克里格法

合集下载

综述指示克里格方法的原理及应用

综述指示克里格方法的原理及应用

综述指示克里格方法的原理与应用学号:18 :在土壤质量评价、大气污染物浓度分布评估等研究中,克里格空间插值方法是一个有力的工具。

但是观测数据中往往存在一些特异值,观测数据不成(对数)正态分布,影响了变异函数的稳健性。

如果用参数地质统计学方法, 则必须剔除这些特异值或者对观测值进行非线性转换,以使观测值的概率分布满足正态,但这会影响变量空间变异的真实信息。

非参数地质统计学中的指示克里格法是处理有偏数据的有效方法,它能在不必去除重要而实际存在的特异值的条件下处理不同的现象,并能抑制特异值对变异函数的稳健型的影响。

指示克立格法是一种最常用的非参数地质统计学方法,它是因把对区域化变量的研究转换为对其指示函数的研究而得名.有关指示克里格方法的研究与应用,国外学者已经做了很多工作,但是大部分研究都是单元指示克里格在单一尺度下的应用。

本文将主要讨论指示克里格方法的基本原理,指示克里格的应用方法(比如多尺度指示克里格、多元指示克里格等)以及指示克里格法的限制和不足。

1 基本原理克里格(Kriging)插值法是空间统计分析方法的重要容之一,它是建立在半变异函数理论分析基础上的,是对有限区域的区域化变量取值进行无偏最优估计的一种方法。

基于这种方法进行插值时,不仅考虑了待预测点与邻近样点数据的空间距离关系,还考虑了各参与预测的样点之间的位置关系,充分利用了各样点数据的空间分布结构特征,使其估计结果比传统方法更精确,更符合实际,更有效避免了系统误差的出现。

在空间统计分析方法中,可以通过选择阈值,将一个连续的变量转换成一个值为0或1的二进制变量。

比如在研究区域D,Z(X)表示采样点X上的采样值,设Z为研究区域D上的一个临界值(阈值),则在D上的每点X∈D上定义一个Z 的指示函数如下:对于指示函数,可以用条件概率来描述:当Xa, a=1,2,⋯,n为采样点时,这时,某待估点X的指示函数估计值可以表示为:对于采样点来说,指示值可解释为已知该点的实测值为Za时,该点的真实值小于等于阈值的概率,而对于待估点,其指示函数估计值可解释为已知待估点周围信息(样本的实测值) 时,该点的真实值小于等于阈值的概率。

地质统计学(6)_普通克里格法-cjg2011

地质统计学(6)_普通克里格法-cjg2011
(i=1,2,… ,n)既不同于V,又各不相同。所采用的线性估计量 为:
* V
Z i Z i
i 1
n
它是n个数值的线性组合。
克里格估值的原则:就是在保证这个估值ZV*是无偏的,且估计
方差最小的前提下,求出n个权系数λi 。在这样的条件下求得的λi 所构
成的估计量ZV*称为ZV的克里格估计量,记为ZK* 。这时的估计方差 称为克里格方差,记为σK*。 当Z (x)的期望已知时:为简单克里格;未知时:为普通克里格
普通克里格法


1. 克里格法的定义
2. 克里格法的种类 3. 克里格法的使用信息和应用条件 4. 普通克里格方程组 5. 普通克里格方差 6. 算例与应用实例
一、概述
1. 克里格法的定义 矿业定义:根据一个块段(盘区)内外的若干信息样品的某特征值 (品位)数据,对该块段(盘区)品位(特征值)作出一种线性、无偏、 最小估计方差的估计方法。 数学定义:一种求最优、线性、无偏内插估计量的方法。
C( x , x ) C( x ,V )
i 1 j 1 i j i j i i i
n
n
n
( 3)
将(3)式代入公式(1),则得到简单克里格方差的计算公式:
C (V ,V ) i C ( xi ,V )
2 K i 1 n
( 4)
公式(1)与公式(4)中,所用的估计方差符号不一样,(1)式表
③ 信息不仅包括二阶矩知识,还包括更多知识(二维分 布)——析取克里格
非线性 平稳
二、克里格方程组及其方差
1. 问题的提出
设Z(x)为点承载的区域化变量,且是二阶平稳(或本征)的。今要
1 对以x0为中心的盘区V(x0)的平均值 ZV ( x0 ) Z ( x)dx (简记为ZV)进行 V V

地质统计学(6)_普通克里格法-cjg2011

地质统计学(6)_普通克里格法-cjg2011
普通克里格法


1. 克里格法的定义
2. 克里格法的种类 3. 克里格法的使用信息和应用条件 4. 普通克里格方程组 5. 普通克里格方差 6. 算例与应用实例
一、概述
1. 克里格法的定义 矿业定义:根据一个块段(盘区)内外的若干信息样品的某特征值 (品位)数据,对该块段(盘区)品位(特征值)作出一种线性、无偏、 最小估计方差的估计方法。 数学定义:一种求最优、线性、无偏内插估计量的方法。
1 其中: 2 , n
C (v1 ,V ) C (v2 ,V ) M C (vn ,V ) 1
C (v1 , v1 ) C (v1 , v2 ) C (v2 , v1 ) C (v2 , v2 ) K C (v , v ) C (v , v ) n 1 n 2 1 1 C (v1 , vn ) C (v2 , vn ) C (vn , vn ) 1 1 1 1 0
估计。
v2 ⊙ x2
v1 ⊙ x1
V

x0
v3 ⊙ x3
v4 ⊙ x4
2. 线性估计量的构造
Zi (i=1,2,… ,n)是一组离散的信息样品数据,它们定义在 点承载xi (i=1,2,… ,n)上的;或是确定在以xi 点为中心的承载vi
(i=1,2,… ,n)上的平均值Zvi (xi) (简记Zi )。且这n个承载vi
( 2)
(i 1,2,, n)
于是得到简单克里格方程组: iC ( xi , x j ) C ( xi ,V )
j 1
n
从这个方程组中解出λi (i=1,2,… ,n),即为所求的简单克里 格系数,它必定满足最小方差无偏估计的要求。 将克里格方程组两端均乘以λi ,并对i 从1到n求和,则有:

克里金法

克里金法
假设在待估计点(x)的临域内共有n个实测点,即x1, x2,…,xn,其样本值为。那么,普通克里格法的插值公式为
Z ( x ) i Z ( x i )
* i 1
n

i 为权重系数,表示各空间样本点处的观测值对估值的影响度或者贡
献程度。 显然,克里格估值的关键问题就是在于求解 i 的值,同时根据估值 的基本原则,即无偏性和估计方差最小(最优性)的要求,具体就是要满 足以下条件:
整理后得:
n j c( xi , x j ) c( xi , x) j 1 n 1 i i=1,2,3…… i 1
解上式线性方程组,求出权重系数λi和拉格朗日系数μ,代入公式
2 E c( x, x) i j c( xi , x j ) 2 i c( xi , x) i 1 j 1 i 1 n n n

可得克里格估计方差
2 σ E c( x, x) i c( xi , x) i 1 n
上述过程也可用矩阵形式表示,令
c11 c12 c 21 c22 K cn1 cn 2 1 1
c1n c2 n cnn 1
1 1 , 1 0
1 2 , n
c( x1 , x) c ( x , x ) 2 D c ( xn , x ) 1


首先,假设区域变化变量为Z(x),其满足内蕴假设条件和 二阶平稳条件,数学期望为m,协方差函数c(h)及变异函数 (h) 存在,即:
E[ Z ( x)] m c(h) E[ Z ( x) Z ( x h)] m 2 1 (h) E[ Z ( x) Z ( x h)]2 2

克里格估值方法(一)

克里格估值方法(一)

克里格估值方法(一)克里格估值方法详解什么是克里格估值法?克里格估值法(Kriging)是一种通过插值方法对未知地点进行估值的统计技术。

它将已知地点上的观测值用于预测未知地点上的数值,常用于地质、地理、环境等领域的研究。

克里格估值法通过建立空间相关性模型,可以提供对未知地点上现象的可信度估计。

克里格估值法的基本原理克里格估值法的基本原理是空间相关性。

其假设对空间上相邻点之间的值存在一定的相关性,且该相关性可通过距离进行量化。

基于该假设,克里格估值法可以通过已知点与未知点之间的空间距离进行权重的计算,进而进行预测。

克里格估值法的步骤1.数据获取:克里格估值法需要已知点的观测值作为输入,可以通过采集现有数据或者实地测量获得。

2.空间相关性分析:通过观测值之间的空间相关性判断模型类型,常用的模型包括球型模型、指数模型和高斯模型等。

3.参数估计:使用已知观测值中的半方差数据,通过最小二乘法或最大似然法对模型的空间相关参数进行估计。

4.半方差图绘制:通过绘制半方差图,可以了解观测值之间的空间相关性和变化趋势。

5.克里格估值:根据已知点的观测值和模型的参数,计算未知点上的估值。

常用的克里格估值方法包括简单克里格法、普通克里格法和泛克里格法等。

6.估值验证:通过验证估值和实际值之间的误差,评估克里格估值方法的精度和可靠性。

克里格估值法的优缺点克里格估值法作为一种插值方法具有以下优点: - 利用空间相关性进行预测,能够充分利用已知数据的信息; - 通过建立空间模型,可以对估值进行可靠的分析和解释; - 适用于各种数据类型和标度水平,可用于多种研究领域。

然而,克里格估值法也存在一些缺点: - 对观测值的空间相关性要求较高,如果空间相关性较弱,克里格估值的精度可能较低; - 克里格估值法对异常值敏感,对异常值进行处理是很重要的一步; - 克里格估值法无法考虑其他外部因素的影响,如地形、土壤等因素。

克里格估值法的应用领域克里格估值法广泛应用于地理信息系统(GIS)、环境调查和资源评价等领域,常见的应用包括: - 土壤污染程度评估; - 水资源管理及水质预测; - 土地利用规划和生态环境研究; - 地质勘探和矿产资源评估。

克里格插值法

克里格插值法

克里格插值法
克里格插值法是一种被广泛应用于地球科学、环境科学与农业生
态学的数据插值方法,它通过统计分析空间距离和变量之间的关系,
构建一个反映实际数据分布规律的模型,从而在未知点处进行插值预测。

克里格插值法的主要思想是,根据各个采样点之间的空间位置关
系计算权重系数,再以这些权重为基础来对目标点的数值进行预测。

克里格插值法的实现过程主要包括:确定插值模型类型、计算空间距
离与方向、计算各采样点的权重、预测目标点的数值等几个步骤。

克里格插值法有很多优点。

首先,它不需要对大量数据进行修改
和处理,直接通过计算得到预测值,因此能够极大地提高工作效率。

其次,它可以处理不均匀分布的数据,能够更精确地反映真实的地理
表面变化。

此外,克里格插值法的错误率相对较低,能够在一定程度
上减少数据缺失所造成的影响。

当然,克里格插值法也存在一些局限性。

首先,它在计算复杂度
上相对较高,需要进行大量的计算和参数调整,因此在数据量较大时,计算量可能会较为庞大。

其次,克里格插值法只能处理各项同性的数据,对于非同性数据来说可能会存在较大的误差。

总的来说,克里格插值法是一种极为有效、实用的数据插值方法,在地球科学、环境科学与农业生态学等领域得到了广泛的应用。

虽然
它在实际应用中仍存在一些局限性,但随着科技的发展和方法的不断
完善,相信克里格插值法一定会越来越发挥出它的巨大潜力,为人类
的生产和生活带来更多、更好的效益。

克里格空间插值法ppt课件

克里格空间插值法ppt课件
1.9 理论变异函数模型
4.高斯模型(Gaussian model) 变程为 。
1.9 理论变异函数模型
图是球状模型、指数模型和高斯模型的比较,可以看出,球状模型的变程最小,指数的模型变程最大,高斯模型的变程介于二者之间。球状模型和指数模型过原点存在切线,高斯模型则没有。
1.9 理论变异函数模型
3.指数模型(Exponential model) 其中,d是控制方程空间范围的距离参数。这里,仅在无穷远处相关性完全消失。变程为3d。指数模型在统计理论中地位重要,它表示了空间随机性的要素,是一阶自回归和马尔可夫过程的半方差函数。作为自相关函数,它们是采样设计有效性的理论基础。
1.4邻域函数的统计函数及其意义
摄影测量得到的正射航片或卫星影象; 卫星或航天飞机的扫描影象; 野外测量采样数据,采样点随机分布或有规律的线性分布(沿剖面线或沿等高线; 数字化的多边形图、等值线图;
1.5 空间插值的数据源
图1 各种不同的采样布置方式
1.6 采样布置方式
1.8 方差变异函数
2)曲线从较低的方差值升高,到一定的间隔值时到达基台值,这一间隔称为变程(range)。在理论函数模型中,变程用a表示。 变程是半方差函数中最重要的参数,它描述了该间隔内样点的空间相关特征。在变程内,样点越接近,两点之间相似性、即空间上的相关性越强。很明显,如果某点与已知点距离大于变程,那么该点数据不能用于数据内插(或外推),因为空间上的自相关性不复存在。 变程的高低取决于观测的尺度,说明了相互作用所影响的范围。不同的属性,其变程值可以变化很大。
1.2.2局部插值方法 分类
1.4邻域函数的统计函数及其意义
众数(majority):邻域中出现频率最高的数值 最大值(max):邻域中最大的数值 最小值(min):邻域中最小的数值 中位数(median):邻域中数值从小到大排列后位于中间的数 平均值(mean):邻域中数值的算术平均 频率最小数(minority):邻域中出现频率最小的数值 范围(range):邻域中数值的范围,最大值与最小值之差 标准差(std):邻域中数值的标准差 和(sum):邻域中数值的和 变异度(varity):邻域中不同数值的个数

克里格法Kriging——有公式版

克里格法Kriging——有公式版

克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。

如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。

这种变量反映了空间某种属性的分布特征。

矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。

区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。

区域化变量具有两个重要的特征。

一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。

在某种意义上说这就是区域化变量的结构性特征。

二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。

在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、克里格法(Kriging)
克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。

如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数
一、区域化变量
当一个变量呈空间分布时,就称之为区域化变量。

这种变量反映了空间某种属性的分布特征。

矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。

区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。

区域化变量具有两个重要的特征。

一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。

在某种意义上说这就是区域化变量的结构性特征。

二、协方差函数
协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。

在概率理论中,随机向量X与Y 的协方差被定义为:
区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即
区域化变量Z(x) 的自协方差函数也简称为协方差函数。

一般来说,它是一个依赖于空间点x 和向量h 的函数。

<
设Z(x) 为区域化随机变量,并满足二阶平稳假设,即随机函数Z(x)的空间分布规律不因位移而改变,h为两样本点空间分隔距离或距离滞后,Z(xi)为Z(x)在空间位置xi处的实测值,Z(xi+h)是Z(x)在x处距离偏离h的实测值,根据协方差函数的定义公式,可得到协方差函数的计算公式为:
在上面的公式中,N(h)是分隔距离为h时的样本点对的总数,和分别为和
的样本平均数,即
在公式中N为样本单元数。

一般情况下(特殊情况下可以认为近似相等)。


(常数),协方差函数可改写为如下:
式中,m为样本平均数,可由一般算术平均数公式求得,即
三、变异函数
变异函数又称变差函数、变异矩,是地统计分析所特有的基本工具。

在一维条件下变异函数定义为,当空间点x 在一维x 轴上变化时,区域化变量Z(x)在点x和x+h 处的值Z(x) 与Z(x+h) 差的方差的一半
为区域化变量Z(x) 在x轴方向上的变异函数,记为,即
在二阶平稳假设条件下,对任意的h有,
因此上式可以改写为:
从上式可知,变异函数依赖于两个自变量x 和h ,当变异函数仅仅依赖于距离h 而与位置x 无关时,可改写成,即
设Z(x)是系统某属性Z在空间位置x处的值,Z(x)为一区域化随机变量,并满足二阶平稳假设,h 为两样本点空间分隔距离,Z(xi) 和Z(xi+h)分别是区域化变量在空间位置xi 和xi+h 处的实测值
[i=1,2,...,N(h)] ,那么根据上式的定义,变异函数的离散公式为:
变异函数揭示了在整个尺度上的空间变异格局,而且变异函数只有在最大间隔距离1/2处才有意义。

四、克里格估计量
假设x是所研究区域内任一点,Z(x)是该点的测量值,在所研究的区域内总共有n个实测点,即
x1,x2,...,xn ,那么,对于任意待估点或待估块段V的实测值Zv(x) ,其估计值是通过该待估点或待估块段影响范围内的n个有效样本值的线性组合来表示,即
式中,为权重系数,是各已知样本在Z(xi) 在估计时影响大小的系数,而估计的好坏主要取决于怎样计算或选择权重系数。

在求取权重系数时必须满足两个条件,一是使的估计是无偏的,即偏差的数学期望为零;二是最优的,即使估计值和实际值Zv(x)之差的平方和最小,在数学上,这两个条件可表示为
五、普通克里格分析方法
设Z(x)为区域化变量,满足二阶平稳和本征假设,其数学期望为m ,协方差函数c(h) 及变异函数λ(h)存在。


对于中心位于x0 的块段为V ,其平均值为Zv(x0) 的估计值以
进行估计。

在待估区段V 的邻域内,有一组n个已知样本,其实测值为。

克里格方法的目标是求一组权重系数,使得加权平均值:
成为待估块段V 的平均值Zv(x0) 的线性、无偏最优估计量,即克里格估计量。

为此,要满足以下两个条件:
1、无偏性。

要使成为Zv(x) 的无偏估计量,即,当时,也就是当时,则有:
这时,是的无偏估计量。

2、最优性。

在满足无偏性条件下,估计方差为
由方差估计可知
为使估计方差最小,根据拉格朗日乘数原理,令估计方差的公式为:
求以上公式对和的偏导数,并令其为0,得克里格方程组
整理后得:
解上述n+1阶线性方程组,求出权重系数λi 和拉格朗日乘数μ ,并带入公式,经过计算可得克里格估计方差,即:
以上三个公式都是用协方差函数表示的普通克里格方程组和普通克里格方差。

相关文档
最新文档