基本重合(电流分配关系确定) 硅管: (0.6 0.8) V 取 0.7 V 导通电压 uBE 锗管: (0.2 0.3) V 取 0.2 V
+ UCE
Rc VCC
输入回路 BJT与电源连接方式
二、BJT 的电流分配和放大原理
当发射结正偏时,电荷分布会发生变化,发射结宽度会变窄; 相当于给电子打开了一扇e到b的大门 集电结反偏时,电荷分布会也发生变化,集电结宽度会变宽。 相当于打开了阻碍电子从c级跑出去的大门
二、BJT 的电流分配和放大原理
VCC
(2) 集电极 - 发射极反向饱和电流 ICEO
c b e A
ICEO
VCC
ICEO =(1+ )ICBO
iC ICM 安 全 工 ICEO O
什么是三极管

什么是三极管三极管,又被称为晶体管,是一种常见的电子元件。
它是一种半导体器件,能够用来放大电流、开关电路或作为电流稳定源。
三极管的结构和工作原理决定了它在电子电路中的重要性和广泛应用。
本文将详细介绍三极管的定义、结构、工作原理以及应用领域。
一、定义三极管是一种包含三个电极的半导体器件,通常由两种不同类型的半导体材料组成。
它的三个电极分别为基极、发射极和集电极。
三极管可用于控制电流流动,并在电子电路中实现信号放大功能。
二、结构三极管的结构由两种类型的半导体材料构成:P型半导体和N型半导体。
这两种材料的结合形成了两个 P-N 结,分别被称为基结和发射结。
其中,发射结夹在基结中间,集电极连接到基结,而发射极连接到发射结。
三、工作原理三极管的工作原理是通过调节基极电流控制集电极电流的大小。
当基极电流很小或者没有流过时,三极管处于截止状态,完全不导电。
当基极电流逐渐增大时,三极管进入放大区。
此时,三极管的集电极电流将正比于基极电流,且比基极电流大很多倍。
当基极电流进一步增大时,三极管会饱和,此时集电极电流不再随基极电流的增大而增大,达到饱和电流后保持不变。
四、应用领域由于三极管具有信号放大和电流控制的特点,因此在电子领域有广泛的应用。
以下是几个常见的三极管应用领域:1. 放大器: 三极管可以作为放大电路的关键元件,用于放大音频、视频等信号。
通过调节输入信号的电流,可以实现不同增益的放大效果。
2. 开关电路: 三极管可以用作开关电路的控制器。
在开关状态下,三极管可以让电流通过或者阻断,从而实现开关的功能。
3. 正反馈电路: 三极管可以用于正反馈电路的构建,从而实现自激振荡。
在振荡器、发射机等电子设备中都有广泛应用。
4. 电流稳定源: 三极管可以作为电流稳定源,提供一个稳定且可控的电流。
这在一些需要精确电流控制的电路中特别有用。
结论通过了解三极管的定义、结构、工作原理和应用领域,我们可以看到三极管在电子电路中的重要性和多功能性。
三极管手册介绍

三极管手册介绍
三极管,也称为晶体三极管,是一种常用的电子器件,被广泛应用于电子电路中。
它由三个区域相互夹杂的半导体材料构成,通常被标记为E(发射极)、B(基极)和C(集电极)。
三极管是一种双极型晶体管,其主要特点是能够控制电流放大倍数。
通过控制基极电流,可以控制集电极电流的放大倍数。
因此,三极管广泛用于放大、开关、电子开关、振荡器等电路中。
三极管手册是一本关于三极管的详细介绍和应用指南。
该手册通常包括以下内容:
1. 三极管的基础知识:介绍三极管的结构、工作原理和基本参数。
包括器件标记和引脚配置,以及不同类型的三极管(如NPN型和PNP型)。
2. 三极管的电路应用:包括放大电路、开关电路、电源电路、振荡电路和稳压电路等。
每个电路应用都会介绍其原理、设计方法、常用电路图和计算公式。
3. 三极管的参数与曲线特性:包括直流参数(如最大集电流、最大功耗、最大电压等)和交流参数(如频率响应、增益、噪声系数等)。
手册中通常会给出参数的定义、测量方法和典型数值。
4. 三极管的选型与应用:介绍如何根据特定的应用需求选择合
适的三极管。
包括选择参数的考虑因素、常用的选型指南和技术手段。
5. 三极管的常见故障排除:介绍三极管常见的故障原因及排除方法。
包括电压过高、电流过大、温度过高等故障的检测和解决方法。
综上所述,三极管手册是一本提供关于三极管结构、工作原理、电路应用、参数与曲线特性、选型与应用和故障排除等方面知识的参考指南,旨在帮助工程师和电子爱好者更好地理解和应用三极管。
三极管知识及测量方法

三极管知识及测量方法三极管(transistor)是一种常用的电子器件,广泛应用于电子电路中。
本文将介绍三极管的基本知识和测量方法。
一、三极管基础知识1.三极管的基本结构三极管由两个PN结组成,有三个引脚:基极(B)、发射极(E)和集电极(C)。
三极管主要分为NPN型和PNP型两种。
2.三极管的工作原理三极管在不同的工作状态下有不同的功能,主要有以下三个状态:-放大状态:在放大状态下,基极电流较小,只有微弱的信号,但输出在集电极上得到放大。
-关断状态:在关断状态下,基极电流为零,三极管完全截断,没有任何输出。
-饱和状态:在饱和状态下,集电极电流最大,基极电流较大,信号被完全放大。
3.三极管参数表达-电流放大倍数(β):指的是输入电流变化到输出电流的变化比例。
- 输入电阻(Rin):指的是输入电阻与基极之间的电阻。
- 输出电阻(Rout):指的是输出电阻与集电极之间的电阻。
- 横向导通电压(Vbe):指的是基极与发射极之间的电压。
二、三极管的测量方法1. 测量三极管灵敏度(hfe)-步骤一:将万用表(电流档)的电位器旋钮完全逆时针旋转为最低电流档。
-步骤二:将测试引脚与三极管的E(发射极)和B(基极)相连,并测量电流。
-步骤三:将测试引脚与三极管的C(集电极)和B(基极)相连,并测量电流。
- 步骤四:计算hfe值,hfe = Ic / Ib,其中Ic为集电极电流,Ib 为基极电流。
2.测量三极管的共射输入电阻-步骤一:将测试引脚与三极管的E(发射极)相连,并测量电阻。
-步骤二:将测试引脚与三极管的B(基极)相连,并测量电阻。
- 步骤三:计算输入电阻,输入电阻 = Ube / Ib,其中Ube为基极与发射极之间的电压,Ib为基极电流。
3.测量三极管的共射输出电阻-步骤一:将测试引脚与三极管的E(发射极)和C(集电极)相连,并测量电阻。
-步骤二:将测试引脚与三极管的E(发射极)相连,并测量电阻。
- 步骤三:计算输出电阻,输出电阻 = Uce / Ic,其中Uce为集电极与发射极之间的电压,Ic为集电极电流。
三极管知识简介

3)极间反向饱和电流
ICBO:发射极开路时,集电极—基极间的反向饱和电流。一般锗管的 ICBO 在 µA 数量级,硅管的 ICBO 在 nA 数量级。 ICEO:基极开路时,集电极—发射极间的穿透电流。
IEBO:集电极开路时,发射极—基极间的反向饱和电流。
由于直流参数 、 、ICBO 和 ICEO 等受温度影响较大,所以出于稳定性考虑, 也不要过大。
1.载流子的传输过程
在放大状态下,晶体三极管内部载流子的传输过程可归纳为发射结的注入、 基区中的输运与复合和集电区的收集。对此,我们以 NPN 管为例,参照图 2—37 作如下讨论:
1)发射结的注入 由于发射结正偏,使发射结变窄,扩散运动占优势,高掺杂发射区的大量电子注 入到基区,形成电子电流 IEn。与此同时,基区中的空穴也向发射区注入,形成 空穴电流 IEp。IEn 和 IEp 电流方向一致,由基区指向发射区,构成发射极电流 IE。 即 (2—42) 2)基区中的扩散与复合 注入到基区的电子,成为基区的非平衡少子,将继续向集电结方向扩散,在 扩散的过程中,除有少部分的电子会与基区中的多子空穴复合、形成基极复合电 流 IBn 外,大部分电子到达集电结边界,并在集电结电场作用下,漂移到集电区 形成集电极电子电流 ICn。 3)集电区的收集 由于集电结处于反偏状态,集电结势垒区中电场很强,其方向是由集电区指 向基区,因此,到达集电结边界的电子在此强电场的作用下,几乎全部收集到集 电区,形成集电极电子电流 ICn。此外,在该强电场的作用下,集电区内的少子 —空穴将漂移到基区;基区内的少子—电子也将漂移到集电区,它们形成集电结 的反向漂移电流 ICBO,ICBO 的方向与 ICn 方向是一致的。所以,总的集电极电流 IC 为 (2—43) 由图 2—37 可知,晶体管基极电流 IB 为 (2—44)
三极管npn和pnp

三极管npn和pnp三极管(Transistor)是一种最基本的电子元件,它具有可以放大和开关电流的功能,广泛应用于电子电路中。
三极管可以分为NPN型和PNP型两种。
下面分别介绍NPN型和PNP型三极管的结构、工作原理以及应用。
一、NPN型三极管:NPN型三极管由两个N型半导体和一个P型半导体构成。
其中,N型半导体作为发射极(Emitter),由外界加上正电压。
P型半导体作为基极(Base),控制发射极和集电极(Collector)之间的电流。
另一个N型半导体则构成集电极。
具体来说,当基极与发射极之间的电压大于0.6V时,发射极和集电极之间就会形成一个导通路径,电流可以从发射极流向集电极。
NPN型三极管的工作原理是基于PN结的正向和反向偏置。
当发射极和集电极之间的电压大于0.6V时,PN结就会变为正向偏置,导致大量的电子从N型发射极注入到P型基极,形成发射极电流(Ie)。
同时,这些注入的电子会继续向集电极流动,形成集电极电流(Ic)。
在NPN型三极管中,Ic是由Ie 放大而来的,即放大系数β=Ic/Ie。
NPN型三极管具有放大作用,广泛应用于放大电路。
由于其有一个控制极(基极),可以通过控制电流的大小来控制输出电流,被称为"控制电流小,输出电流大"的电流放大器。
NPN 型三极管还常用于逻辑门电路、计时电路、振荡器电路等。
二、PNP型三极管:PNP型三极管由两个P型半导体和一个N型半导体构成。
其中,P型半导体作为发射极,由外界连结上负电源。
N型半导体作为基极,控制发射极和集电极之间的电流。
另一个P型半导体则构成集电极。
PNP型三极管的工作原理和NPN型三极管相似,区别在于PN结的正向和反向偏置。
当基极与发射极之间的电压小于-0.6V时,PN结就会变为正向偏置,使得发射极电流从发射极流入基极。
同时,由于P型基极中有空穴,这些空穴会向集电极流动,形成集电极电流(Ic)。
在PNP型三极管中,Ic是由发射极电流减少而来的,即放大系数β=Ic/Ie。
三极管规格书

三极管规格书摘要:1.三极管的基本概念2.三极管的分类3.三极管的主要参数4.三极管的放大原理5.三极管的应用领域正文:三极管,作为一种最基本的电子元件,广泛应用于各种电子设备和电路中。
这篇文章将详细介绍三极管的规格书。
首先,我们来了解三极管的基本概念。
三极管,又称晶体三极管,是由三个控制电极(或称栅极、源极、漏极)组成的半导体器件。
通过改变栅极的电压,可以控制源漏电流的大小,从而实现信号放大、开关等功能。
接下来,我们来探讨三极管的分类。
根据结构和工作原理的不同,三极管可以分为两类:NPN型和PNP型。
NPN型三极管的三个电极分别由氮化硼、磷化铟和硼化镓等半导体材料制成;而PNP型三极管的三个电极则由磷化铟、硼化镓和氮化硼等半导体材料制成。
在了解三极管的分类后,我们来关注一下三极管的主要参数。
这些参数主要包括:电流放大系数(或称电流增益)、输入电阻、输出电阻、耗散功率等。
电流放大系数是衡量三极管放大能力的重要指标,输入电阻和输出电阻则分别表示三极管在输入和输出端的电流阻力,耗散功率则表示三极管在承受电流和电压时的热量损耗。
进一步地,我们来探讨三极管的放大原理。
当在栅极施加一定的电压时,栅极和源极之间的绝缘层会发生电场效应,使得源极和漏极之间的电阻发生变化,从而导致源漏电流的变化。
这种现象被称为“场效应”,是三极管实现信号放大的基本原理。
最后,我们来了解一下三极管的应用领域。
由于其独特的放大和开关功能,三极管广泛应用于各种电子设备和电路中,如放大器、振荡器、电源开关、信号处理等。
总之,三极管作为一种重要的电子元件,其规格书涉及到基本概念、分类、主要参数、放大原理和应用领域等多个方面。
三极管基础知识

三极管基础知识一、三极管的定义和作用三极管是一种半导体器件,也是电子工程中最常用的元件之一。
它由三个区域组成:P型区、N型区和P型区,分别称为发射极、基极和集电极。
三极管的主要作用是放大电流或控制电流,可以用于放大信号、开关电路等方面。
二、三极管的结构1. PNP型三极管PNP型三极管由两个N型半导体夹着一个P型半导体而成。
其中,N 型半导体称为发射区,P型半导体称为基区,另一个N型半导体称为集电区。
2. NPN型三极管NPN型三极管则与PNP型相反,由两个P型半导体夹着一个N型半导体而成。
其中,P型半导体称为发射区,N型半导体称为基区,另一个P型半导体称为集电区。
三、三极管的工作原理1. PNP型三极管工作原理当外加正向偏压时,发射结变窄并形成空穴少子浓度梯度,在这个梯度下空穴从基端向发射端扩散。
同时,由于集电区与发射区间的空间电荷区,使得集电区的少子浓度增加,形成一个反向偏压。
这个反向偏压越大,集电区的少子浓度就越高。
因此,当基极与发射极之间的电压增加时,会导致发射端的空穴扩散到集电端,从而导致集电电流增加。
2. NPN型三极管工作原理当外加正向偏压时,基结变窄并形成电子少子浓度梯度,在这个梯度下电子从发射端向基端扩散。
同时,由于集电区与发射区间的空间电荷区,使得集电区的少子浓度增加,形成一个反向偏压。
这个反向偏压越大,集电区的少子浓度就越高。
因此,当基极与发射极之间的电压增加时,会导致发射端的电子扩散到集电端,从而导致集电电流增加。
四、三极管参数1. 三极管放大系数三极管放大系数指输入信号和输出信号之比。
对于PNP型三极管来说,在其正常工作状态下该系数一般在0.95至0.99之间,对于NPN型三极管来说,该系数一般在100至300之间。
2. 最大集电电流最大集电电流指三极管在正常工作状态下能够承受的最大电流。
对于不同型号的三极管来说,其最大集电电流也不同。
3. 最大耗散功率最大耗散功率指三极管能够承受的最大功率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饱和模式下的内部载流子传输过程
饱和模式下的内部载流子传输过程
图中,IF为假设发射结正偏,BC结零偏,
BE结产生的正偏电流转移到集电极。可以 理解为,BE结的正向电压控制电流。 图中,IR为假设BC结正偏,BE结零偏,BC 结产生的正偏电流转移到发射极。可以理 解为,BC结正向电压控制电流。 IE=IF- αIR IC= αIF-IR 由于同时受到BE和BC两个PN结的正向电 压控制,因此IC和IB就不满足IC= βIB电流方 程。此时,IC< βIB。
=5%。
共发射极连接时, VCE(sat) = VBE(sat) - VCB(sat) fT:带宽增益积。
三极管的常用参数
Pcm:最大集电极耗散功率
大部分三极管规格书为Pc,有些为PD。 Rth(j-a):结(晶片)-环境的热阻,又为R θJA。 Rth(j-c):结-封装表面的热阻,又为R θJC。 Tj:结温 Tc:管壳的温度,温度最高点 Ta:芯片的环境温度,可以理解为散热器的。 简单举例参数的设计应用。
三极管直流传输方程
共基极直流传输方程
α称为共基极电流传输系数,表示发射极电
流(IE)转化成集电极电子电流(Icn1)的 能力。 公式定义为:α=Icn1/IE。 其中IC=Icn1+ICBO 得共基极直流传输方程IC= αIE+ICBO 因为,ICBO很小,所以IC≈ αIE α值为0.95-0.98,一般在0.98以上。
共发射极直流传输方程
IC= αIE+ICBO IE =IC+IB 由以上两式得到: IC= [α/(1- α)]IB+[1/(1- α)]ICBO 假设IB=0,IC=ICEO,则ICEO= [1/(1-α)]ICBO 令β= α/(1- α) 得到共发射极直流传输方程 Ic= βIB+ICEO
ICEO和β的定义
等效电路 CE断路 受控电流源 CE短路
反偏 零偏
正偏 正偏 反偏
反偏 零偏
反偏 正偏 正偏
UE>UB>UC UC>UB>UE
UC>UB>UE UB>UC>UE 举例曾经出现的问题
B BB
C CC
B BB
C CC
B BB
IIBB IB
IICC IC
C CC
00 ..7 V . V 077 V
O. 2 V O. 22 V O. V
开发三部13年2月份交流会 三极管常识简介
演讲人:陈江波
晶体三极管定义
晶体三极管,简称三极管,为双极型器件
(Bipolar Junction Transistor,简称BJT) 双极型:空穴和电子都能参与导电。
晶体三极管的分类
三极管分类
1.
2. 3. 4. 5.
按频率分:高频管、低频管(举例) 按功率分:小、中、大功率(举例) 按材料分:硅管、锗管 按结构分:NPN、PNP(举例) 特殊三极管:达林顿三极管β=β1*β2 NPN+NPN,NPN+PNP, PNP+PNP, PNP+NPN。 分析达林顿
三极管的示意图结构和符号
三极ቤተ መጻሕፍቲ ባይዱ的结构特点
发射区的掺杂溶度最高 集电区的掺杂溶度比发射区低,且面积大 基区掺杂溶度很低,而且很薄,一般几个微米至 十几个微米。
管芯结构剖面图
三极管的工作模式
22 2 33 3
工作模式 BE结 截止 放大 饱和 倒置
BC结
电压关系
电流关系 IB=IC=0 IC=βIB IC《βIB
00 ..7 V . V 077 V
βI B βI BB βI
E EE (a) (a) (a)
E EE (b (b ))) (b
E EE (c) (c) (c)
放大模式下内部载流子传输过程
放大模式下的电流放大作用
当晶体三极管工作在发射结(BE结)正偏,
集电结(BC结)反偏的模式时,它呈现的 主要特性是BE结正向受控作用,即VBE的电 压控制,而几乎不受反偏集电结电压的控 制。因此,该状态具有电流放大作用。
三极管的封装
目前,较常用的分装TO-92、SOT-23、SOT-89 、SOT-223、TO-126、TO-220、TO-3等。 一般封装的形式与功率相关 封装和温度决定耗散功率Pcm(最大集电极耗散 功率,大部分规格书采用Pc、Pd)后面章节讲解 1W以下小功率、1W-5W中功率、5W以上大功率 如:SOT-23、TO-92用于小功率 SOT-223、TO-126、TO-220用于中功率 TO-3用于大功率
hEF
三极管的常用参数
ICBO:集电极-基极反向饱和电流
IEBO:发射极-基极反向饱和电流
IC:集电极电流 Icm:最大集电极电流,tp<0.3mS,D VBE(sat):发射结饱和导通电压0.7V VCB(sat):集电结饱和导通电压0.4V VCE(sat):集电极-发射极饱和导通电压
三极管的常用参数
:在特定条件下的β值范围。(举例选 型、电路设计) VCBO:发射极开路时,集电极-基极反向击 穿电压。 VCEO:基极开路时,集电极-发射极反向击 穿电压。 VEBO:集电极开路时,发射极-基极反向击 穿电压。 举例VCBO、 VCEO、 VEBO三个参数在实际的 作用和裕量。
β称为共基极电流放大系数,其值大于1。 ICEO为集电极-发射极饱和电流可理解为集
电极开路(IB=0)时的集电极电流。 由β= α/1-α, ICEO= [1/(1-α)]ICBO两式 得到ICEO= (1+ β)ICBO,因此β越大, ICEO越大 该两个值对温度很敏感 β每上升1℃,差值增加0.5%-1% 每上升10℃, ICEO增大一倍。