复旦大学数学系《数学分析》(第3版)(下册)课后习题-多变量微积分学-多变量积分学【圣才出品】

合集下载

《复旦大学数学系 数学分析 第3版 上册 笔记和课后习题 》读书笔记思维导图

《复旦大学数学系 数学分析  第3版  上册 笔记和课后习题 》读书笔记思维导图
《复旦大学数学系 数学 分析 第3版 上册 笔记
和课后习题 》
最新版读书笔记,下载可以直接修改
思维导图PPT模板
本书关键字分析思维导图
第版
习题
考研
复旦大学 数学系
知识
笔记
内容
真题
名校
数学分析 教材
考生
复习
书 参考书目 电子书
极限
命题
升级
目录
01 第一篇 极限论
02
第二篇 单变量微积分 学
本书特别适用于参加研究生入学考试指定考研参考书目为复旦大学数学系《数学分析》(第3版)(上册) 的考生。也可供各大院校学习复旦大学数学系《数学分析》(第3版)(上册)的师生参考。复旦大学数学系主 编的《数学分析》(第3版)是我国高校数学类广泛采用的权威教材之一,也被众多高校(包括科研机构)指定 为考研考博专业课参考书目。为了帮助参加研究生入学考试指定参考书目为复旦大学数学系主编的《数学分析》 (第3版)的考生复习专业课,我们根据该教材的教学大纲和名校考研真题的命题规律精心编写了复旦大学数学 系《数学分析》(第3版)辅导用书(均提供免费下载,免费升级):1.[3D电子书]复旦大学数学系《数学分析》 (第3版)(上册)笔记和课后习题(含考研真题)详解[免费下载]2.[3D电子书]复旦大学数学系《数学分析》 (第3版)(下册)笔记和课后习题(含考研真题)详解[免费下载]3.[3D电子书]复旦大学数学系《数学分析》 (第3版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】[免费下载]4.[3D电子书]复旦大 学数学系《数学分析》(第3版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】[免费下载] 本书是复旦大学数学系主编的《数学分析》(第3版)的配套e书,主要包括以下内容:(1)梳理知识脉络,浓 缩学科精华。本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。 因此,本书的内容几乎浓缩了该教材的所有知识精华。(2)详解课后习题,巩固重点难点。本书参考大量相关 辅导资料,对复旦大学数学系主编的《数学分析》(第3版)的课后思考题进行了详细的分析和解答,并对相关 重要知识点进行了延伸和归纳。(3)精编考研真题,培养解题思路。本书精选详析了部分名校近年来的相关一篇 极限论

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)

数学分析_复旦_欧阳光中陈传璋第三版3版上下册课后习题答案解析(下)
101
(4) b•
ê§ lim
x→∞
xb eax
=
lim
x→∞
bxb−1 aeax
=
··· =
lim
x→∞
b! abeax
=0
bؕ
ê§K[b]
b
<
[b]+1§u´
|x|[b] eax
|x|b eax
<
|x|[b]+1 eax (|x|
> 1)§
þ¡®y²§‚ 4••0§Ïd§¥m 4•••0.
l
§é?¿a, b§þk lim
lim
+
=
x→0
24
24
1
6
ax − bx
ax ln a − bx ln b
a
(9) lim
= lim
= ln a − ln b = ln (a = 0, b = 0)
x→0 x
x→0
1
b
x−1
1
(10) lim
x→1
ln x
= lim
x→1
1
=1
x
(11) lim ax − xa = lim ax ln a − axa−1 = aa(ln a − 1)
(x2 − 1) sin x
(4) lim x→1 ln
1 + sin π x
2

x2 sin 1
1
1
2x sin − cos
1 cos
(1) Ï
x ©f!©1Óžéx¦ ê§
x

x x → 0ž4•Ø•3§Ïdâ
sin x
cos x
cos x

复旦大学数学系《数学分析》(第3版)(下册)章节题库-多变量微积分学-含参变量的积分和反常积分【圣才

复旦大学数学系《数学分析》(第3版)(下册)章节题库-多变量微积分学-含参变量的积分和反常积分【圣才


从而
于是不等式 p≤α<p+1,蕴含 I(p)≥I(α)>I(p+1),I(p+1)≥I(α+1)>I(p+2),
由此推出
因为
所以由上式可得
在此式中用 α+n 代 α(因而 p+n≤α+n<p+n+1,亦即相应地用 p+n 代 p),即 得
由此可知当 n→∞时,数列 f(α+n)(n=1,2,…)有极限 π/2.但上面已证 f(x)以 1 为周期,所以
(2)证明如下: 因为在上面步骤②中已证 I(α)是 α 的减函数,所以 I(α)>I(α+1)>I(α+2),
由此可知
(最后一步用到上面步骤①中的结果),即 I(α+1)/I(a)介于 l 和(α+2)
2 / 44
圣才电子书

/(α+1)之间,从而
十万种考研考证电子书、题库视频学习平 台
这蕴含 f(α+1)=(α+2)I(α+1)I(α+2)=(α+1)I(α)I(α+1)=f(α).
因此 f 是周期函数(周期为 1),从而若 p 为一个整数,则
1 / 44
圣才电子书
十万种考研考证电子书、题库视频学习平


②因为当 0<x<π/2 时 0<sinx<1,所以当
由 分
F(y)= 而,更有
易知 f(x,y)是 0≤x≤1,0≤y≤1 上的连续函数.从而,积
是 0≤y≤1 上的连续函数,因此,
.从
9.设:
其中 a<b 及 f(y)为可微分的函数,
8 / 44
圣才电子书

求 F''(x).
十万种考研考证电子书、题库视频学习平 台
解:当 x∈(a,b)时,由于
于是,得
(3)利用对称性知,所求的体积为

数学分析(复旦大学版)课后题答案40-45

数学分析(复旦大学版)课后题答案40-45
1 0
§udÃF¼êPÂÈ©§y{'4Gª§& 1 ln xy dx9uy Q[ , b ](b > 1)þÂñ. b
+∞ a A
ln
0
b dx x
Âñ
#f (x, y)Q[ a, +∞; c, d ]ë§é[ c, d)þzy§ f (x, y) dxÂñ§¢È©Qy = duÑ. y²ùÈ©Q[ c, d ]Âñ. y²µd f (x, d) dxuѧ&∃ε > 0, ∀A > a, ∃A , A A §¦ f (x, d) dx ε
dx [ p1 , p2 ]
Q
ë
2−p
dx [ p1 , p2 ]
Q
ë
6.
π −1 p 2−p 1 2 1 p π π −1 p 2−p p 2−p p1 2−p1 1 2 1−p1 x→π −0 1 p1 2−p1 p1 π 1 π −1 p−1 2−p1 π π −1 p 2−p 1 2 π p 2−p 1 2 π −1 p 1 2 π 0 p 2−p +∞ +∞
2−p
π −1 1 p 2−p
1 π −1 π sin x sin x sin x sin x dx = dx + dx + dx p (π − x)2−p p (π − x)2−p p (π − x)2−p p (π − x)2−p x x x x 0 0 1 π −1 1 sin x dx p 2−p 0 x (π − x) sin x sin x (0 x 1, 0 < p1 p p2 < 2) p 2 − p p 2 x (π − x) x (π − x)2−p2 sin x 1 lim xp2 −1 p = 2−p 2 − p 2 2 2 x→+0 x (π − x) π 1 sin x p2 < 2 p2 − 1 < 1 dx p2 (π − x)2−p2 x 0 1 sin x dx p ∈ [ p1 , p2 ] p (π − x)2−p x 0 1 sin x sin x (0 , 1 ] × [ p , p ] dx [ p1 , p2 ] 1 2 p (π − x)2−p xp (π − x)2−p x 0 π

复旦大学第三版数学分析答案

复旦大学第三版数学分析答案

一﹑细心填一填,你一定能行(每空2分,共20分)1.当 = 时,分式的值为零.2.某种感冒病毒的直径为0.0000000031米,用科学记数法表示为.3.请你写出一个图象在第一、三象限的反比例函数.4.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:,,,,则小麦长势比较整齐的试验田是(填“甲”或“乙”).5.如图,□ABCD中,AE,CF分别是∠BAD,∠BCD的角平分线,请添加一个条件使四边形AECF为菱形.6.计算.7.若点()、、都在反比例函数的图象上,则的大小关系是.8.已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2 ,AE为梯形的高,且BE=1,•则AD=______.9.如图,中,,,,分别以为直径作三个半圆,那么阴影部分的面积为(平方单位).10.如图,矩形ABCD的对角线BD过O点,BC∥x轴,且A(2,-1),则经过C点的反比例函数的解析式为.二﹑精心选一选,你一定很棒(每题3分,共30分)11.下列运算中,正确的是A. B. C. D.12.下列说法中,不正确的是A.为了解一种灯泡的使用寿命,宜采用普查的方法B.众数在一组数据中若存在,可以不唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差13.能判定四边形是平行四边形的条件是A.一组对边平行,另一组对边相等 B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等 D.一组对边平行,一组对角相等14.反比例函数在第一象限的图象如图所示,则k的值可能是A.1 B.2 C.3 D.415.在平面直角坐标系中,已知点A(0,2),B(,0),C(0,),D(,0),则以这四个点为顶点的四边形是A.矩形B.菱形 C.正方形 D.梯形16.某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10 8 12 15 10 12 11 9 10 13.则这组数据的A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.917.一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为A.15cmB.20cmC.25cmD.12cm18.已知,反比例函数的图像经过点M(k+2,1)和N(-2, ),则这个反比例函数是A. B. C. D.19.如图所示,有一张一个角为600的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是A.邻边不等的矩形B.等腰梯形C.有一角是锐角的菱形D.正方形20.甲、乙两班举行跳绳比赛,参赛选手每分钟跳绳的次数经统计计算后填入下表:班级参加人数中位数方差平均次数甲 35 169 6.32 155乙 35 171 4.54 155某同学根据上表分析得出如下结论:①甲、乙两班学生跳绳成绩的平均水平相同,②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳次数≥170为优秀),③甲班的成绩的波动情况比乙班的成绩的波动大。

数学分析教材习题全解(复旦版)数学分析教材习题

数学分析教材习题全解(复旦版)数学分析教材习题

数学分析教材习题全解(复旦版)数学分析教材习题全解习题 12. 1 偏导数与全微分1( 求下列函数的偏导数:5426222(1); (2); z,x,6xy,yz,xln(x,y)x2z,xy,(3); (4); z,sin(xy),cos(xy)y2,,xx,,tan(5); (6)z,; z,e(cosy,xsiny),,y,,xyyz,sin,cos(7); (8); z,(1,xy)yxx,yz,ln(x,lny)z,arctan(9); (10); 1,xyy222x(x,y,z)z(11); (12); u,eu,xz1y(13); (14); u,xu,222x,y,znnu,axy,a,a(15),为常数; (16)为常数。

uax,a,ijijijji,iiii,j,1i,1,z,z54432解 (1) ,,6y,12xy。

,5x,24xy,y,x32,z2x,z2xy22(2) ,。

,,2xln(x,y),2222,y,xx,yx,y,z1,zx,y,,x,(3) ,。

2,y,xyy,z,z,,(4) , ,xcos(xy),sin(2xy)。

,y,,cos(xy),sin(2xy),y,x,z,zxx,e(xcosy,siny)(5) ,。

,e(cosy,xsiny,siny),y,x222,,,,,zxx,zxx222,,,,,sec,,sec(6) ,。

2,,,,,xyy,yyy,,,,,z1xyyxyzxxy,1xy,,coscos,coscossinsin,sinsin(7) ,,。

22yyx,,xyyxyxxyxyx1,,,zxy,z2y,1y(8) , (1)ln(1)。

,y(1,xy),,xy,xy,,,1,x,y,xy,,,z1,z1,,(9) ,。

,yy(x,lny),xx,lny,z1,z1zxy,,arctanarctan(10) 注意,,, ,。

复旦大学数学系《数学分析》(第3版)(下册)-名校考研真题-多变量微积分学【圣才出品】

复旦大学数学系《数学分析》(第3版)(下册)-名校考研真题-多变量微积分学【圣才出品】
连续函数.由连续函数的最值性知,存
由于对任意的 y∈[c,d],有下式成立
所以有


5 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 2 部分 多变量微分学
第 14 章 偏导数和全微分
解答题 1.已知
1 确定,且 h(x)具有所需的性质.求
所以对任意的 ε>0,取 在(0,0)处连续.
,则当
时,有
,故 f(x,y)
7 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
由于当(x,y)≠(0,0)时,
,故
4.讨论
在(0,0)点的连续性和可微性.[武汉大学研] 解:(1)连续性.可以令 x=ζcosθ,y=ζsinθ,因为
十万种考研考证电子书、题库视频学习平 台

12.
解:由
又由

[上海交通大学研] 得
,于是
13.设 z 由 求 [南京大学研]
解:由
得 ①式两端再对 x 求导得
定义为 x,y 的隐函数,其中 为二次连续可微,
两边对 x 求导 ①
所以 f(x,y)在(0,0)点连续. (2)可微性.由于 从而
选取特殊路径 y=kx,有 为 1,所以 f(x,y)在(0,0)点不可微.
5. 解:由于
,求 dz.[华东师范大学研]
8 / 54
,极限不
圣才电子书

十万种考研考证电子书、题库视频学习平 台


6.函数 数.[天津大学研]
同时


5.若函数 f(x,y)在 上对 x 连续,且存在 L>0,对任意的 x、y′有

高等数学复旦大学出版第三版课后答案

高等数学复旦大学出版第三版课后答案

206习题十1. 根据二重积分性质,比较ln()d D x y σ+⎰⎰与2[ln()]d D x y σ+⎰⎰的大小,其中:(1)D 表示以(0,1),(1,0),(1,1)为顶点的三角形; (2)D 表示矩形区域{(,)|35,02}x y x y ≤≤≤≤.解:(1)区域D 如图10-1所示,由于区域D 夹在直线x +y =1与x +y =2之间,显然有图10-112x y ≤+≤从而 0l n ()x y ≤+<故有2l n ()[l n ()]x y x y+≥+ 所以 2l n ()d [l n ()]dD Dx yx y σσ+≥+⎰⎰⎰⎰(2)区域D 如图10-2所示.显然,当(,)x y D ∈时,有3x y +≥.图10-2从而 ln(x +y )>1 故有2l n ()[l n ()]x y x y+<+207所以 2l n ()d [l n ()]dD Dx yx y σσ+<+⎰⎰⎰⎰2. 根据二重积分性质,估计下列积分的值: (1),{(,)|02,02}I D x y x y σ==≤≤≤≤⎰⎰;(2)22sin sin d ,{(,)|0π,0π}D I x y D x y x y σ==≤≤≤≤⎰⎰; (3)2222(49)d ,{(,)|4}D I x y D x y x y σ=++=+≤⎰⎰. 解:(1)因为当(,)x y D ∈时,有02x ≤≤, 02y ≤≤因而 04xy ≤≤.从而22≤故2d D D σσσ≤≤⎰⎰⎰⎰⎰⎰即2d d DDσσσ≤≤⎰⎰⎰⎰而 d D σσ=⎰⎰ (σ为区域D 的面积),由σ=4 得8σ≤≤⎰⎰(2) 因为220sin 1,0sin 1x y ≤≤≤≤,从而220sin sin 1x y ≤≤故 220d sin sin d 1d D D D x y σσσ≤≤⎰⎰⎰⎰⎰⎰ 即220sin sin d d D D x y σσσ≤≤=⎰⎰⎰⎰ 而2πσ=所以2220sin sin d πD x y σ≤≤⎰⎰(3)因为当(,)x y D ∈时,2204x y ≤+≤所以22229494()925x y x y ≤++≤++≤故 229d (49)d 25d D D D x y σσσ≤++≤⎰⎰⎰⎰⎰⎰ 即229(49)d 25Dx y σσσ≤++≤⎰⎰208而2π24πσ=⋅=所以2236π(49)d 100πDx y σ≤++≤⎰⎰3. 根据二重积分的几何意义,确定下列积分的值: (1)222(,{(,)|};D a D x y x y a σ=+≤⎰⎰(2)222,{(,)|}.D x y x y a σ=+≤⎰⎰解:(1)(,D a σ⎰⎰在几何上表示以D 为底,以z 轴为轴,以(0,0,a )为顶点的圆锥的体积,所以31(π3Da a σ=⎰⎰ (2)σ⎰⎰在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故32π.3a σ=⎰⎰ 4.设f (x ,y )为连续函数,求2220021lim(,)d ,{(,)|()()}πDr f x y D x y x x y y r r σ→=-+-≤⎰⎰.解:因为f (x ,y )为连续函数,由二重积分的中值定理得,(,),D ξη∃∈使得2(,)d (,)π(,)Df x y f r f σξησξη=⋅=⋅⎰⎰又由于D 是以(x 0,y 0)为圆心,r 为半径的圆盘,所以当0r →时,00(,)(,),x y ξη→ 于是:0022200000(,)(,)11lim(,)d limπ(,)lim (,)ππlim (,)(,)Dr r r x y f x y r f f r r f f x y ξησξηξηξη→→→→=⋅===⎰⎰5. 画出积分区域,把(,)d D f x y σ⎰⎰化为累次积分: (1) {(,)|1,1,0}D x y x y y x y =+≤-≤≥;(2)2{(,)|2,}D x y y x x y =≥-≥209(3)2{(,)|,2,2}D x y y y x x x=≥≤≤解:(1)区域D 如图10-3所示,D 亦可表示为11,01y x y y -≤≤-≤≤.所以1101(,)d d (,)d yD y f x y y f x y x σ--=⎰⎰⎰⎰(2) 区域D 如图10-4所示,直线y =x -2与抛物线x =y 2的交点为(1,-1),(4,2),区域D 可表示为22,12y x y y ≤≤+-≤≤.图10-3 图10-4所以2221(,)d d (,)d y D yf x y y f x y x σ+-=⎰⎰⎰⎰(3)区域D 如图10-5所示,直线y =2x 与曲线2y x=的交点(1,2),与x =2的交点为(2,4),曲线2y x=与x =2的交点为(2,1),区域D 可表示为22,1 2.y x x x≤≤≤≤图10-5210所以2221(,)d d (,)d xD xf x y x f x y y σ=⎰⎰⎰⎰.6. 画出积分区域,改变累次积分的积分次序: (1) 2220d (,)d yyy f x y x⎰⎰; (2)e ln 1d (,)d xx f x y y ⎰⎰;(3) 1320d (,)d yy f x y x-⎰; (4)πsin 0sin2d (,)d xx x f x y y -⎰⎰;(5) 1233001d (,)d d (,)d yyy f x y y y f x y x -+⎰⎰⎰⎰.解:(1)相应二重保健的积分区域为D :202,2.y y x y ≤≤≤≤如图10-6所示.图10-6D 亦可表示为:04,.2xx y ≤≤≤所以2224002d (,)d d (,)d .yx yy f x y x x f x y y =⎰⎰⎰⎰(2) 相应二重积分的积分区域D :1e,0ln .x y x ≤≤≤≤如图10-7所示.图10-7D 亦可表示为:01,e e,y y x ≤≤≤≤211所以e ln 1e10ed (,)d d (,)d y xx f x y y y f x y x =⎰⎰⎰⎰(3) 相应二重积分的积分区域D为:01,32,y x y ≤≤≤≤-如图10-8所示.图10-8D 亦可看成D 1与D 2的和,其中 D 1:201,0,x y x ≤≤≤≤D 2:113,0(3).2x y x ≤≤≤≤-所以2113213(3)2001d (,)d d (,)d d (,)d yx x y f x y x x f x y y x f x y y --=+⎰⎰⎰⎰⎰.(4) 相应二重积分的积分区域D 为:0π,sinsin .2xx y x ≤≤-≤≤如图10-9所示.图10-9D 亦可看成由D 1与D 2两部分之和,其中 D 1:10,2arcsin π;y y x -≤≤-≤≤ D 2:01,arcsin πarcsin .y y x y ≤≤≤≤-所以πsin 0π1πarcsin 0sin 12arcsin 0arcsin 2d (,)d d (,)d d (,)d xyx y yx f x y y y f x y x y f x y x ----=+⎰⎰⎰⎰⎰⎰(5) 相应二重积分的积分区域D 由D 1与D 2两部分组成,其212中 D 1:01,02,y x y ≤≤≤≤D 2:13,03.y x y ≤≤≤≤-如图10-10所示.图10-10D 亦可表示为:02,3;2xx y x ≤≤≤≤- 所以()1233230012d ,d d (,)d d (,)d yyxxy f x y x y f x y x x f x y y --+=⎰⎰⎰⎰⎰⎰7.解:因为(,)Df x y d σ⎰⎰为一常数,不妨设(,)Df x y C =⎰⎰则有(,)x y f xy C =+从而有(,)()x y Df xy f uv C dudv =++⎰⎰而{}2(,)0 1.0D x y x y x =≤≤≤≤21(,)00()u x y f xy uv C dv du ⎡⎤∴=+⎰⎰+⎣⎦2120012u xy uv cv du ⎡⎤=+⎰+⎢⎥⎣⎦ 152012xy u cu du ⎡⎤=+⎰+⎢⎥⎣⎦163011123xy u cu ⎡⎤=++⎢⎥⎣⎦11123xy C =++18C ∴=故(,)18x y f xy ∴=+8. 计算下列二重积分:213(1) 221d d ,:12,;Dx x y D x y x y x≤≤≤≤⎰⎰ (2) e d d ,x yD x y ⎰⎰D由抛物线y 2 = x ,直线x =0与y =1所围;(3) d ,x y ⎰⎰D 是以O (0,0),A (1,-1),B (1,1)为顶点的三角形; (4) cos()d d ,{(,)|0π,π}D x y x y D x y x x y +=≤≤≤≤⎰⎰.解:(1)()22222231221111d d d d d d xx D x x x x x x y x y x x x x y yy ==-=-⎰⎰⎰⎰⎰⎰2421119.424x x ⎡⎤=-=⎢⎥⎣⎦(2) 积分区域D 如图10-12所示.图10-12D 可表示为:201,0.y x y ≤≤≤≤所示22110000ed d de d d e d()xx x y y yyyD xx y y x y y y==⎰⎰⎰⎰⎰⎰ 2111100ed (e 1)d e d d y x y y yy y y y y y y y ==-=-⎰⎰⎰⎰1111120000011de d e e d .22yy yy y y y y y =-=--=⎰⎰⎰ (3) 积分区域D 如图10-13所示.214图10-13D 可表示为:01,.x x y x ≤≤-≤≤所以2110d d arcsin d 2xxxx y x y x y x x --⎡==+⎢⎣⎰⎰⎰⎰⎰ 112300ππ1πd .2236x x x ==⋅=⎰ ππππ0πππ0(4)cos()d d d cos()d [sin()]d [sin(π)sin 2]d (sin sin 2)d 11.cos cos 222x Dxx y x y x x y y x y xx x x x x x x x +=+=+=+-=--⎡⎤==+⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰9. 计算下列二次积分:10112111224(1)d d ;(2)d e d d e d .yy y xxyxy x xy x y x +⎰⎰⎰⎰解:(1)因为sin d x x x⎰求不出来,故应改变积分次序。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明:由 f(x,y)在 D 上连续,故可积
令 则
除 y=x 外连续,故必可积
3.在下列积分中改变逐次积分的次序:
解:
5 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
4.计算下列二重积分:
是由抛物线
和直线
所界的区域;
, 是由圆心在点 的较短一段弧和坐标轴所围成的区域;
圣才电子书

十万种考研考证电子书、题库视频学习平 台
13 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
3.计算下列三重积分:
其中积分区域 V 是由球面 所围成的立体;
其中 V 是
分所组成;
由两个球
解:(1)利用柱面坐标,得
公共部分的体积.
12.求由抛物线 所围成区域的面积.
解:作变换:

于是所求面积为
和直线
13.求曲线
所围的面积.
解:此曲线只在 1、3 象限且关于原点对称,故只需计算图形在第一象限中的面积,
10 / 54
圣才电子书

再 2 倍即可
十万种考研考证电子书、题库视频学习平 台
则至少存在一点
又 f(M)在 上连续,当然在 M0 连续,则必存在
使得 当
时,有
于是
3.证明:若 f(M)在 上连续,在 的任何部分区域


.由此证明:若
上成立:
在 上连续,在 的任何部分区域
则在 上成立:
证明:用反证法,若存在点
使
f(M)在 上连续,则存在 的邻域
不妨设
由于 使得
于是有 则假设不成立,即有
与题设
2 / 54
矛盾
圣才电子书


十万种考研考证电子书、题库视频学习平

则在 的任何部分区域
上,
从而由上面所证结论,有
,即
亦即
4.若
在 上可积,那么 f(M)在 上是否可积?考察函数
当 x 和 y 中至少有一个是无理数时,
当 x 和 y 都是有理数时,
在[0,1;0,1]上的积分。
解:未必。
事实上,
在[0,1;0,1]上的上和、下和分别为
其中 从而
然而
在[0,1;0,1]上不可积 在[0,1;0,1]上可积。
3 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 20 章 重积分的计算及应用
§1 二重积分的计算
1.化二重积分
为二次积分(分别列出对两个变量先后次序不同的
号,则
在 上可积,且可设
在 上连续,g(M)在 不变
由性质 4,得 若
由于
且连续,则必有
即要证不等式成立;


由连续函数的介值定理,得必存在
使

1 / 54
从而
圣才电子书

十万种考研考证电子书、题库视频学习平 台
同理,当
时,亦有
2.证明:若 f(M)在 上连续,


证明:因

9 / 54
圣才电子书

10.求由锥面
十万种考研考证电子书、题库视频学习平

平面 z=0 及圆柱面
所围的立体体积.
解:锥面 平面上射影域是圆域
平面 z=0 及圆柱面
所围的立体在 XOY
在第一象限部分记为
则利用对称性,得所求立体体积为
11.求球面 解:由对称性,得
与圆柱面
半径为 a 且与坐标轴相切的圆周
区域. 解:
是以

为边的
6 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
5.证明
证明:将
逐项积分,得
其中 是
所围成的区域对此积分可化为先对 x 后对 y 的积分,则得
6.设平面上区域 D 在 x 轴和 y 轴上的投影长度为 内任一点,证明:


于是
14.求一物体的体积,此物体的界面为:平面 z=0,抛物面 球面
与这个抛物面的交线为准线的正柱面
解:将 令 于是
代入球方程,得 则
以及以
15.求边长为 a 的正方形薄板的质量,设薄板上每一点的密度与该点距正方形某一顶 点的距离成正比,且在正方形的中点处密度为 ρ0.
解:设某一顶点为原点(0,0),则
D 的面积为|D|,
为D
证明:(1)由于 使得
(2)设
在 D 上连续,故由积分中值定理,存在 则
7.用极坐标计算
时,积分限如何配置(写出下列区域上的两种逐
7 / 54
圣才电子书

次积分)?
十万种考研考证电子书、题库视频学习平 台
(1) 半圆
(2) 半环
(3) 圆
(4) 正方形:
于是 则密度函数为 于是利用第 7 题(4),得
且当
时,
11 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
§2 三重积分的计算
1.计算下列三重积分:
解:
由曲面 由曲面
所围成; 围成.
2.指示下列三重积分的区域 V 的形状并改变积分次序:
解:
12 / 54
V 为椭球
(2)利用球面坐标,得
14 / 54
与抛物面 的公共部
圣才电子书

(3)利用球面坐标,得
十万种考研考证电子书、题库视频学习平 台
(4)由广义球面坐标,得
4.利用球面坐标或柱面坐标计算下列曲面所界体积:
的内部被
所划出的部分;
解:(1)利用柱面坐标 面方程变为:
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 4 篇 多变量微积分学
第 4 部分 多变量积分学
第 19 章 积分(二重、三重积分,第一类曲线、曲面积分)的定义和性质
§2 积分的性质
1.证明中值定理:若
在 上连续,g(M)在 不变号,则
其中
证明:设 是有界闭区域且有度量,因
解:
8.在下列积分中引进新变量 u,v,变换下列积分:
若 若 其中 是由曲线
与坐标轴所界的区域.若
解:(1)因 于是

8 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
(2)因

ห้องสมุดไป่ตู้于是
(3)因

于是
9.应用极坐标计算下列二重积分:
解:
是圆
的内部).
(3)作变换 于是
二次积分),其中积分域 D 分别为:
(1)D 是由 x 轴与
所围成的区域;
(2)D 是由

所围成的区域;
(3)D 是由 (4)D 是圆环 解:
及 .
所围成的区域;
4 / 54
圣才电子书

十万种考研考证电子书、题库视频学习平 台
2.设 f(x,y)在区域 D 上连续,其中 D 是 y=x,y=a 及 x=b(b>a)所围成的, 证明
相关文档
最新文档