DLF与SLM激光快速成型方法的比较

合集下载

SLS激光快速成型技术原理特点及工艺方法[本站推荐]

SLS激光快速成型技术原理特点及工艺方法[本站推荐]

SLS激光快速成型技术原理特点及工艺方法[本站推荐]第一篇:SLS激光快速成型技术原理特点及工艺方法[本站推荐] 激光快速成型技术原理特点及工艺方法快速成型技术是近年来制造技术领域的一次重大突破和革命性的发展,激光快速成型技术是其必不可少的重要组成部分。

今天由湖南华曙高科专业人员分析激光快速成型技术原理特点及工艺方法。

八十年代后期发展起来的快速成型是基于分层技术、堆积成型,直接根据CAD模型快速生产样件或零件的先进制造成组技术总称。

RP技术综合了激光、CADCAM、计算机辅助设计与制造、光化学、新型材料等科学技术的研究成果,不需任何机械加工设备即可快速精确地制造复杂形状的物体,它不同于传统的去除成型、拼合成型及受迫成型等加工方法,它是利用材料累加法直接制造金属及各种复合材料零件。

常用的RP工艺有四种:1)立体光刻又称液料光固化2)选择性激光烧结3)熔丝沉积4)分层实体制造等。

其中,立体光刻是精度最高和应用最广的一种快速成型工艺。

以激光作为加工能源的激光快速成型是快速成型技术的重要组成部分,它集成了CAD技术、激光技术和材料科学等现代科技成果。

激光快速成型原理是用CAD生成的三维实体模型。

快速制造出的模型或样件可直接用于新产品设计验证、功能验证、工程分析、市场订货及企业决策等,缩短新产品开发周期,降低研发成本,提高企业竞争力。

激光快速成型技术主要特点可分为三种:1)制造速度快,成本低,节约了时间和成本,为传统的制造方法添增了新的活力。

实习自由制造,产品制造过程以及产品造价几乎和产品的复杂性和批量无关。

2)采用非接触的加工模式,没有传统加工的残余力问题,工具的更新问题,无切割、噪声等,有利于保护环境。

3)可实现快速铸造,快速模具制造,特别适用于新品的开发和单件零件的生产。

湖南华曙高科简单的介绍激光快速成型技术的工艺方法,其实,激光快速成型技术包括很多种工艺方法,其中相对成熟的有立体光固、选择性激光烧结、分层实体制造、激光熔覆成形、激光近形制造等。

非凡士3D打印:详解5种金属3D打印技术原理和特点对比!

非凡士3D打印:详解5种金属3D打印技术原理和特点对比!

详解5种金属3D打印技术原理和特点对比!随着科技发展及推广应用的需求,利用快速成型直接制造金属功能零件成为了快速成型主要的发展方向。

目前可用于直接制造金属功能零件的主要金属3D打印工艺有:包括选择性激光烧结(Selective Laser Sintering, SLS)技术、直接金属粉末激光烧结(Direct Metal Laser Sintering,DMLS)、选择性激光熔化(Selective Laser Melting, SLM)技术、激光近净成形(Laser Engineered Net Shaping, LENS)技术和电子束选择性熔化(Electron Beam Selective Melting, EBSM)技术等。

一、选择性激光烧结(SLS)选择性激光烧结,顾名思义,所采用的冶金机制为液相烧结机制,成形过程中粉体材料发生部分熔化,粉体颗粒保留其固相核心,并通过后续的固相颗粒重排、液相凝固粘接实现粉体致密化。

SLS 技术原理及其特点整个工艺装置由粉末缸和成型缸组成,工作粉末缸活塞(送粉活塞)上升,由铺粉辊将粉末在成型缸活塞(工作活塞)上均匀铺上一层,计算机根据原型的切片模型控制激光束的二维扫描轨迹,有选择地烧结固体粉末材料以形成零件的一个层面。

完成一层后,工作活塞下降一个层厚,铺粉系统铺上新粉,控制激光束再扫描烧结新层。

如此循环往复,层层叠加,直到三维零件成型。

SLS工艺采用半固态液相烧结机制,粉体未发生完全熔化,虽可在一定程度上降低成形材料积聚的热应力,但成形件中含有未熔固相颗粒,直接导致孔隙率高、致密度低、拉伸强度差、表面粗糙度高等工艺缺陷,在SLS 半固态成形体系中,固液混合体系粘度通常较高,导致熔融材料流动性差,将出现 SLS 快速成形工艺特有的冶金缺陷——“球化”效应。

球化现象不仅会增加成形件表面粗糙度,更会导致铺粉装置难以在已烧结层表面均匀铺粉后续粉层,从而阻碍SLS 过程顺利开展。

典型成型工艺比较解读

典型成型工艺比较解读

1. 安全性及使用环境
使用紫外激光,虽 不产生高热,但具 有危险性;液态树 脂具有气味和毒性 SLA 喷头仅仅喷出 粘结剂
3DP
LOM
使用CO2激光, 具有危险性
热压喷头温度远 低于材料的燃点
FDM
使用紫外激光 ,具有危险性 SLS
因此,SLA、LOM和SLS均不 适合在办公室内使用
2. 常用材料
典型成型工艺比较
引言
光固化成型(SLA)
典型快速成型工艺

这几种成型方法到目前为止,
分层实体制造(LOM)
熔融沉积制造(FDM) 选择性激光烧结(SLS) 三维打印(3DP)
比较成熟,应用也比较广泛, 都是基于“增材”加工法原理,
差别在于使用的成型原料及每
层轮廓的成型方式不同
典型快速成型工艺
成型工艺 SLA LOM SLS、金属箔,塑料薄膜 粉末状的石蜡、塑料、金属、陶瓷 丝状的石蜡、塑料、低熔点金属 陶瓷和金属粉末
3.成型效果
典型快速成型工艺
Thank You!

3D打印机厂家整理三种3d打印机性能之间对比

3D打印机厂家整理三种3d打印机性能之间对比

3D打印机厂家整理三种3d打印机性能之间对比自从2012年以后,3d打印技术传入中国,国内3d打印技术呈现出百花争艳的局面。

3d打印领域技术越来越多,用于不同行业,每个3d打印技术都拥有特别之处,用于所在领域,我们今天就来天介绍FDM、DLP、SLA三种3d打印技术的特点。

一、FDM3d打印机的特点:①FDM3d打印技术原理:FDM是“熔融沉积”技术原理,是通过加热装置将ABS、PLA等丝材加热融化,然后通过挤出头像挤牙膏一样挤出来,一层一层堆积上去,最后成形。

②FDM3d打印机打印尺寸。

fdm3d打印机成型尺寸比较小,在架构上灵活多样,有XYZ框架结构的,有三角州结构的,有机械手臂的,因此成形尺寸可以做得很小,也可以做得很大。

但是大尺寸的FDM3D打印机,往往会存在稳定性不好,打印速度慢的问题。

所以,没有相当强的技术实力,是造不好大型FDM3D打印机的。

③FDM3d打印机成型尺寸。

我们都知道FDM3d打印机成型精度是由3d打印机的xyz 三个轴来控制,一般来说它z轴是步进电机精度(俗称厚度),而影响3d打印机成型精度是在x、y轴精度上。

而FDM3d打印机成型尺寸比较小,没有其他俩款3d打印机大。

④FDM3d打印机成型精度。

由于FDM是一层层通过挤出头挤出耗材的,台阶效应比较明显(就是一层一层的那个东西),对机械结构要求比较高。

另外,理论上FDM3D打印机喷头直径越小精度越高,但是喷头小了,也容易造成耗材堵塞,所以喷头不是越小越好。

④三种3d打印机价格对比。

毋庸置疑FDM3d打印机的价格是最便宜的,无论在精度还是成型尺寸均配不上其它3d打印机。

一般来FDM3D打印机要3000-4000元,而DLP3d 打印机要8000-30000元,SLA3d打印机由于技术要求高,一般都在3万以上。

二、DLP3d打印机特点:①DLP3d打印机原理。

DLP,“数字光投影”技术,使用的耗材和SLA一样,都是光固化树脂。

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理一、激光烧结成型原理激光烧结成型(Selective Laser Sintering,简称SLS)是一种快速成型技术,其成型原理是利用激光束对粉末材料进行烧结,逐层堆积形成所需的三维实体。

激光烧结成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将烧结材料粉末均匀地铺在工作台上,使其表面平整。

接下来,利用激光束控制系统,将激光束按照预定的路径和参数扫描在粉末层表面,使其局部熔融烧结。

激光束的能量使粉末颗粒之间发生熔融和烧结,形成一层固体物质。

再次铺上一层新的粉末材料,重复上述步骤,逐层堆积,直至形成整个三维实体。

最后,将成品从未熔融的粉末中清理出来,并进行后续处理,如热处理或表面处理。

激光烧结成型技术具有成型速度快、制作精度高、制造复杂度高等优点。

由于其成型过程中无需使用支撑材料,可以制造出具有复杂内部结构的零件,因此被广泛应用于航空航天、汽车、医疗器械等领域。

二、光固化成型原理光固化成型(Stereolithography,简称SLA)是一种常见的快速成型技术,其成型原理是利用紫外线激光束对光固化树脂进行逐层固化,最终形成所需的三维实体。

光固化成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将液态光固化树脂均匀地铺在工作台上。

接下来,利用紫外线激光束扫描器,将激光束按照预定的路径和参数照射在树脂表面,使其局部固化。

激光束的能量使树脂中的光敏物质发生聚合反应,从而使树脂由液态变为固态。

再次涂覆一层新的液态光固化树脂,重复上述步骤,逐层固化,最终形成整个三维实体。

最后,将成品从未固化的树脂中清洗出来,并进行后续处理,如烘干或光刻。

光固化成型技术具有成型速度快、制造精度高、制造复杂度高等优点。

DLF与SLM激光快速成型方法的比较

DLF与SLM激光快速成型方法的比较

DLF和SLM激光快速成型方法的比较激光直接制造(Direct Laser Fabrication,DLF)技术和选择性激光熔化(Selective Laser Melting,SLM)技术是目前较为成熟和先进的激光快速成型技术,涉及机械、材料、激光、计算机和自动控制等多学科领域,充分体现了现代科学发展多学科交叉的特点,具有广泛的研究和发展前景。

DLF技术是基于激光快速成型的“离散一堆积”、“添加式制造”的基本概念和激光熔覆技术而发展起来的金属零件全密度全功能快速直接制造技术。

其实质是利用送粉式激光熔覆逐点、逐层沉积,实现三维任意形状高性能金属零件的近净成型。

SLM技术是以选择性激光烧结(Selective I.aserSinter,SLS)技术为基础,基于快速成型的最基本思想,即逐层熔覆的“增量”制造方式,根据三维CAD模型直接成型具有特定几何形状的零件,成型过程中金属粉末完全熔化,产生冶金结合。

它是快速成型技术的最新发展。

本文采用DLF和SLM两种激光快速成型技术进行一系列实验,根据实验结果,比较分析两种快速成型方法在成型精度和效率、成型件力学性能和组织结构等方面的异同,为激光快速成型方法的选择提供一定的技术依据。

1 DLF和SLM激光快速成型技术的原理1.1 DLF激光快速成型技术的原理DLF技术是将快速成型(Rapid Prototyping,RP)技术和激光熔覆技术相结合,以激光作为加工能源,以金属粉末为加工原料,在金属基板上逐层熔覆堆积,从而形成金属零件的制造技术。

DLF快速成型技术的基本原理哺1如图1所示,先利用三维CAD软件(如UG,Pro/E,Solidworks)生成所需制造零件的三维CAD模型,并转换成STL格式;再利用切片技术将吼格式的CAD模型按照一定的层厚进行分层切片,提取每一层切片所产生的轮廓;然后根据切片轮廓设计合理的扫描路径,并转换成相应的计算机数字控制(Computer Nomencal Control,CNC)工作台指令;激光束在CNC指令控制下进行扫描加工,将加工原料进行熔覆,生成和这一层形状、尺寸一致的熔覆层。

快速成型典型工艺简介与对比

快速成型典型工艺简介与对比

快速成形典型工艺简介与对比关键词及简称光固化成形(简称:SLA或AURO)光敏树脂为原料熔融挤压成形(简称:FDM或MEM)ABS丝为原料分层实体成形(简称:LOM或SSM)纸为原料粉末烧结成形(简称:SLS或SLS)蜡粉为原料光固化成形光固化成形是最早出现的快速成形工艺。

其原理是基于液态光敏树脂的光聚合原理工作的。

这种液态材料在一定波长(x=325nm)和强度(w=30mw)的紫外光的照射下能迅速发生光聚合反应, 分子量急剧增大, 材料也就从液态转变成固态。

图1光固化工艺原理图图1工艺过程为:液槽中盛满液态光固化树脂,激光束在偏转镜作用下, 能在液体表面上扫描, 扫描的轨迹及激光的有无均由计算机控制, 光点扫描到的地方, 液体就固化。

成型开始时,工作平台在液面下一个确定的深度,液面始终处于激光的焦平面,聚焦后的光斑在液面上按计算机的指令逐点扫描即逐点固化。

当一层扫描完成后,未被照射的地方仍是液态树脂。

然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕, 得到一个三维实体原型。

光固化工艺的设备做出的零件其优点是精度较高、表面效果好,零件制作完成打磨后,将层层的堆积痕迹去除。

光固化工艺是运行费用最高,且强度低无弹性,无法进行装配。

光固化工艺设备的原材料很贵,种类不多。

光固化设备的零件制作完成后,还需要在紫外光的固化箱中二次固化,用以保证零件的强度。

液漕内的光敏树脂经过半年到一年的时间就要过期,所以要有大量的原型服务以保证液漕内的树脂被及时用完,否则新旧树脂混在一起会导致零件的强度下降、外形变形。

如需要更换不同牌号的材料就需要将一个液漕的光敏树脂全部更换,工作量大、树脂浪费很多。

一年内液漕光敏树脂必须用完否则将会变质,用户需要重新投入近十万元采购光敏树脂。

三十万的端面泵浦固体紫外激光器只能用1万小时,使用两年后激光器更换需要二次投入三十万的费用。

几种快速成型方式的比较

几种快速成型方式的比较

几种快速成型方式的比较几种快速成型方式的比较几种常见快速成型工艺的比较在快速领域里一直站主导地位快速成型工艺主要包括:FDM, SLA, SLS, LOM等工艺,而这几种工艺又各有千秋,下面我们在主要看一下这几种工艺的优缺点比较:FDM(fused deposition Modeling)丝状材料选择性熔覆快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料、聚碳酸酯)加热熔化进而堆积成型方法,简称丝状材料选择性熔覆.原理如下:加热喷头在计算机的控制下,根据产品零件的截面轮廓信息,作平面运动,热塑性丝状材料由供丝机构送至热熔喷头,并在喷头中加热和熔化成半液态,然后被挤压出来,有选择性的涂覆在工作台上,快速冷却后形成一层大约0.127mm厚的薄片轮廓。

一层截面成型完成后工作台下降一定高度,再进行下一层的熔覆,好像一层层画出截面轮廓,如此循环,最终形成三维产品零件。

这种工艺方法同样有多种材料可供选用,如工程塑料;聚碳酸酯、工程塑料PPSF: 以及ABS与PC的混合料等。

这种工艺干净,易于操作,不产生垃圾,并可安全地用于办公环境,没有产生毒气和化学污染的危险。

适合于产品设计的概念建模以及产品的形状及功能测试。

专门开发的针对医用的材料ABS-i: 因为其具有良好的化学稳定性,可采用伽码射线及其他医用方式消毒,特别适合于医用。

FDM快速原型技术的优点是:制造系统可用于办公环境,没有毒气或化学物质的污染;1次成型、易于操作且不产生垃圾;独有的水溶性支撑技术,使得去除支撑结构简单易行,可快速构建瓶状或中空零件以及一次成型的装配结构件;原材料以材料卷的形式提供,易于搬运和快速更换。

可选用多种材料,如各种色彩的工程塑料以及医用ABS等快速原型技术的缺点是:成型精度相对国外先进的SLA工艺较低,最高精度、成型表面光洁度不如国外SLA:成型速度相对较慢光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺的简称,是最早出现的一种快速成型技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DLF与SLM激光快速成型方法的比较激光直接制造(Direct Laser Fabrication,DLF)技术与选择性激光熔化(Selective Laser Melting,SLM)技术是目前较为成熟和先进的激光快速成型技术,涉及机械、材料、激光、计算机和自动控制等多学科领域,充分体现了现代科学发展多学科交叉的特点,具有广泛的研究与发展前景。

DLF技术是基于激光快速成型的“离散一堆积”、“添加式制造”的基本概念和激光熔覆技术而发展起来的金属零件全密度全功能快速直接制造技术。

其实质是利用送粉式激光熔覆逐点、逐层沉积,实现三维任意形状高性能金属零件的近净成型。

SLM技术是以选择性激光烧结(Selective I.aserSinter,SLS)技术为基础,基于快速成型的最基本思想,即逐层熔覆的“增量”制造方式,根据三维CAD模型直接成型具有特定几何形状的零件,成型过程中金属粉末完全熔化,产生冶金结合。

它是快速成型技术的
最新发展。

本文采用DLF与SLM两种激光快速成型技术进行一系列实验,根据实验结果,比较分析两种快速成型方法在成型精度和效率、成型件力学性能和组织结构等方面的异同,为激光快速成型方法的选择提供一定的技术依据。

1 DLF与SLM激光快速成型技术的原理
1.1 DLF激光快速成型技术的原理
DLF技术是将快速成型(Rapid Prototyping,RP)技术和激光熔
覆技术相结合,以激光作为加工能源,以金属粉末为加工原料,在金属基板上逐层熔覆堆积,从而形成金属零件的制造技术。

DLF快速成型技术的基本原理哺1如图1所示,先利用三维CAD软件(如UG,Pro /E,Solidworks)生成所需制造零件的三维CAD模型,并转换成STL 格式;再利用切片技术将吼格式的CAD模型按照一定的层厚进行分层切片,
提取每一层切片所产生的轮廓;然后根据切片轮廓设计合理的扫描路径,并转换成相应的计算机数字控制(Computer Nomencal Control,CNC)工作台指令;激光束在CNC指令控制下进行扫描加工,将加工原料进行熔覆,生成与这一层形状、尺寸一致的熔覆层。

完成这一过程后,聚焦镜、同轴送粉喷嘴等整体上移(或工作台下移)一个层厚的高度,并重复上述过程,如此逐层熔覆堆积直到形成CAD模型所设计的形状,加T出所需的金属零件为提高表面质量和避免加工缺陷,加工过程可在气体保护下进行。

图1 DLF快速成型技术的基本原理
1.2 SLM激光快速成型技术的原理
SLM快速成型技术的基本原理如图2所示
图2 SLM快速成型技术的基本原理
在制造过程中,铺粉装置按设定的层厚将金属粉末均匀地铺设在基板上;激光在振镜控制下对需要熔化的区域进行扫描熔化;然后,基板下降一个层厚,重复下层的加工,如此往复,金属零件一层层地被加工完成。

2 DLF与SLM的比较研究
2.1 DLF与SLM成型精度的比较
由于DLF激光快速成型是采用开环控制,属于自由成型,所以实际成
型高度误差△日与z轴增量有很大的关系,因为Z轴增量决定了聚焦透镜与制造工件之间的垂直距离,其大小直接影响到激光光斑的大小,进而影响激光能量密度的大小。

在切片层厚T=0.04nun、功率P=200W、送粉量M=4.2s/min、扫描速度V=900mm/min条件下的单道
熔覆高度测量值为0.056mm,在此丁艺参数条件下,分别利用不同的Z轴增量,加工100层,测量其最终成型高度,并计算、分析其与高度设计值之间的差值。

多层熔覆高度的实际值和设计值的差即成型高
度误差(△H)与z轴增量的关系如图3所示,从图3中可以看出,当Z轴增量在0。

03—0.10mm之间变化时,△日较小,其中当z轴增量为0.04mm时,成型实际高度为4.1mln,加工100层后△日值最小为0.1mm。

分析原因为:在进行多层熔覆时,如果Z轴增量等于实际每层熔覆层的高度,聚焦透镜和工件之问的距离可以保持恒定,从而保证了光斑大小在T件表面始终不变,即保证了激光能量密度不变,此时的z轴增量为最佳值。

当Z轴增量超过0.16mm时,则根本无法形成薄壁形状。

所以此成型参数下的最佳Z轴增量值为0.04.
图3 z轴增量与成型高度误差的关系
从图3可以看出,以0.04mm的切片层厚进行加工,每100层高度误差为0.1mm,相对误差达到2.5%。

利用图4所示的零件进行SLM 激光快速成型精度的研究。

其成型零件实物如图5所示,测量其长、宽、高的实际尺寸数值(取三次测量值的平均值),与设计值进行比较,结果如表1所示。

图4 SLM快速成型精度研究零件
图5 SLM快速成型金属零件实物
表1 SLM快速成型件尺寸误差测量结果
从表1可知,7个尺寸误差的平均值为0.011mm,相对误差为1.1%。

研究结果表明,SLM快速成型技术的制造精度比较高。

DLF快速成型方法,在z轴方向上加工误差较大,加工精度较低,与DLF相比,SLM
在零/部件的制造精度方面具有明显的优势。

2.2 DLF与SLM成型金属零件力学性能的比较本文主要从拉伸强度与显微硬度两个方面分析、比较两种方法成型件的力学性能。

实验材料配方见表2。

DLF与SLM成型件的力学性能实验结果如表3所示。

表2实验材料配方%
表3 DLF与SLM成型件力学性能实验结果
从表3可以看出,DLF成型技术所制备的金属零件在拉伸强度方面要优于SLM,但在显微硬度方面要低于SLM,主要原因为:在非加工硬化的条件下,金属材料的硬度和平均晶粒大小有关,其关系式可以表示
为:
式中:以为金属材料的硬度;Hi、K分别为与硬度测量有关的适当常数;d为平均晶粒直径。

由于用SLM成型技术加工零件的扫描速度要大
大高于DLF,所以组织晶粒细小,故硬度较高。

但总体来说,两种方法的成型件在力学性能方面均优于普通的奥氏体不锈钢。

2.3 DLF与SLM成型金属零件组织结构的比较
利用DLF与SLM技术制造金相试样,并进行SEM扫描,金相组织如图6、图7所示。

图6 DLF成型件金相组织
图7 SIAl成型件金相组织
从图6a和图7a可以看出,两种方法激光扫描路径清晰可见,DLF与SLM均为层叠式制造,由于重熔影响,重熔区的晶粒较粗大,且破坏
了定向凝固特征,因此层与层之间具有明显的分层现象。

从图6b和图7b可以看出,DLF与SLM成型件金相组织的高倍形貌均为枝状晶,定向凝固特征明显,晶粒生长方向均为温度梯度大的方向,即基板法线方向的相反方向。

DLF与SLM成型件的组织结构基本相同,且成型后的物相均为奥氏体,与成型前的粉末物相相同。

2.4 DLF与SLM成型效率的比较
以20ram×20mm×10mm长方体为例,分析比较DLF与SLM快速成型的加工效率。

根据本文第2.1所述结论,即z轴增量为0.04ram时,成型高度误差最小,故按0.04mm对长方体进行分层切片,加工工艺参
数如表4所示,加工时间对比如表5所示。

表4 DLF与SLM快速成型加工工艺参数
由表5可知:在相同切片层厚条件下,SLM成型所花费时间与DLF成型所花时间的比值为2.26/3.77=0.6,由此可见SLM激光快速成型技术较DLF技术在加T效率方面有很大的提高。

但当层厚大时,DLF 成型的切片效率要高于SLM。

2.5 DLF与SLM快速成型技术的应用比较
由于DLF采用的是送粉方式,而SLM采用的是铺粉方式,故SLM所加工零件的复杂程度要高于DLF技术成型件。

因此,DLF一般用于粗加工制造毛坯件,或应用于零件的修复方面;而SLM快速成型技术
则可以用于精密、复杂和小型零件的制造。

3 结语
通过对DLF与SLM两种快速成型技术的分析比较得出以下结论:
1)在成型精度方面,SLM要优于DLF技术;
2)在成型件的力学性能方面,两者都具有较高的性能,均优于普通不锈钢;
3)在组织性能方面,SLM与DLF基本上是相同的;
4)在成型效率方面,如果切片层厚相同,SLM的成型效率要高于DLF;
5)在应用场合方面,DLF主要用于粗加工或零件修复等方面,而SLM 可用于精密、复杂零件的制造。

SLS和SLA两种快速成型的对比
激光快速成型在制作手板模型的应用上,主要有两种加工方式,分别为SLS(激光选区烧结法)快速成型系统和SLA(光固化成型法)快速成型系统两种方式。

SLS和SLA快速成型之间的区别和相同点分析:
两者原理都是非常相似的。

前者所用的材质是粉末状的物质,而后者所采用的一种液态形状的光敏树脂,所以前者比后者的优点在于,凡是可以溶解的所有粉末状的物质,都是可以用来制造原型或者模型的,所制造出来的产品都是可以用作产品的首样测试和结构组装件的。

所以SLS可以利用的材质非常广泛,比如说尼龙材质,比如说PC材质,比如说其他的腊粉,甚至有些五金的材质都是可以做到的。

通过以上方式加工出来的产品,精度都是相差比较大,但是因为SLS可以烧结很多的材质,甚至有些冷门的陶瓷层都能做到,所以说SLS工艺更加具有广泛的应用性,在行业的应用范围大,吸引力强。

精致的工艺品适合用SLA快速成型,大型的产品则选择就选择SLS 激光粉末烧结成型了更为适合。

相关文档
最新文档