九年级数学上册旋转几何综合单元测试卷(解析版)

九年级数学上册旋转几何综合单元测试卷(解析版)
九年级数学上册旋转几何综合单元测试卷(解析版)

九年级数学上册旋转几何综合单元测试卷(解析版)

一、初三数学 旋转易错题压轴题(难)

1.如图,在平面直角坐标系中,点O 为坐标原点,抛物线2

y ax bx c =++的顶点是A(1,3),将OA 绕点O 顺时针旋转90?后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C .

(1)求抛物线的解析式;

(2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与

OAB ?的边分别交于M ,N 两点,将AMN ?以直线MN 为对称轴翻折,得到A MN '?. 设点P 的纵坐标为m .

①当A MN '?在OAB ?内部时,求m 的取值范围;

②是否存在点P ,使'

5

6

A MN OA

B S S ?'?=,若存在,求出满足m 的值;若不存在,请说明理

由.

【答案】()2

1y x 22x =-++;(2)①433

m <<;②存在,满足m 的值为619-或

639

-. 【解析】 【分析】

(1)作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,然后证明△AOD ≌△BOE ,则AD=BE ,OD=OE ,即可得到点B 的坐标,然后利用待定系数法,即可求出解析式;

(2)①由点P 为线段AC 上的动点,则讨论动点的位置是解题的突破口,有点P 与点A 重合时;点P 与点C 重合时,两种情况进行分析计算,即可得到答案;

②根据题意,可分为两种情况进行分析:当点M 在线段OA 上,点N 在AB 上时;当点M 在线段OB 上,点N 在AB 上时;先求出直线OA 和直线AB 的解析式,然后利用m 的式子表示出两个三角形的面积,根据等量关系列出方程,解方程即可求出m 的值. 【详解】

解:(1)如图:作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,

∴∠ADO=∠BEO=90°,

∵将OA 绕点O 逆时针旋转90?后得到OB , ∴OA=OB ,∠AOB=90°,

∴∠AOD+∠AOE=∠BOE+∠AOE=90°, ∴∠AOD=∠BOE , ∴△AOD ≌△BOE , ∴AD=BE ,OD=OE , ∵顶点A 为(1,3), ∴AD=BE=1,OD=OE=3, ∴点B 的坐标为(3,1-), 设抛物线的解析式为2

(1)3=-+y a x , 把点B 代入,得

2(31)31a -+=-,

∴1a =-,

∴抛物线的解析式为2

(1)3y x =--+, 即222y x x =-++;

(2)①∵P 是线段AC 上一动点, ∴3m <,

∵当A MN '?在OAB ?内部时, 当点'A 恰好与点C 重合时,如图:

∵点B 为(3,1-), ∴直线OB 的解析式为1

3

y x =-, 令1x =,则13

y =-

, ∴点C 的坐标为(1,13

-),

∴AC=1103()3

3

--=, ∵P 为AC 的中点,

∴AP=1105

233

?

=, ∴54333

m =-

=, ∴m 的取值范围是

4

33

m <<; ②当点M 在线段OA 上,点N 在AB 上时,如图:

∵点P 在线段AC 上,则点P 为(1,m ),

∵点'A 与点A 关于MN 对称,则点'A 的坐标为(1,2m -3), ∴'3A P m =-,18'(23)233

A C m m =-+

=-, 设直接OA 为y ax =,直线AB 为y kx b =+, 分别把点A ,点B 代入计算,得

直接OA 为3y x =;直线AB 为25y x =-+, 令y m =, 则点M 的横坐标为3m

,点N 的横坐标为52

m --, ∴555

2326

m m MN m -=

-=--; ∵2'11555515'()(3)22261224

A MN S MN A P m m m m ?=

?=?-?-=-+; '138

'3(2)34223

OA B S A C m m ?=

??=?-=-; 又∵'5

6A MN OA B

S S ?'?=, ∴

255155

(34)12246

m m m -+=?-, 解得:619m =-或619m =+(舍去); 当点M 在边OB 上,点N 在边AB 上时,如图:

把y m =代入1

3

y x =-,则3x m ,

∴5553222m MN m m -=

+=+-,18

'(23)233A C m m =---=-, ∴2'11555515'()(3)2222424

A MN S MN A P m m m m ?=

?=?+?-=-++, '138

'3(2)43223OA B S A C m m ?=

??=?-=-, ∵'5

6

A MN OA

B S S ?'?=

∴255155

(43)4246

m m m -

++=?-, 解得:6393m -=

或639

3

m +=(舍去); 综合上述,m 的值为:619m =-或639

3

m -=. 【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、图形的旋转、解一元二次方程、全等三角形的判定和性质、三角形的面积公式等,解题的关键是熟练掌握所学的性质,正确得到点P 的位置.注意运用数形结合的思想和分类讨论的思想进行解题.

2.我们定义:如图1,在△ABC 看,把AB 点绕点A 顺时针旋转α(0°<α<180°)得到AB',把AC 绕点A 逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC 的“旋补三角形”,△AB'C'边B'C'上的中线AD 叫做△ABC 的“旋补中线”,点A 叫做“旋补中心”. 特例感知:

(1)在图2,图3中,△AB'C'是△ABC 的“旋补三角形”,AD 是△ABC 的“旋补中线”. ①如图2,当△ABC 为等边三角形时,AD 与BC 的数量关系为AD= BC ; ②如图3,当∠BAC=90°,BC=8时,则AD 长为 . 猜想论证:

(2)在图1中,当△ABC 为任意三角形时,猜想AD 与BC 的数量关系,并给予证明. 拓展应用

(3)如图4,在四边形ABCD ,∠C=90°,∠D=150°,BC=12,CD=23,DA=6.在四边形内部是否存在点P ,使△PDC 是△PAB 的“旋补三角形”?若存在,给予证明,并求△PAB 的“旋补中线”长;若不存在,说明理由.

【答案】(1)①

12;②4;(2)AD=1

2

BC ,证明见解析;(3)存在,证明见解析,39.

【解析】 【分析】

(1)①首先证明△ADB′是含有30°是直角三角形,可得AD=

1

2

AB′即可解决问题;

②首先证明△BAC≌△B′AC′,根据直角三角形斜边中线定理即可解决问题;

(2)结论:AD=1

2

BC.如图1中,延长AD到M,使得AD=DM,连接E′M,C′M,首先证

明四边形AC′MB′是平行四边形,再证明△BAC≌△AB′M,即可解决问题;

(3)存在.如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.连接DF交PC于O.想办法证明PA=PD,PB=PC,再证明∠APD+∠BPC=180°,即可;

【详解】

解:(1)①如图2中,

∵△ABC是等边三角形,

∴AB=BC=AB=AB′=AC′,

∵DB′=DC′,

∴AD⊥B′C′,

∵∠BAC=60°,∠BAC+∠B′AC′=180°,

∴∠B′AC′=120°,

∴∠B′=∠C′=30°,

∴AD=1

2AB′=

1

2

BC,

故答案为1

2

②如图3中,

∵∠BAC=90°,∠BAC+∠B′AC′=180°,∴∠B′AC′=∠BAC=90°,

∵AB=AB′,AC=AC′,

∴△BAC≌△B′AC′,

∴BC=B′C′,

∵B′D=DC′,

∴AD=1

2B′C′=

1

2

BC=4,

故答案为4.

(2)结论:AD=1

2 BC.

理由:如图1中,延长AD到M,使得AD=DM,连接E′M,C′M

∵B′D=DC′,AD=DM,

∴四边形AC′MB′是平行四边形,

∴AC′=B′M=AC,

∵∠BAC+∠B′AC′=180°,∠B′AC′+∠AB′M=180°,

∴∠BAC=∠MB′A,∵AB=AB′,

∴△BAC≌△AB′M,

∴BC=AM,

∴AD=1

2

BC.

(3)存在.

理由:如图4中,延长AD交BC的延长线于M,作BE⊥AD于E,作线段BC的垂直平分线交BE于P,交BC于F,连接PA、PD、PC,作△PCD的中线PN.

连接DF交PC于O.

∵∠ADC=150°,

∴∠MDC=30°,

在Rt△DCM中,∵3,∠DCM=90°,∠MDC=30°,

∴CM=2,DM=4,∠M=60°,

在Rt△BEM中,∵∠BEM=90°,BM=14,∠MBE=30°,

∴EM=1

2

BM=7,

∴DE=EM﹣DM=3,

∵AD=6,

∴AE=DE,∵BE⊥AD,

∴PA=PD,PB=PC,

在Rt△CDF中,∵CF=6,

∴tan∠

∴∠CDF=60°=∠CPF,

易证△FCP≌△CFD,

∴CD=PF,∵CD∥PF,

∴四边形CDPF是矩形,

∴∠CDP=90°,

∴∠ADP=∠ADC﹣∠CDP=60°,

∴△ADP是等边三角形,

∴∠ADP=60°,∵∠BPF=∠CPF=60°,

∴∠BPC=120°,

∴∠APD+∠BPC=180°,

∴△PDC是△PAB的“旋补三角形”,

在Rt△PDN中,∵∠PDN=90°,PD=AD=6,,

【点睛】

本题考查四边形综合题.

3.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC 为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.

(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.

(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,

AC=kAF,上一问的结论还成立吗?并证明你的结论.

(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且

∠IHJ=∠AGB=θ=60°,k=2;

求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).

【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.

【解析】

试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,

FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明

△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,

△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.

试题解析:(1)特例发现,如图:

∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,

∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,

∴FQ=AG,∴PE=FQ;

(2)延伸拓展,如图:

∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,

∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,

△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,

∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;

(3)深入探究,如图2,

在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,

∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,

△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,

∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;

(4)应用推广,如图3,

在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,

∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,

∴∠EHM=∠FHN.∵∠AEF=∠AFE,∴△HEM∽△HFN,∴,∵EH=FH,

∴,且∠MHN=∠HFN=60°,∴△MHN∽△HFN,∴△MHN∽△HFN∽△MEH,在△HMN中,∠MHN=60°,根据三角形中大边对大角,∴要MN最小,只有△HMN是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN∴MN∥EF,∵△AEF为等边三角形,∴MN为

△AEF的中位线,∴MN min=EF=×2=1.

考点:1.几何变换综合题;2.三角形全等及相似的判定性质.

4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.

(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;

(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.

【解析】

试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知

△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出

CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出

EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;

(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到

△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.

试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,

∴AF=AG,∠FAG=90°,

∵∠EAF=45°,

∴∠GAE=45°,

在△AGE与△AFE中,

∴△AGE≌△AFE(SAS);

(2)设正方形ABCD的边长为a.

将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.

则△ADF≌△ABG,DF=BG.

由(1)知△AEG≌△AEF,

∴EG=EF.

∵∠CEF=45°,

∴△BME、△DNF、△CEF均为等腰直角三角形,

∴CE=CF,BE=BM,NF=DF,

∴a﹣BE=a﹣DF,

∴BE=DF,

∴BE=BM=DF=BG,

∴∠BMG=45°,

∴∠GME=45°+45°=90°,

∴EG2=ME2+MG2,

∵EG=EF,MG=BM=DF=NF,

∴EF2=ME2+NF2;

(3)EF2=2BE2+2DF2.

如图所示,延长EF交AB延长线于M点,交AD延长线于N点,

将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.

由(1)知△AEH≌△AEF,

则由勾股定理有(GH+BE)2+BG2=EH2,

即(GH+BE)2+(BM﹣GM)2=EH2

又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2

考点:四边形综合题

5.(1)问题发现

如图1,△ACB

和△DCE 均为等腰直角三角形,∠ACB=90°,B,C,D 在一条直线上. 填空:线段AD,BE 之间的关系为 . (2)拓展探究

如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE 的关系,并说明理由. (3)解决问题

如图3,线段PA=3,点B 是线段PA 外一点,PB=5,连接AB,将AB 绕点A 逆时针旋转90°得到线段AC,随着点B 的位置的变化,直接写出PC 的范围.

【答案】(1) AD=BE ,AD⊥BE.(2) AD=BE ,AD⊥BE.(3) 5-32≤PC≤5+32. 【解析】 【分析】

(1)根据等腰三角形性质证△ACD ≌△BCE (SAS ),得AD=BE ,∠EBC=∠CAD ,延长BE 交AD 于点F ,由垂直定义得AD ⊥BE .

(2)根据等腰三角形性质证△ACD ≌△BCE (SAS ),AD=BE ,∠CAD=∠CBE ,由垂直定义得∠OHB=90°,AD ⊥BE ;

(3)作AE ⊥AP ,使得AE=PA ,则易证△APE ≌△ACP ,PC=BE ,当P 、E 、B 共线时,BE 最小,最小值=PB-PE ;当P 、E 、B 共线时,BE 最大,最大值=PB+PE ,故5-32≤BE≤5+32. 【详解】

(1)结论:AD=BE ,AD ⊥BE . 理由:如图1中,

∵△ACB 与△DCE 均为等腰直角三角形, ∴AC=BC ,CE=CD , ∠ACB=∠ACD=90°, 在Rt △ACD 和Rt △BCE 中

AC BC ACD BCE CD CE ??

∠∠???

=== ∴△ACD ≌△BCE (SAS ),

∴AD=BE,∠EBC=∠CAD

延长BE交AD于点F,

∵BC⊥AD,

∴∠EBC+∠CEB=90°,

∵∠CEB=AEF,

∴∠EAD+∠AEF=90°,

∴∠AFE=90°,即AD⊥BE.

∴AD=BE,AD⊥BE.

故答案为AD=BE,AD⊥BE.

(2)结论:AD=BE,AD⊥BE.

理由:如图2中,设AD交BE于H,AD交BC于O.

∵△ACB与△DCE均为等腰直角三角形,

∴AC=BC,CE=CD,∠ACB=∠ECD=90°,

∴ACD=∠BCE,

在Rt△ACD和Rt△BCE中

AC BC

ACD BCE

CD CE

?

?

∠∠

?

?

?

∴△ACD≌△BCE(SAS),

∴AD=BE,∠CAD=∠CBE,

∵∠CAO+∠AOC=90°,∠AOC=∠BOH,

∴∠BOH+∠OBH=90°,

∴∠OHB=90°,

∴AD⊥BE,

∴AD=BE,AD⊥BE.

(3)如图3中,作AE⊥AP,使得AE=PA,则易证△APE≌△ACP,∴PC=BE,

图3-1中,当P、E、B共线时,BE最小,最小值=PB-PE=5-32,图3-2中,当P、E、B共线时,BE最大,最大值=PB+PE=5+32,∴5-32≤BE≤5+32,

即5-32≤PC≤5+32.

【点睛】

本题是几何变换综合题,考查了旋转的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找三角形全等的条件,学会添加辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.

6.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.

(1)如图1,若α=90°,则AB= ,并求AA′的长;

(2)如图2,若α=120°,求点O′的坐标;

(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.

【答案】(1)10,2;(2)(339);(3)12354

5

,)

【解析】

试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则

∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则

O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得

O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求

出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作

P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.

试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,

∴AB==5,

∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,

∴△ABA′为等腰直角三角形,∴AA′=BA=5;

(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,

∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BH O′中,∵∠BO′H=90°﹣

∠HBO′=30°,

∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为

();

(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,

∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,

则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),

设直线O′C的解析式为y=kx+b,

把O′(),C(0,﹣3)代入得,解得,

∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P

(,0),

∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,

∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,

∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,

∴P′点的坐标为(,).

考点:几何变换综合题

7.我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”。 (1)概念理解:

如图1,在ABC ?中,6AC = ,3BC =.30ACB ∠=?,试判断ABC ?是否是“等高底”三角形,请说明理由. (2)问题探究:

如图2, ABC ?是“等高底”三角形,BC 是“等底”,作ABC ?关于BC 所在直线的对称图形得到A BC '?,连结AA '交直线BC 于点D .若点B 是123,12z ai z i =-=+的重心,求AC

BC

的值. (3)应用拓展:

如图3,已知12l l //,1l 与2l 之间的距离为2.“等高底”ABC ?的“等底” BC 在直线1l 上,点A 在直线2l 上,有一边的长是BC 的2倍.将ABC ?绕点C 按顺时针方向旋转45?得到

A B C ?'',A C '所在直线交2l 于点D .求CD 的值.

【答案】(1)证明见解析;(2)13

AC BC =

(3)CD 210322 【解析】

分析:(1)过点A 作AD ⊥直线CB 于点D ,可以得到AD =BC =3,即可得到结论; (2)根据 ΔABC 是“等高底”三角形,BC 是“等底”,得到AD =BC , 再由 ΔA ′BC 与ΔABC 关于直线BC 对称, 得到 ∠ADC =90°,由重心的性质,得到BC =2BD .设BD =x ,则AD =BC =2x , CD =3x ,由勾股定理得AC 13,即可得到结论; (3)分两种情况讨论即可:①当AB 2BC 时,再分两种情况讨论;

②当AC=2BC时,再分两种情况讨论即可.详解:(1)是.理由如下:

如图1,过点A作AD⊥直线CB于点D,

∴ΔADC为直角三角形,∠ADC=90°.

∵ ∠ACB=30°,AC=6,∴ AD=1

2

AC=3,

∴ AD=BC=3,

即ΔABC是“等高底”三角形.

(2)如图2,∵ ΔABC是“等高底”三角形,BC是“等底”,∴AD=BC,∵ ΔA′BC与ΔABC关于直线BC对称,∴ ∠ADC=90°.

∵点B是ΔAA′C的重心,∴ BC=2BD.

设BD=x,则AD=BC=2x,∴CD=3x,

∴由勾股定理得AC=13x,

1313 AC x

BC

==.

(3)①当AB2BC时,

Ⅰ.如图3,作AE⊥l1于点E,DF⊥AC于点F.

∵“等高底” ΔABC的“等底”为BC,l1//l2,

l1与l2之间的距离为2,AB2BC,

∴BC=AE=2,AB2,

∴BE=2,即EC=4,∴AC= 25

∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,∴∠CDF=45°.设DF=CF=x.

∵l1//l2,∴∠ACE=∠DAF,∴

1

2

DF AE

AF CE

==,即AF=2x.

∴AC=3x=5x 2

5

3

,∴CD2x

2

10

3

Ⅱ.如图4,此时ΔABC是等腰直角三角形,

∵ΔABC绕点C按顺时针方向旋转45°得到ΔA' B' C,

∴ΔACD是等腰直角三角形,

∴CD=2AC=22.

②当AC=2BC时,

Ⅰ.如图5,此时△ABC是等腰直角三角形.

∵ ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C,∴A′C⊥l1,∴CD=AB=BC=2.

Ⅱ.如图6,作AE⊥l1于点E,则AE=BC,

∴AC=2BC=2AE,∴∠ACE=45°,

∴ΔABC绕点C按顺时针方向旋转45°得到ΔA′ B′C时,点A′在直线l1上,

∴A′C∥l2,即直线A′ C与l2无交点.

综上所述:CD 2

10

3

,222.

点睛:本题是几何变换-旋转综合题.考查了重心的性质,勾股定理,旋转的性质以及阅读理解能力.解题的关键是对新概念“等高底”三角形的理解.

8.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.

(1)求抛物线C的函数表达式;

(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.

初三数学旋转单元测试题

初三数学旋转综合知识点检测题 一、选择题 1.将叶片图案旋转180°后,得到的图形是( ) 2.如图,在等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于() °°°° 3.如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在位置,A 点落在位置,若,则的度数是( ) °°°° 4.在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得 到OA′,则点A′的坐标是( ) A.(-4,3) B.(-3,4) C.(3,-4) D.(4,-3) 5.在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( ) A.(-2,1) B.(1,1) C.(-1,1) D.(5,1) 6.如图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作下列变换: ①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平移4格; ②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时针方向旋转90°; ③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°. 其中,能将△ABC变换成△PQR的是( )

A.①② B.①③ C.②③ D.①②③ 7.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ) 8.如图,边长为1的正方形绕点逆时针旋转到正方形, 图中阴影部分的面积为( ) A. B. C. D. 二、填空题 9.写出两个你熟悉的中心对称的几何图形名称,它们是____________. 10.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为 _____________. 11.△ABC是等边三角形,点O是三条中线的交点,△ABC以点O为旋转中心,旋转____________度后能与原来的图形重合 12.如图,若将△ABC绕点O顺时针旋转180°后得到△A′B′C′,则A点 的对应点A′点的坐标是 _____________. 13.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得 点P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐 标是__________.

人教版九年级上册数学 旋转变化中的压轴题【精】整理版

拔高专题:旋转变化中的压轴题 一、基本模型构建 探究点一:以三角形为基础的图形的旋转变换 例1:(2015?盘锦中考)如图1,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,点B 在线段AE 上,点C 在线段AD 上. (1)请直接写出线段BE 与线段CD 的关系: BE=CD ; (2)如图2,将图1中的△ABC 绕点A 顺时针旋转角α(0<α<360°), ①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由; ②当AC= 1 2 ED 时,探究在△ABC 旋转的过程中,是否存在这样的角α,使以A 、B 、C 、D 四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由. 解:(1)∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC ,AE=AD , ∴AE-AB=AD-AC ,∴BE=CD ; (2)①∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC ,AE=AD , 由旋转的性质可得∠BAE=∠CAD ,在△BAE 与△CAD 中,AB AC BAE CAD AE AD ? ∠?? ∠??===, ∴△BAE ≌△CAD (SAS ),∴BE=CD ;

②∵以A 、B 、C 、D 四点为顶点的四边形是平行四边形,△ABC 和△AED 都是等腰直角三角形, ∴∠ABC=∠ADC=45°,∵AC= 1 2 ED ,∴AC=CD ,∴∠CAD=45°,或360°-90°-45°=225°, ∴角α的度数是45°或225°. 等腰直角三角形的性质,等量代换,旋转的性质,全等三角形的判定和性质,平行四边形的判定和性质,综合性较强 【变式训练】1. 如图①,在Rt △ABC 和Rt △EDC 中,∠ACB=∠ECD=90°,AC=EC=BC=DC ,AB 与EC 交于F ,ED 与AB 、BC 分别交于M 、H . (1)求证:CF=CH ; (2)如图②,Rt △ABC 不动,将Rt △EDC 绕点C 旋转到∠BCE=45°时,判断四边形ACDM 的形状,并证明你的结论. (1)证明:∵∠ACB=∠ECD=90°,AC=BC=CD=CE ,∴∠1=∠2=90°-∠BCE ,∠A=∠B=∠D=∠E=45°, 在△ACF 和△DCH 中,12A D AC CD ∠∠∠??∠? ?? ===,∴△ACF ≌△DCH ,∴CF=CH ; (2)四边形ACDM 是菱形,证明:∵∠ACB=∠ECD=90°,∠BCE=45°,∴∠1=∠2=90°-45°=45°, ∵∠A=∠D=45°,∴∠A+∠ACD=45°+90°+45°=180°,同理∠D+∠ACD=180°,∴AM ∥DC ,AC ∥DM , ∴四边形ACDM 是平行四边形,∵AC=CD ,∴四边形ACDM 是菱形. 【教师总结】三角形从一个位置旋转到另一个位置,除去对应线段和对应角相等外,里面也存在着相等的角,和全等三角形,在解决问题过程要善于将“基本图形”分离出来分析。 探究点二 以四边形为基础的图形的旋转变换

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

人教版九年级数学上册 旋转几何综合单元测试题(Word版 含解析)

人教版九年级数学上册 旋转几何综合单元测试题(Word 版 含解 析) 一、初三数学 旋转易错题压轴题(难) 1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点. (1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ; (2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由; (3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值. 【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492 . 【解析】 【分析】 (1)由已知易得BD CE =,利用三角形的中位线得出12PM CE = ,1 2 PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系; (2)先判断出ABD ACE ???,得出BD CE =,同(1)的方法得出1 2 PM BD = ,1 2 PN BD = ,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论; (3)方法1:先判断出MN 最大时,PMN ?的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ?的面积最大,而BD 最大是14AB AD +=,即可得出结论. 【详解】 解:(1) 点P ,N 是BC ,CD 的中点, //PN BD ∴,1 2 PN BD = , 点P ,M 是CD ,DE 的中点,

初中数学最值问题解题技巧,初中几何最值问题方法归纳总结

几何最值问题大一统 追本溯源化繁为简 目有千万而纲为一,枝叶繁多而本为一。纲举则目张,执本而末从。如果只在细枝末节上下功夫,费了力气却讨不了好。学习就是不断地归一,最终以一心一理贯通万事万物,则达自由无碍之化境矣(呵呵,这境界有点高,慢慢来)。 关于几何最值问题研究的老师很多,本人以前也有文章论述,本文在此基础上再次进行归纳总结,把各种知识、方法、思想、策略进行融合提炼、追本溯源、认祖归宗,以使解决此类问题时更加简单明晰。 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。 证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 AD一定,所以D是定点,C是直线 的最短路径,求得当CD⊥AC时最短为 是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

九年级数学上册旋转几何综合单元测试卷(解析版)

九年级数学上册旋转几何综合单元测试卷(解析版) 一、初三数学 旋转易错题压轴题(难) 1.如图,在平面直角坐标系中,点O 为坐标原点,抛物线2 y ax bx c =++的顶点是A(1,3),将OA 绕点O 顺时针旋转90?后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C . (1)求抛物线的解析式; (2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与 OAB ?的边分别交于M ,N 两点,将AMN ?以直线MN 为对称轴翻折,得到A MN '?. 设点P 的纵坐标为m . ①当A MN '?在OAB ?内部时,求m 的取值范围; ②是否存在点P ,使' 5 6 A MN OA B S S ?'?=,若存在,求出满足m 的值;若不存在,请说明理 由. 【答案】()2 1y x 22x =-++;(2)①433 m <<;②存在,满足m 的值为619-或 639 -. 【解析】 【分析】 (1)作AD ⊥y 轴于点D ,作BE ⊥x 轴于点E ,然后证明△AOD ≌△BOE ,则AD=BE ,OD=OE ,即可得到点B 的坐标,然后利用待定系数法,即可求出解析式; (2)①由点P 为线段AC 上的动点,则讨论动点的位置是解题的突破口,有点P 与点A 重合时;点P 与点C 重合时,两种情况进行分析计算,即可得到答案; ②根据题意,可分为两种情况进行分析:当点M 在线段OA 上,点N 在AB 上时;当点M 在线段OB 上,点N 在AB 上时;先求出直线OA 和直线AB 的解析式,然后利用m 的式子表示出两个三角形的面积,根据等量关系列出方程,解方程即可求出m 的值. 【详解】

人教版九年级数学上册:--图形的旋转

23.1.2 图形的旋转 知识点 1.图形旋转的性质是:(1)旋转前后的图形;(2)对应点到旋转中心的距离; (3)对应点与旋转中心所连线段的夹角等于 2.简单的旋转作图---旋转作图的步骤 (1)确定旋转; (2)找出图形的关键点; (3)将图形的关键点与旋转中心连接起来,然后按旋转方向分别将它们旋转一个角,得到此关键点的对应点; (4)按图形的顺序连接这些对应点,所得到的图形就是旋转后的图形。 一、选择题 1.在图形旋转中,下列说法错误的是() A.在图形上的每一点到旋转中心的距离相等 B.图形上每一点移动的角度相同 C.图形上可能存在不动的点 D.图形上任意两点的连线与其对应两点的连线长度相等 2.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是() 3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()。 °°°° 4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)(? ) A.左上角的梅花只需沿对角线平移即可 B.右上角的梅花需先沿对角线平移后,再顺时针旋转45° C.右下角的梅花需先沿对角线平移后,再顺时针旋转180 D.左下角的梅花需先沿对角线平移后,再顺时针旋转90° 5 △ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,?则旋转角等于() A.50° B.210° C.50°或210° D.130° 二、填空题 6.图形的平移、旋转、轴对称中,其相同的性质是_________. 7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

初三数学旋转单元测试题及答案

第23章旋转单元测试题 一、用心填一填,你一定能填对! 1.如图1,△ABC 是等腰直角三角形,D 是AB 上一点, △CBD 经旋转后到达△ACE 的位置,则旋转中心是________;旋转角度是______; 点B 的对应点是_______;点D 的对应点是_______;线段CB 的对应点 是_____;∠B 的对应角是___________;如果点M 是CB 的 31, 那么经过上述旋转后,点M 移到了_________. 2. 3点12分和3点40分时,时针与分针构成的角各是_______度和_______度. 3.请你写出5个成中心对称的汉字,填在下面的横线上__________________________. 4.如图2所示的四个图形中,图形(1)与图形________成轴对称;图形(1)与图形______成中心对称.(填写符合要求的图形所对应的符号) 5.如图3所示,△ABC 绕点A 逆时针旋转某一角度得到△ADE,若∠1=∠2=∠3=20°,则旋转角为________度. 6.如图4所示,线段AB=4cm,且CD ⊥AB 于O,则阴影部分的面积是________. 7.如图5①,将字母“V ”沿_______平移________格会得到字母“W ”。如图5②,将字母“V ”绕点_______旋转_______度后得到字母N,绕点_______旋转_______度后会得到字母X.(图中E 、F 分别是其所在线段的中点 ) E 8.如图6是由面积为1的单位正三角形经过平移旋转,拼成由24个相同的三角形组成的 正六边形,我们把面积为4的正三角形称为“希望杯”,则图中可数出________个不同的“希 望杯”. 9.在直角坐标系中,点A (2,-3)关于原点对称的坐标是_______________. 10.在下列图7的四个图案中,既是轴对称图形,又是中心对称图形的有_________个. A B C D E N M 图1 A B C E D 1 2 3 图3 A (1) (2) (3) (4) 图2 A O C B D 图4 . . E F A ① ② 图5 图6 图7

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

初中数学旋转解题几何

旋转基础练习一 一、选择题 1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有 () A.6个B.7个C.8个 D.9个 2.从5点15分到5点20分,分针旋转的度数为 () A.20°B.26°C.30° D.36° 3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于 () A.70°B.80°C.60° D.50° (图1) (图2) (图3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________. 2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________. 3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形. 三、解答题. 1.阅读下面材料: 如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.

(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换. 回答下列问题 如图7,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,AF=1 2 AB. (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE移到△ADF的位置? (2)指出如图7所示中的线段BE与DF之间的关系. 2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B点从开始至结束所走过的路径长是多少? 旋转基础练习二 一、选择题 1.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于() A.50°B.210°C.50°或210°D.130°2.在图形旋转中,下列说法错误的是 () A.在图形上的每一点到旋转中心的距离相等 B.图形上每一点转动的角度相同 C.图形上可能存在不动的点 D.图形上任意两点的连线与其对应两点的连线长度相等 3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()

(完整)初三数学旋转单元测试题及答案,推荐文档

旋转 一、选择题 1.将叶片图案旋转180°后,得到的图形是( ) 2.如图,在 等腰直角△ABC中,B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则等于( ) A.60°  B.105° C.120° D.135° 3.(南平)如图,将△ABC绕着点C按顺时针方向旋转20°,B 点落在位置,A点落在位置,若,则的度 数是( ) A.50° B.60° C.70° D.80° 4.(安徽)在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OA′,则点A′的坐标是( ) A.(-4,3) B.(-3,4) C.(3,-4) D.(4,-3) 5.(济宁)在平面直角坐标系中,将点A1(6,1)向左平移4个单位到达点A2的位置,再向上平移 3个单位到达点A3的位置,△A1A2A3绕点A2逆时针方向旋转900,则旋转后A3的坐标为( ) A.(-2,1) B.(1,1) C.(-1,1) D.(5,1) 6.(嘉兴)如 图,8×8方格纸上的两条对称轴EF、MN相交于中心点O,对△ABC分别作 下列变换: ①先以点A为中心顺时针方向旋转90°,再向右平移4格、向上平 移4格; ②先以点O为中心作中心对称图形,再以点A的对应点为中心逆时 针方向旋转90°;

③先以直线MN为轴作轴对称图形,再向上平移4格,再以点A的对应点为中心顺时针方向旋转90°. 其中,能将△ABC变换成△PQR的是( ) A.①② B.①③ C.②③ D.①②③ 7.(黑龙江)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( ) 8.(潍坊)如图,边长为1的正方形绕点逆时针旋转 到正方形,图中阴影部分的面积为( ) A. B. C. D. 二、填空题 9.(盐城)写出两个你熟悉的中心对称的几何图形名称,它们是____________. 10.(衡阳)如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至 少为_____________. 11.(吉林)如图,直线与双曲线交于A、C两点,将直线绕点O顺时针旋转度角(0° <≤45°),与双曲线交于B、D两点,则四边形ABCD的形状一定是_________. 12.(邵阳)如图,若将△ABC绕点O顺时针旋转180°后得到△A′B′C′,则A点的对应点A′点的坐标是 _____________.

人教版九年级数学上册 旋转几何综合中考真题汇编[解析版]

人教版九年级数学上册 旋转几何综合中考真题汇编[解析版] 一、初三数学 旋转易错题压轴题(难) 1.阅读材料并解答下列问题:如图1,把平面内一条数轴x 绕原点O 逆时针旋转角 00)90(θ??<<得到另一条数轴,y x 轴和y 轴构成一个平面斜坐标系.xOy 规定:过点P 作y 轴的平行线,交x 轴于点A ,过点P 作x 轴的平行线,交y 轴于点B , 若点A 在x 轴对应的实数为a ,点B 在y 轴对应的实数为b ,则称有序实数对(),a b 为点 P 在平面斜坐标系xOy 中的斜坐标.如图2,在平面斜坐标系xOy 中,已知60θ?=,点P 的斜坐标是()3,6,点C 的斜坐标是()0,6. (1)连接OP ,求线段OP 的长; (2)将线段OP 绕点O 顺时针旋转60?到OQ (点Q 与点P 对应),求点Q 的斜坐标; (3)若点D 是直线OP 上一动点,在斜坐标系xOy 确定的平面内以点D 为圆心,DC 长为半径作 D ,当⊙D 与x 轴相切时,求点D 的斜坐标, 【答案】(1)37OP =2)点Q 的斜坐标为(9,3-);(3)点D 的斜坐标为: ( 3 2 ,3)或(6,12). 【解析】 【分析】 (1)过点P 作PC ⊥OA ,垂足为C ,由平行线的性质,得∠PAC=60θ=?,由AP=6,则 AC=3,33PC =OP 的长度; (2)根据题意,过点Q 作QE ∥OC ,QF ∥OB ,连接BQ ,由旋转的性质,得到OP=OQ ,∠COP=∠BOQ ,则△COP ≌△BOQ ,则BQ=CP=3,∠OCP=∠OBQ=120°,然后得到△BEQ 是等边三角形,则BE=EQ=BQ=3,则OE=9,OF=3,即可得到点Q 的斜坐标; (3)根据题意,可分为两种情况进行分析:①当OP 和CM 恰好是平行四边形OMPC 的对角线时,此时点D 是对角线的交点,求出点D 的坐标即可;②取OJ=JN=CJ ,构造直角三角

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

初中数学旋转解题几何之令狐文艳创作

旋转基础练习一 令狐文艳 一、选择题 1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有() A.6个B.7个C.8个D.9个 2.从5点15分到5点20分,分针旋转的 度数为() A.20° B.26° C.30° D.36° 3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心, 将△ABC旋转到△A′B′C的位置,其中 A′、B′分别是A、B的对应点,且点B 在斜边A′B′上,直角边CA′交AB于 D,则旋转角等于() A.70° B.80° C.60°

D.50° (图1) (图2) (图3) 二、填空题. 1.在平面内,将一个图形绕一个定点沿着 某个方向转动一个角度,这样的图形运动 称 为________,这个定点称为________,转 动的角为________. 2.如图2,△ABC与△ADE都是等腰直角三 角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重 合,那么旋转中心是点_________;旋转 的度数是__________. 3.如图3,△ABC为等边三角形,D为△ABC 内一点,△ABD经过旋转后到达△ACP的 位置,则,(1)旋转中心是________; (2)旋转角度是________;(3)△ADP

是________三角形. 三、解答题. 1.阅读下面材料: 如图4,把△ABC沿直线BC平行移动线段 BC的长度,可以变到△ECD的位置. 如图5,以BC为轴把△ABC翻折180°, 可以变到△DBC的位置. (图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转 90°,可以变到△AED的位置,像这样,其 中一个三角形是由另一个三角形按平行移 动、翻折、旋转等方法变成的,这种只改变 位置,不改变形状和大小的图形变换,叫做 三角形的全等变换. 回答下列问题 如图7,在正方形ABCD中,E是AD的中 AB. 点,F是BA延长线上一点,AF=1 2

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

初中数学九大几何模型解题思路

九大几何模型 一、手拉手模型----旋转型全等 (1)等边三角形 【条件】:△OAB 和△OCD 均为等边三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形 【条件】:△OAB 和△OCD 均为等腰直角三角形; 【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED O A B C D E 图 1 O A B C D E 图 2 O A B C D E 图 1 O A C D E 图 2

(3)顶角相等的两任意等腰三角形 【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB 【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AED 二、模型二:手拉手模型----旋转型相似 (1)一般情况 【条件】:CD ∥AB , 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC= ∠BOA (2)特殊情况 【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; O C O C D E O B C D E O A C D

②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③ ===OA OB OC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有22 22CD AB B C AD +=+;⑥BD AC 21 S △BCD ?= 三、模型三、对角互补模型 (1)全等型-90° 【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB 【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 2 1 S S S =+= 证明提示: ①作垂直,如图2,证明△CDM ≌△CEN ②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21 S S =- (2)全等型-120° 【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB A O B C D E 图 1 A O B C D E M N 图 2 A O B C D E F 图 3 A O B C D E M N 图 4

九年级数学上册第23章旋转单元测试卷2

九年级数学上册第23章旋转单元测试卷2 (时间90分钟,满分120分) 一、选择题(每题3分,共24分) 1.平面图形的旋转一般情况下改变图形的() A. 位置 B.大小 C.形状 D.性质 2. 9点钟时,钟表的时针与分针的夹角是() A.30° B.45° C.60° D.90° 3. 将□ABCD旋转到□A′B′C′D′的位置,下面结论错误的是() A. AB=A′B′ B. AB∥A′B′ C. ∠A=∠A′ D.△ABC≌△A′B′C′ 4.在下列图形中,既是中心对称又是轴对称的图形是() 5.如 图,图形旋转一定角度后能与自身重合,则旋转的角度可 能是() A. 30° B. 60° C.90° D. 120° 第5题图 6.如图, 在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的 度数为() A. 10° B. 15° C. 20° D. 25° 7.把一个正方形绕它的中心旋转一周和原来的图形重合() A. 1次 B. 2次 C. 3次 D. 4次 8.如图,△ABC和△DEF关于点O中心对称,要得到△DEF,需要将△ABC旋转() A.. 30° B. 90° C. 180° D. 360° 二、填空题() 9.钟表上的时针随时间的变化而转动,这可以看做的数学上的 . 10.菱形ABCD绕点O沿逆时针方向旋转得到四边形A′B′C′D′,则四边形A′B′ C′D′是 . 11.钟表的分针经过20分钟,旋转了° . 12.等边三角形至少旋转°才能与自身重合. 13.如图,△ABC以点A为旋转中心,按逆时针方向旋转60°,得到的△A B1B是 三角形。 F E D C B A O F E D C B A 第6题 图 第8题 图

相关文档
最新文档