高中数学-直线与平面的夹角练习
高二上册数学选修一《1.2.3 直线与平面的夹角》同步练习

高二上数学选修一第一章《空间向量与立体几何》1.2.3同步练习1.2.3直线与平面的夹角一.选择题1.在正三棱锥P﹣ABC中,D是棱PC上的点,且PD=2DC.设PB,PC与平面ABD所成的角分别为α,β,则sinα:sinβ=()A.B.C.D.2.在直三棱柱ABC﹣A1B1C1中,底面是等腰直角三角形,,点D在棱BB1上,且,则AD与平面AA1C1C所成角的正弦值为()A.B.C.D.3.已知三棱柱ABC﹣A1B1C1的所有棱长均为2,该三棱柱体积等于3,则直线AA1和平面ABC所成角的大小为()A.90°B.30°C.45°D.60°4.已知在空间直角坐标系Oxyz(O为坐标原点)中,点A(1,1,﹣1)关于x轴的对称点为点B,则z轴与平面OAB所成的线面角为()A.B.C.D.5.在空间直角坐标系O﹣xyz中,经过点P0(x0,y0,z0),以为法向量的平面方程为a(x﹣x0)+b (y﹣y0)+c(z﹣z0)=0,经过点P0(x0,y0,z0),且一个方向向量为的直线l方程为.已知在空间直角坐标系O﹣xyz中,平面α的方程为x﹣2y+3z=0,直线l的方程为,则直线l与平面α所成角的正弦值为()A.B.C.D.6.已知三棱锥S﹣ABC的所有顶点都在表面积为64π的球面上,且SA⊥平面ABC,SA=4,,,M是边BC上一动点,则直线SM与平面ABC所成的最大角的正切值为()A.3B.C.D.7.如图,在正方体ABCD﹣A1B1C1D1中,E为AB的中点,则直线A1E与平面A1BC1所成角的正弦值为()A.B.C.D.8.在长方体ABCD﹣A 1B1C1D1中,AB=BC=1,,则直线AC1与平面BB1C1C所成角的大小为()A.30°B.45°C.60°D.90°9.如图,四面体ABCD的表面积为S,体积为V,E、F、G、H分别是AB、BC、CD、DA上的点,且AC∥平面EFGH,BD∥平面EFGH,设,则下列结论正确的是()A.四边形EFGH是正方形B.AE和AH与平面EFGH所成的角相等C.若,则多面体BEF﹣DGH的表面积等于D.若,则多面体BEF﹣DGH的体积等于10.如图,正三棱柱ABC﹣A1B1C1中,AB=AA1=2,则AB1与平面AA1C1C所成角的正弦值等于()A.B.C.D.二.填空题11.已知长方体ABCD﹣A1B1C1D1中,AB=BC=4,CC1=2,则直线BC1和平面DBB1D1所成角的正弦值为.12.如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,E,F分别为棱AB,BC上一点,且BE+BF=2,P是线段B1F上一动点,当三棱锥B1﹣EBF的体积最大时,直线D1P与平面B1EC所成角的正弦值的取值范围为.13.已知一个圆锥的底面半径为1cm,侧面积为2πcm2,则该圆锥的母线与底面所成的角的大小为.14.在三棱锥P﹣ABC中,PA⊥底面ABC,PA=1,AB=BC=3,,则PB与平面PAC所成角的正切值为.15.已知正三棱柱ABC﹣A1B1C1的所有棱长都相等,则AC1与平面BB1C1C所成角的余弦值为.三.解答题16.如图,在圆锥PO中,边长为的正△ABC内接于圆O,AD为圆O的直径,E为线段PD的中点.(1)求证:直线PO∥平面BCE;(2)若AE⊥PD,求直线AP与平面ABE所成角的正弦值.17.如图,在多面体ABCDEF中,ABCD为正方形,DE⊥平面ABCD,CF∥DE,DE=DC=2CF=2.(Ⅰ)求证:BF∥平面ADE;(Ⅱ)求直线BD与平面AEF所成角的大小.18.如图,在正四棱锥P﹣ABCD中,O为底面中心,PO=AO=3,M为PO中点,=2.(1)求证:DM∥平面EAC;(2)求:(ⅰ)直线DM到平面EAC的距离;(ⅱ)求直线MA与平面EAC所成角的正弦值.2021-2022学年人教B版(2019)数学高中选择性必修第一册1.2.3直线与平面的夹角参考答案与试题解析一.选择题1.【考点】直线与平面所成的角.【解答】解:设点P到平面ABD的距离为h,则sinα=,∵D是棱PC上的点,且PD=2DC,∴PD和PC与平面ABD所成的角相等,∴sinβ=,∴====.故选:D.2.【考点】直线与平面所成的角.【解答】解:如图,取AC的中点M,∵BA=BC=3,∠ABC=90°,则AC=6,BM=3,BM⊥AC,过点M作MN∥BD,且使得MN=BD=,则四边形BDNM是平行四边形,∴DN∥BM,DN=BM=3,由题意,BD ⊥平面ABC ,则MN ⊥平面ABC ,而BM ⊂平面ABC ,∴MN ⊥BM ,又BM ⊥AC ,AC ∩MN =M ,∴BM ⊥平面AA 1C 1C ,∵DN ∥BM ,∴DN ⊥平面AA 1C 1C ,连接DA ,NA ,则∠DAN 是AD 与平面AA 1C 1C 所成的角,∵AD ==2,∴sin ∠DAN ===,∴AD 与平面AA 1C 1C 所成角的正弦值为.故选:C .3.【考点】直线与平面所成的角.【解答】解:设三棱柱ABC ﹣A 1B 1C 1的高为h ,因为三棱柱ABC ﹣A 1B 1C 1的所有棱长均为2,该三棱柱体积等于3,所以三棱柱体积,解得,所以过A1点作底面ABC 的垂线A 1H ,垂足为H ,则,连接AH ,则∠A 1AH 是直线AA 1和平面ABC 所成角,所以,由于,所以∠A 1AH =60°.故选:D .4.【考点】直线与平面所成的角.【解答】解:在空间直角坐标系Oxyz (O 为坐标原点)中,点A (1,1,﹣1)关于x 轴的对称点为点B ,∴B (1,﹣1,1),=(1,1,﹣1),=(1,﹣1,1),设平面OAB 的法向量=(x ,y ,z ),则,取y =1,得=(0,1,1),在z轴上取C(0,0,1),=(0,0,1),设z轴与平面OAB所成的线面角为θ,则sinθ===,∴θ=,∴z轴与平面OAB所成的线面角为.故选:B.5.【考点】直线与平面所成的角.【解答】解:∵经过P(﹣1,2,0)的直线l方程为,则直线l的一个方向向量为=(2,3,1),又平面α的方程为x﹣2y+3z=0,则平面α的一个法向量为=(1,﹣2,3),∴|cos<>|==,则直线l与平面α所成角的正弦值为.故选:A.6.【考点】直线与平面所成的角.【解答】解:根据题意:设外接球的半径为r,则4πr2=64π,∴r=4,设外接球的球心为O,则O在平面ABC内的投影O′为三角形ABC的外心,SA⊥平面ABC,SA=4,所以OS2=22+O′A2,从而AO′=2,所以==2R=4,解得sin C=,BC=6,又,∴C=,∴B=,M是边BC上一动点,SM与平面ABC内的射影最短时,直线SM与平面ABC所成的最大,此时AM⊥BC,易求AM长的最小值为,所以直线SM与平面ABC所成的最大角的正切值为=.故选:B.7.【考点】直线与平面所成的角.【解答】解:设正方体A1B1C1D1﹣ABCD的棱长为2,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵E为AB中点,∴A1(2,0,2),E(2,1,0),B(2,2,0),A1(2,0,2),C1(0,2,2),=(﹣2,2,0),=(0,2,﹣2),=(0,1,﹣2),设平面A1C1B的法向量=(x,y,z),则,取x=1,得=(1,1,1),设直线A1E与平面A1C1B所成角为θ,则sinθ=|cos<,>|=||=||=.∴直线A1E与平面A1C1B所成角的正弦值为.故选:D.8.【考点】直线与平面所成的角.【解答】解:连接BC1,由长方体ABCD﹣A1B1C1D1,可得AB⊥平面BB1C1C,所以AC1在平面BB1C1C的射影为BC1,所以∠AC1B为直线AC1与平面BB1C1C所成的角,由AB=BC=1,,可得BC1==,AC1==2,在Rt△ABC1中,cos∠AC1B==,所以直线AC1与平面BB1C1C所成角的大小为30°.故选:A.9.【考点】直线与平面所成的角;棱柱、棱锥、棱台的体积.【解答】解:对A,因为AC∥平面EFGH,AC⊂平面ABC,EF⊂平面EFGH,平面EFGH⋂平面ABC=EF,所以AC∥EF,同理AC∥GH,所以EF∥GH,同理EH∥FG,所以四边形EFGH是平行四边形.所以四边形EFGH不一定是正方形,所以选项A错误;对B,如果AE和AH与平面EFGH所成的角相等,则AE=AH,则AB=AD,已知中没有AB=AD,所以AE和AH与平面EFGH所成的角不一定相等,所以选项B错误;对C,假设正四面体ABCD,AB=2,取BD的中点N,连接AN,CN.则BD⊥AN,BD⊥CN,因为AN⋂CN=N,AN,CN⊂平面ACN,所以BD⊥平面ACN,所以BD⊥AC,所以EF⊥FG,前面已经证明四边形EFGH是平行四边形,又EF=FG,所以四边形EFGH是正方形,且EF=FG=1,正四面体的每一个面的面积为,所以正四面体的表面积为,所以多面体BEF﹣DGH的表面积,所以选项C错误;对D,如图,设BD中点为M,连接EM,MF,则多面体EMF﹣HDG是棱柱,设点B到平面EMF的距离为h1,由于,所以点E是AB的中点,则点M到平面HDC的距离为h1,点B到平面ADC的距离为2h1.则多面体BEF﹣DGH的体积==,所以选项D正确.故选:D.10.【考点】直线与平面所成的角.【解答】解:如图,∵ABC﹣A1B1C1是正三棱柱,∴平面A1B1C1⊥平面AA1C1C,取A1C1的中点O,连接AO,B1O,则B1O⊥A1C1,可得B1O⊥平面AA1C1C,即∠B1AO为AB1与平面AA1C1C所成角.∵AB=AA1=2,∴,,可得sin,∴AB1与平面AA1C1C所成角的正弦值为.故选:C.二.填空题11.【考点】直线与平面所成的角.【解答】解:由题意,连接A1C1,交B1D1于点O∵长方体ABCD﹣A1B1C1D1中,AB=BC=4∴C1O⊥B1D1∴C1O⊥平面DBB1D1在Rt△BOC1中,∴直线BC1和平面DBB1D1所成角的正弦值为.故答案为:.12.【考点】直线与平面所成的角.【解答】解:当三棱锥B1﹣EBF的体积最大时,△EBF的面积取最大值,,当且仅当BE=BF=1时,等号成立,此时,E为AB的中点,F与C重合.如图,以D为坐标原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则D1(0,0,1),B1(1,2,1),E(1,1,0),C(0,2,0),,.设平面B1EC的法向量为,∴可取x=1,得.设,λ∈[0,1],∴P(λ,2,λ),∴.设直线D1P与平面B1EC所成的角为θ,∴.∵λ∈[0,1],∴当时,sinθ的最大值为;当λ=0或1时,sinθ的最小值为,∴直线D1P与平面B1EC所成角的正弦值的取值范围为.故答案为:.13.【考点】直线与平面所成的角.【解答】解:如图,圆锥的底面半径为1,设母线长为l,则圆锥的侧面积S=,得l=2.设母线与底面所成角为θ,则cosθ=,∴θ=,故答案为:.14.【考点】直线与平面所成的角.【解答】解:以A为原点,在平面ABC内作垂直于AC的射线为x轴,以射线AC为y轴,射线AP为z轴建立如图所示空间直角坐标系,如图所示:则P(0,0,1),B(1,2,0),C(0,4,0),所以=(1,2,﹣1),由x轴⊥平面PAC得平面PAC的一个法向量为=(1,0,0),设直线PB与平面PAC所成的角为α,则sinα=|cos<,>|=||==,α∈(0,),cosα==,所以PB与平面PAC所成角的正切值为tanα==.故答案为:.15.【考点】直线与平面所成的角.【解答】解:取BC的中点E,连接C1E,AE,则AE⊥BC,∵正三棱柱ABC﹣A1B1C1中,面ABC⊥面BB1C1C,面ABC∩面BB1C1C=BC,∴AE⊥面BB1C1C,∴∠AC1E就是AC1与平面BB1C1C所成的角,不妨设正三棱柱ABC﹣A1B1C1的所有棱长都为2,则C1E=,AC1=2在Rt△AC1E中,cos∠AC1E==故答案为:三.解答题16.【考点】直线与平面所成的角;直线与平面平行.【解答】(1)证明:设AD交BC于点F,∵O为△ABC外心,又∵.又OA=OD=r==2,∴F为OD中点.∴△POD中E,F分别为PD,OD中点,∴EF∥PO(中位线定理),∵EF∥PO,EF⊂平面ECB,∴直线PO∥平面BCE.(2)解:∵AE⊥PD,E为PD中点,又PA=PD,∴△APD为等边三角形.过O作OQ⊥AD且OQ⊂平面ABC,Q位于上,以O为空间坐标原点,,,为x轴,y轴,z轴正向建立空间直角坐标系.则:A(0,﹣2,0),,=(0,2,2),B(,1,0),E(0,1,),=(,3,0),=(﹣,0,).设平面ABE的法向量为,,∴,取,则y=﹣1,.则,设直线AP与平面ABE所成角的正弦值为sinθ,,∴直线AP与平面ABE所成角正弦值为.17.【考点】直线与平面所成的角;直线与平面平行.【解答】(Ⅰ)证明:方法1:设G为DE的中点,连接FG,AG,由已知CF∥DE,且CF=DG,所以四边形CFGD是平行四边形,…………(1分)又ABCD为正方形,所以ABFG为平行四边形,…………(2分)所以BF∥AG,…………(3分)又AG⊂平面ADE,BF⊄平面ADE,…………(4分)所以BF∥平面ADE.…………(5分)方法2:因为CF∥DE,所以CF∥平面ADE,又CB∥DA,所以CB∥平面ADE,CB∩CF=C,所以平面BCF∥平面ADE,所以BF∥平面ADE.(Ⅱ)解:因为ABCD为正方形,DE⊥平面ABCD,以D为坐标原点建立空间直角坐标系(如图)…………(1分)所以A(2,0,0),E(0,0,2),F(0,2,1),B(2,2,0),…………(2分),,,…………(3分)设平面AEF的一个法向量为=(x,y,z),则…………(4分)即令z=2,得x=2,y=1.于是=(2,1,2).…………(5分)设直线BD与平面AEF所成角为θ,则,…………(7分)即,…………(8分)所以直线BD与平面AEF所成的角为.…………(9分)18.【考点】直线与平面所成的角;点、线、面间的距离计算.【解答】解:(1)证明:连接BD,则O是BD的中点,且AC⊥BD,在正四棱锥P﹣ABCD中,PO⊥平面ABCD,以点O为坐标原点,OA,OB,OP所成直线分别为x,y,z轴,建立空间直角坐标系,如图,则O(0,0,0),A(3,0,0),P(0,0,3),B(0,3,0),C(﹣3,0,0),D(0,﹣3,0),M(0,0,),E(0,2,1),=(0,3,),,则,取y=1,得=(0,1,﹣2),∵=0,∴,∵DM⊄平面EAC,∴DM∥平面EAC.(2)(i)=(3,3,0),∴直线DM到平面EAC的距离d===.(ii)=(3,0,﹣),则cos<>===.∴直线MA与平面EAC所成角的正弦值为.。
新北师大选修2-1高中数学 直线与平面的夹角

§5夹角的计算第二课时 直线与平面的夹角[对应学生用书P37]在上节研究的山体滑坡问题中,A ,B 两点到直线l (水平地面与山坡的交线)的距离分别为AC 和BD ,直线BD 与地面ACD 的夹角为φ.问题1:φ与〈CA ,DB 〉有什么关系? 提示:φ=π-〈CA ,DB 〉.问题2:φ与〈BD ,n 〉有何关系?(n 为地面法向量)提示:φ=π2-〈BD ,n 〉或φ=〈BD ,n 〉-π2,即sin φ=|cos 〈BD ,n 〉|.直线与平面的夹角(1)平面外一条直线与它在该平面内的投影的夹角叫作该直线与此平面的夹角. (2)如果一条直线与一个平面垂直,这条直线与平面的夹角为π2.(3)如果一条直线与一个平面平行或在平面内,这条直线与平面的夹角为0. (4)设直线l 的方向向量为a ,平面α的法向量为n ,l 与α的夹角为θ,则, 当〈a ,n 〉≤π2时,θ=π2-〈a ,n 〉;当〈a ,n 〉>π2时,θ=〈a ,n 〉-π2.即sin 〈a ,n 〉=|cos 〈a ,n 〉|.(1)直线与平面夹角范围是⎣⎡⎦⎤0,π2; (2)求直线与平面夹角θ时,可用定义求解;也可用直线的方向向量s 、平面的法向量n 的夹角进行求解,但要注意sin θ=|cos 〈s ,n 〉|.[对应学生用书P37][例1] 如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 的夹角的正弦值. [思路点拔](1)先证明直线与平面垂直,再利用线面垂直的性质求证线线垂直;(2)建立空间直角坐标系,写出点与向量坐标,将线面角的大小用方向向量和法向量表示,但要注意线面角的范围.[精解详析] (1)如图,取AB 的中点O ,连接OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C .又A 1C 平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB ,又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0),则BC =(1,0,3),1BB =1AA =(-1,3,0),1A C =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC =0,n ·1BB =0,即⎩⎨⎧x +3z =0,-x +3y =0.可取n =(3,1,-1), 故n ,1A C=n ·1A C|n ||1A C |=-105.所以A 1C 与平面BB 1C 1C 的夹角的正弦值为105. [一点通]设直线l 的方向向量为a ,平面α的法向量为u ,直线l 与平面α所成的角为θ,a 与u 的夹角为φ,则有sin θ=|cos φ|=|a ·u ||a ||u |或cos θ=sin φ,其中θ与φ满足:①当φ是锐角时,θ=π2-φ;②当φ为钝角时,则θ=φ-π2.1.正方体ABCD -A 1B 1C 1D 1中,AC 81与平面ABCD 夹角的余弦值为( ) A.33 B.36 C.62D.63解析:如图所示建系,设正方体棱长为1,则A (1,0,0),C 1(0,1,1),C (0,1,0),而CC 1⊥面ABCD ,∴AC 1在底面ABCD 的射影为AC . 又1AC =(-1,1,1),AC =(-1,1,0), ∴AC 1与平面ABCD 夹角的余弦值cos θ=|cos 〈1AC ,AC 〉|=63. 答案:D2.如图,正三棱柱ABC -A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 夹角的正弦值为________.解析:取B 1C 1中点O ,建立如图所示的空间直角坐标系. 设AB =BB 1=2,则A 1(-3,0,0),C 1(0,1,0),A (-3,0,2),O (0,0,0),1A O =(3,0,0),1A O 为面BB 1C 1C 的法向量,1AC =(3,1,-2),∴sin θ=|cos 〈1A O ,1AC 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1A O ·1AC |1A O ||1AC | =33·3+1+4=64.答案:643.如图所示,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PA ⊥BD .(1)求证:PB =PD ;(2)若E ,F 分别为PC ,AB 的中点,EF ⊥平面PCD ,求直线PB 与平面PCD 所成角的大小.解:(1)证明:如图所示,连接AC ,BD 交于点O ,连接PO ,∵底面ABCD 是正方形, ∴AC ⊥BD ,且O 为BD 的中点. 又PA ⊥BD ,PA ∩AC =A , ∴BD ⊥平面PAC ,由于PO ⊂平面PAC ,故BD ⊥PO . 又BO =DO ,故PB =PD .(2)如图所示,连接AC ,BD , 设PD 的中点为Q ,连接AQ ,EQ ,则EQ 綊12CD ,∴四边形AFEQ 为平行四边形,EF ∥AQ ,∵EF ⊥平面PCD , ∴AQ ⊥平面PCD ,∴AQ ⊥PD ,Q 为PD 的中点,∴AP =AD = 2. 由AQ ⊥平面PCD ,可得AQ ⊥CD . 又DA ⊥CD ,QA ∩AD =A , ∴CD ⊥平面PAD ,∴CD ⊥PA . 又BD ⊥PA ,∴PA ⊥平面ABCD .∴AB ,AP ,AD 两两垂直,以A 为坐标原点,分别以向量AB ―→,AD ―→,AP ―→的方向为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),Q ⎝⎛⎭⎫0,22,22,D (0,2,0),P (0,0,2),∴AQ ―→=⎝⎛⎭⎫0,22,22,PB ―→=(2,0,-2).易知AQ ―→为平面PCD 的一个法向量, 设直线PB 与平面PCD 所成的角为θ, 则sin θ=cos 〈PB ―→,AQ ―→〉=|PB ―→·AQ ―→||PB ―→|·|AQ ―→|=12,∴直线PB 与平面PCD 所成的角为π6.3.已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N 为AB 上一点,AB =4AN ,M ,S 分别为PB ,BC 的中点.(1)证明:CM ⊥SN ;(2)求SN 与平面CMN 的夹角.解:设PA =1,以A 为原点,射线AB ,AC ,AP 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系如图.则P (0,0,1),C (0,1,0),B (2,0,0),M ⎝⎛⎭⎫1,0,12,N ⎝⎛⎭⎫12,0,0, S ⎝⎛⎭⎫1,12,0. (1)证明:CM =⎝⎛⎭⎫1,-1,12,SN =⎝⎛⎭⎫-12,-12,0,因为CM ·SN =-12+12+0=0,所以CM ⊥SN . (2) NC =⎝⎛⎭⎫-12,1,0,设a =(x ,y ,z )为平面CMN 的一个法向量,则a ·CM =0,a ·NC =0,即⎩⎨⎧x -y +12z =0,-12x +y =0.令x =2,得a =(2,1,-2).因为|cos 〈a ,SN 〉|=⎪⎪⎪⎪⎪⎪-1-123×22=22,所以SN 与平面CMN 的夹角为45°.[例2] 如图,在三棱锥A -BCD 中,侧面ABD ,ACD 是全等的直角三角形,AD 是公共的斜边,且AD =3,BD =CD =1.另一个侧面ABC 是等边三角形.点A 在底面BCD 上的射影为H .(1)以D 点为原点建立空间直角坐标系,并求A ,B ,C 的坐标; (2)求平面BAC 与平面DAC 的夹角的余弦值.(3)在线段AC 上是否存在一点E ,使ED 与面BCD 的夹角为30°?若存在,确定点E 的位置;若不存在,说明理由.[思路点拨] (1)建立坐标系,证明AD ·BC =0. (2)求两平面法向量的夹角.(3)先假设存在点E 满足条件,再建立关于点E 的坐标的方程,判断方程是否有符合题意的解,即可得出结论.[精解详析] (1)由题意AB =AC =2,∴BC = 2.则△BDC 为等腰直角三角形. 连接BH ,CH ,∴DB ⊥BH ,CH ⊥BH .∴四边形BHCD 为正方形,以DC 为y 轴,DB 为x 轴建立空间直角坐标系如图所示,则A (1,1,1),B (1,0,0),C (0,1,0).(2)设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC 知:n 1·BC =-x +y =0.同理,由n 1⊥CA 知:n 1·CA =x +z =0. 可取n 1=(1,1,-1).同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=1+0+13·2=63, 即所求平面BAC 与平面DAC 的夹角的余弦值为63. (3)假设存在E 满足条件,设CE =x CA =(x,0,x )(0≤x ≤1),则DE =DC +CE =(0,1,0)+(x,0,x )=(x,1,x ),平面BCD 的一个法向量为n =(0,0,1),∵ED 与平面BCD 的夹角为30°, 由图可知DE 与n 的夹角为60°,所以cos 〈DE ,n 〉=DE ·n | DE ||n |=x 1+2x 2=cos60°=12.则2x =1+2x 2,解得x =22,即E ⎝⎛⎭⎫22,1,22, |AC |=2,|CE |=1.故线段AC 上存在点E (与C 的距离为1),使ED 与平面BCD 的夹角为30°. [一点通]解决存在性探究问题,一般先假设存在,然后进行推理计算,推出的结果若符合题意,则说明假设正确.若出现矛盾或得出相反的结论,则否定假设,说明不存在.4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD 与平面PAC 的夹角为90°?若存在,确定P 点位置;若不存在,说明理由.解:如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎫1,1,12, 假设存在P (0,0,x )(0≤x ≤1)满足条件,经检验,当x =0时不满足要求, 当0<x ≤1时,则PA =(1,0,-x ),AC =(-1,1,0),MD =(-1,-1,-12).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎨⎧PA ·n =0, AC ·n =0,得⎩⎪⎨⎪⎧x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =(1,1,1x ). 由题意MD ∥n ,由MD =⎝⎛⎭⎫-1,-1,-12=-⎝⎛⎭⎫1,1,12=-n , 得x =2.又0<x ≤1,故不满足要求,综上所述,棱DD 1上不存在点P ,使MD 与平面PAC 的夹角为90°.5.如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求平面A 1BC 1与平面B 1BC 1的夹角的余弦值; (3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值. 解:(1)证明:因为AA 1C 1C 为正方形,所以AA 1⊥AC .因为平面ABC ⊥平面AA 1C 1C ,且AA 1垂直于这两个平面的交线AC ,所以AA 1⊥平面ABC .(2)由(1)知AA 1⊥AC ,AA 1⊥AB .由题知AB =3,BC =5,AC =4,所以AB ⊥AC .如图,以A 为原点建立空间直角坐标系A -xyz ,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4).设平面A 1BC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·1A B =0,n ·11A C =0,即⎩⎪⎨⎪⎧3y -4z =0,4x =0.令z =3,则x =0,y =4,所以n =(0,4,3). 同理可得,平面B 1BC 1的法向量为m =(3,4,0). 所以cos 〈 n ,m 〉=n ·m |n ||m |=1625.所以平面A 1BC 1与平面B 1BC 1的夹角的余弦值为1625.(3)证明:设D (x 1,y 1,z 1)是线段BC 1上一点,且BD =λ1BC . 所以(x 1,y 1-3,z 1)=λ(4,-3,4). 解得x 1=4λ,y 1=3-3λ,z 1=4λ.所以AD=(4λ,3-3λ,4λ).由AD·1A B=0,即9-25λ=0,解得λ=925.因为925∈[0,1],所以在线段BC1上存在点D,使得AD⊥A1B.此时,BDBC1=λ=9 25.计算直线l与平面α的夹角为θ.(1)利用法向量计算θ的步骤如下:(2)利用定义计算θ的步骤如下:[对应课时跟踪训练(十二)]1.已知直线l的一个方向向量为a=(1,1,0),平面α的一个法向量为μ=(1,2,-2),则直线l与平面α夹角的余弦值为()A.22B.-22C.±22 D.12解析:cos〈a,μ〉=a·μ|a||μ|=32·3=22,则直线l与平面α的夹角θ的正弦值sin θ=|cos〈a ,μ〉|=22,cos θ=22. 答案:A2.已知长方体ABCD -A 1B 1C 1D 1的底面ABCD 是边长为4的正方形,长方体的高为AA 1=3,则BC 1与对角面BB 1D 1D 夹角的正弦值等于( )A.45 B.35 C.225D.325解析:建立如图所示的空间直角坐标系,∵底面是边长为4的正方形,AA 1=3,∴A 1(4,0,0),B (4,4,3),C 1(0,4,0).而面BB 1D 1D 的法向量为AC =11A C =(-4,4,0),∴BC 1与对角面BB 1D 1D 所成角的正弦值即为|cos 〈1BC ,11A C 〉|=|(-4,0,-3)·(-4,4,0)|42+32×42+42=165×42=225.答案:C3.如图所示,点P 是△ABC 所在平面外的一点,若PA ,PB ,PC 与平面α的夹角均相等,则点P 在平面α上的投影P ′是△ABC 的( )A .内心B .外心C .重心D .垂心解析:由于PA ,PB ,PC 与平面α的夹角均相等,所以这三条由点P出发的平面ABC 的斜线段相等,故它们在平面ABC 内的投影P ′A ,P ′B ,P ′C 也都相等,故点P ′是△ABC 的外心.答案:B4.已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( )A.23B.33 C.23 D.13解析:建立如图所示的空间直角坐标系,设AA 1=2AB =2,则B (1,1,0),C (0,1,0),D (0,0,0),C 1(0,1,2),故DB ―→=(1,1,0),DC 1―→=(0,1,2),DC ―→=(0,1,0).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DC 1―→=0,即⎩⎪⎨⎪⎧x +y =0,y +2z =0,令z =1,则y =-2,x =2,所以平面BDC 1的一个法向量为n =(2,-2,1).设直线CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC ―→〉|=|n ·DC ―→||n |·|DC ―→|=23,故选A.答案:A5.四棱锥P -ABCD 中,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD =DA =2,F ,E 分别为AD ,PC 的中点.(1)求证:DE ∥平面PFB ; (2)求点E 到平面PFB 的距离.解:(1)证明:以D 为原点, 建立如图所示的空间直角坐标系,则P (0,0,2),F (1,0,0),B (2,2,0),E (0,1,1).FP ―→=(-1,0,2),FB ―→=(1,2,0),DE ―→=(0,1,1),∴DE ―→=12FP ―→+12FB ―→,∴DE ―→∥平面PFB . 又∵DE ⊄平面PFB , ∴DE ∥平面PFB . (2)∵DE ∥平面PFB ,∴点E 到平面PFB 的距离等于点D 到平面PFB 的距离. 设平面PFB 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·FB ―→=0,n ·FP ―→=0⇒⎩⎪⎨⎪⎧x +2y =0,-x +2z =0,令x =2,得y =-1,z =1.∴n =(2,-1,1),又∵FD ―→=(-1,0,0), ∴点D 到平面PFB 的距离 d =|FD ―→·n ||n |=26=63.∴点E 到平面PFB 的距离为63. 6.如图所示,已知正三棱柱ABC -A 1B 1C 1的所有棱长都相等,D 是A 1C 1的中点,则直线AD 与平面B 1DC 夹角的正弦值为________.解析:不妨设正三棱柱ABC -A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2,则CD =(32,-12,2),1CB =(3,1,2), 设平面B 1DC 的法向量为n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD =0,n ·1CB =0,解得n =(-3,1,1). 又∵DA =⎝⎛⎭⎫32,-12,-2, ∴sin θ=|cos 〈DA ,n 〉|=45.答案:457.如图,在正三棱柱ABC -A 1B 1C 1中,AB =2AA 1,点D 是A 1B 1的中点. 求直线AD 和平面ABC 1夹角的正弦值.解:如图所示,设O 是AC 的中点,以O 为原点建立空间直角坐标系.不妨设AA 1=2,则AB =2,相关各点的坐标分别是A (0,-1,0),B (3,0,0),C 1(0,1,2),D⎝⎛⎭⎫32,-12,2.易知AB =(3,1,0),1AC =(0,2,2),AD =⎝⎛⎭⎫32,12,2.设平面ABC 1的一个法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·AB =3x +y =0,n ·1AC =2y +2z =0,解得x =-33y ,z =-2y . 故可取n =(1,-3,6).所以cos 〈n ,AD 〉=n ·AD |n ||AD |=2310×3=105.即直线AD 和平面ABC 1夹角的正弦值为105. 8.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 夹角的正弦值为67,求k 的值.解:(1)证明:取CD 的中点E ,连接BE ,如图.∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2, ∴∠BEC =90°,即BE ⊥CD . 又∵BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD 平面ABCD , ∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1), ∴AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1). 设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC ·n =0, 1AB ·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 的夹角为θ,则sin θ=|cos 〈1AA ,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1AA ·n | 1AA |n |=6k 36k 2+13=67,解得k =1, 故所求k 的值为1.。
高中解析几何典型题

高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。
具体位置可根据直线和平面的垂直关系来确定。
解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。
如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。
题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。
解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。
解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。
通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。
在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。
在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。
2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。
3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。
4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。
高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。
直线与平面的夹角作业练习含答案解高中数学析北京海淀

作业二十直线与平面的夹角一、选择题(每小题5分,共25分)1.若直线l的方向向量a与平面α的一个法向量n的夹角<a,n>=120°,则直线l与平面α所成的角为( )A.30°B.120°C.60°D.150°【解析】选A.设l与α所成角为θ,则si nθ=|cos 120°|=,又由0°≤θ≤90°,知θ=30°.【补偿训练】平面α的一个法向量为n=(1,-,0),则y轴与平面α所成的角的大小为( )A. B. C. D.【解析】选B.y轴的一个方向向量为m=(0,1,0),cos<m,n>===-.所以<m,n>=,所以y轴与平面α所成角的大小为-=.2.在矩形ABCD中,AB=1,BC=,PA⊥平面ABCD,PA=1,则PC与平面ABCD的夹角是( )A.30°B.45°C.60°D.90°【解析】选A.建立如图所示的空间直角坐标系,则P(0,0,1),C(1,,0), =(1,,-1),平面ABCD的一个法向量为n=(0,0,1),所以cos<,n>==-,所以<,n>=120°,所以PC与平面ABCD的夹角为30°.3.在正方体ABCD-A1B1C1D1中,E是C1C的中点,则直线BE与平面B1BD夹角的正弦值为 ( )A.-B.C.-D.【解题指南】建立坐标系,找到或求出平面B1BD的法向量是解题关键. 【解析】选B.建立如图所示的空间直角坐标系,设正方体的棱长为2,则D(0,0, 0),B(2,2,0),B1(2,2,2),E(0,2,1).所以=(-2,-2,0),=(0,0,2),=(-2,0,1).设平面B1BD的法向量为n=(x,y,z).因为n⊥,n⊥,所以所以令y=1,则n=(-1,1,0).所以cos<n,>==,设直线BE与平面B1BD的夹角为θ,则si n θ=|cos<n,>|=.4.△ABC的顶点B在平面α内,A,C在α的同一侧,AB,BC与α的夹角分别是30°和45°.若AB=3,BC=4,AC=5,则AC与α的夹角为( )A.60°B.45°C.30°D.15°【解题指南】先找出AB,AC与平面α的夹角,根据夹角的大小,找出所用到的量的大小,然后求出AC与平面α的夹角.【解析】选C.如图所示,过点A,C分别作平面α的垂线,A1,C1为垂足,CC1= CB·si n 45°=4×=4,AA1=AB=.连接A1C1,过A作AM∥C1A1交CC1于M,则∠CAM为直线AC与平面α所成的角.又因为CM=4-=,所以si n∠CAM==,所以∠CAM=30°.5.(2018·潍坊高二检测)在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°.PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点,则BD与平面ADMN的夹角θ为( )A.30°B.60°C.120°D.150°【解析】选A.如图建立空间直角坐标系,设BC=1,则A(0,0,0),B(2,0,0),D(0,2,0),P(0,0,2),则N(1,0,1),所以=(-2,2,0),=(0,2,0),=(1,0,1),设平面ADMN的一个法向量为n=(x,y,z),则由得取x=1,则y=0,z=-1,所以n=(1,0,-1)则cos<,n>===-.又0°≤θ≤90°,所以si nθ=|cos<,n>|=,所以θ=30°.二、填空题(每小题5分,共15分)6.直线l的方向向量a=(-2,3,2),平面α的一个法向量n=(4,0,1),则直线l 与平面α夹角的正弦值为________.【解析】设直线l与平面α的夹角是θ,a,n所成的角为β,si nθ=|cos β| ==.答案:7.如图正方体ABCD-A1B1C1D1的棱长为1,O是平面A1B1C1D1的中心,则BO与平面ABC1D1夹角的正弦值为________.【解析】建立坐标系如图,连接DA,则B(1,1,0),O,D(0,0,0),A1(1,0,1),A(1,0,0),D1(0,0,1),=(1,0,1),=(0,1,0),=(-1,0,1),因为·=0,·=0,所以=(1,0,1)是平面ABC1D1的一个法向量.又=,所以BO与平面ABC1D1夹角的正弦值为==.答案:8.(2018·淮北高二检测)已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值为________.【解析】设各棱长为2,建立如图所示的空间直角坐标系,则=(,1,2),平面ACC1A1的一个法向量为n=(1,0,0),故AB1与侧面ACC1A1所成角的正弦值等于|cos<,n>|===.答案:三、解答题(每小题10分,共20分)9.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.求直线BE和平面ABB1A1夹角的正弦值.【解析】设正方体的棱长为1.如图所示,以,,为单位正交基底建立空间直角坐标系.依题意,得B(1,0,0),E,A(0,0,0),D(0,1,0),所以=,=(0,1,0).在正方体ABCD-A1B1C1D1中,因为AD⊥平面ABB1A1,所以是平面ABB1A1的一个法向量.设直线BE和平面ABB1A1夹角为θ,则si nθ===.故直线BE和平面ABB1A1夹角的正弦值为.10.(2018·咸阳高二检测)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA ⊥平面ABCD,AB=AP=2,AD=4,E是PB的中点.(1)求证:AD⊥平面PAB.(2)建立适当的空间直角坐标系,求直线EC与平面PAD夹角的正弦值. 【解析】(1)因为PA⊥平面ABCD,AD平面ABCD,所以AD⊥PA,因为矩形ABCD中,AD⊥AB,且AB∩AP=A,所以AD⊥平面PAB.(2)分别以AB,AD,AP为x轴,y轴,z轴建立空间直角坐标系,由已知,知各点坐标分别是A(0,0,0),B(2,0,0),C(2,4,0),所以E(1,0,1),=(1,4,-1),又因为AB⊥平面PAD,所以平面PAD的一个法向量为n==(2,0,0),设直线EC与平面PAD所成的角为α,则si nα===,直线EC与平面PAD夹角的正弦值为.一、选择题(每小题5分,共10分)1.(2018·吉安高二检测)平面α∩平面β=MN,且平面α与平面β的夹角为45°,A∈MN,P∈α,若∠PAM=45°,则AP与β的夹角是 ( )A.30°B.45°C.60°D.90°【解析】选A.过点P作平面β的垂线PB,垂足为B,过点B作BC垂直于MN,连接PC,则∠PAB为AP与β的夹角.因为PB⊥β,MNβ,所以PB⊥MN,因为MN⊥BC,PB∩BC=B,所以MN⊥平面PBC,所以MN⊥PC,所以∠PCB为二面角α-MN-β的平面角,所以∠PCB=45°.设PB=1,在△PCB中,∠PCB=45°,所以PC=.在△PCA中,∠PAC=45°,所以PA=2,在△PBA中,si n∠PAB=,所以∠PAB=30°,所以AP与β的夹角为30°.【拓展延伸】用定义法求线面角的思想与步骤(1)利用定义法求直线与平面的夹角,关键是找到直线在平面内的投影,将直线与平面的夹角转化成线线的夹角来求解.(2)定义法求直线与平面的夹角的步骤:①作出直线与其投影的夹角;②证明所作的角就是要求的角;③常在直角三角形(垂线、斜线、投影所组成的直角三角形)中解出夹角的大小.【补偿训练】PA,PB,PC是从P引出的三条射线,每两条的夹角都是60°,则直线PC与平面PAB夹角的余弦值为 ( )A. B. C. D.【解题指南】找到PC在平面PAB内的投影,利用定义求解.【解析】选D.在PC上取一点D,过D作DE⊥平面APB,E为垂足.连接PE,则∠DPE就是PC与平面PAB的夹角.设∠DPE=α,因为PA,PB,PC夹角两两相等,过E作EF⊥PA,F为垂足,连接DF,过E作EG ⊥PB于G,连接DG,易知Rt△PFD≌Rt△PGD,所以PF=PG,所以Rt△PEF≌Rt△PEG,所以∠FPE=∠GPE,所以PE是∠APB的平分线.在Rt△DPE中,PE=PD cos α,在Rt△PEF中,PF=PE·cos 30°=PD·cos α·cos 30°,在Rt△DPF中,PF=PD·cos 60°,所以cos α·cos 30°=cos 60°,所以cos α===.2.(2018·宝鸡高二检测)如图,在三棱锥A-BCD中,AB⊥平面BCD,∠DBC=90°,BC=BD=2,AB=1,则BC和平面ACD的夹角θ的正弦值为( )A. B. C. D.【解析】选A.建系如图所示,则B(0,0,0),C(2,0,0),D(0,2,0),A(0,0,1),所以=(2,0,0),=(2,0,-1),=(0,2,-1),设平面ADC的法向量为n=(x,y,z),则由得令z=2,则x=1,y=1,所以n=(1,1,2),si nθ=|cos<n,>|==.二、填空题(每小题5分,共10分)3.(2018·上饶高二检测)正四棱锥S-ABCD中,O为顶点S在底面上的投影,P 为侧棱SD的中点,且SO=OD,则直线BC与平面PAC的夹角是________.【解析】如图,以O为原点建立空间直角坐标系,设OD=SO=OA=OB=OC=a,则A(a,0,0),B(0,a,0),C(-a,0,0),D(0,-a,0),S(0,0,a),P,则=(2a,0,0),=,=(a,a,0),设平面PAC的一个法向量为n,可取n=(0,1,1),则cos<,n>===,所以<,n>=60°,所以直线BC与平面PAC的夹角为90°-60°=30°.答案:30°4.(2018·临沂高二检测)在正四面体ABCD中,E为棱AD的中点,则CE与平面BCD夹角的正弦值为________.【解析】如图,在正四面体ABCD中,取O为△BCD的中心,连接AO,则AO⊥平面BCD.设正四面体的棱长为a,则OA=a.又E为AD中点,取OD中点F,连接EF,则EF∥OA,即EF⊥平面BCD,连接CF,则∠ECF为直线CE与平面BCD的夹角,在Rt△CEF中,EF=OA=a,CE=a,所以si n∠ECF===.答案:三、解答题(每小题10分,共20分)5.在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图.(1)求证:AB⊥CD.(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.【解析】(1)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,所以AB⊥平面BCD.又CD⊂平面BCD,所以AB⊥CD.(2)过点B在平面BCD内作BE⊥BD,如图.由(1)知AB⊥平面BCD,BE⊂平面BCD,BD⊂平面BCD,所以AB⊥BE,AB⊥BD.以B为坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1),M,则=(1,1,0),=,=(0,1,-1).设平面MBC的法向量n=(x0,y0,z0),则即取z0=1,得平面MBC的一个法向量n=(1,-1,1).设直线AD与平面MBC所成角为θ,则si nθ=|cos<n,>|==,即直线AD与平面MBC所成角的正弦值为.6.如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说出画法和理由).(2)求直线AF与平面α所成角的正弦值.【解析】(1)交线围成的正方形EHGF如图:(2)作EM⊥AB,垂足为M,则AM=A1E=4,EM=AA1=8.因为四边形EHGF为正方形,所以EH=EF=BC=10.于是MH==6,所以AH=10.以D为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系D-xyz,则A(10,0,0),H(10,10,0),E(10,4,8),F(0,4,8),=(10,0,0),=(0,-6,8).设n=(x,y,z)是平面EHGF的法向量,则即所以可取n=(0,4,3),又=(-10,4,8),故|cos<n,>|==.所以AF与平面EHGF所成的角的正弦值为.。
高中数学 323直线与平面的夹角同步练习 新人教B版选修21

3.2.3直线与平面的夹角一、选择题1.已知平面α内的角∠APB =60°,射线PC 与PA 、PB 所成角均为135°,则PC 与平面α所成角的余弦值是( )A .-63B.63 C.33D .-33[答案] B[解析] 由三余弦公式知cos45°=cos α·cos30°, ∴cos α=63. 2.三棱锥P —ABC 的底面是以AC 为斜边的直角三角形,顶点P 在底面的射影恰好是△ABC 的外心,PA =AB =1,BC =2,则PB 与底面ABC 所成角为( )A .60°B .30°C .45°D .90°[答案] B[解析] 由AB =1,BC =2,知AC =3,∴OA =32, 又∵PA =1,PQ ⊥AC ,∴PO =12,∵OB =OA =32,∴tan θ=33.∴应选B. 3.正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的正弦值是( ) A.24 B.23 C.63D.32[答案] C[解析] 由计算得sin θ=23.故选C. 4.在三棱锥P —ABC 中,AB ⊥BC ,AB =BC =12PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为( )A.216B.833C.21060D.21030[答案] D[解析] 以O 为原点,射线OA 、OB 、OP 为x 、y 、z 轴建立空间直角坐标系,如图,设AB =a ,则OP =72a ,OD →=(-24a,0,144a ),可求得平面PBC 的法向量为n =(-1,-1,17), ∴cos(OD →,n )=OD →·n |OD →||n |=21030,设OD →与面PBC 的角为θ,则sin θ=21030,故选D.5.若直线l 与平面α所成角为π3,直线a 在平面α内,且与直线l 异面,则直线l与直线a 所成角的取值范围是( )A.⎣⎢⎡⎦⎥⎤0,2π3B.⎣⎢⎡⎦⎥⎤π3,2π3C.⎣⎢⎡⎦⎥⎤π2,2π3D.⎣⎢⎡⎦⎥⎤π3,π2[答案] D6.如果平面的一条斜线段长是它在这个平面上的射影长的3倍,那么斜线段与平面所成角的余弦值为( )A.13B.223C.22D.23[答案] A7.如图,正方体AC 1中,BC 1与对角面BB 1D 1D 所成的角是( ) A .∠C 1BB 1 B .∠C 1BD C .∠C 1BD 1 D .∠C 1BO [答案] D[解析] 由三垂线定理得,OB 为BC 1在平面BB 1D 1D 上的射影.故选D.8.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,E 为CC 1的中点,则直线A 1B 与平面BDE 所成的角为( )A.π6B.π3C.π2D.56π [答案] B[解析] 以D 为原点建立空间直角坐标系,平面BDE 的法向量n =(1,-1,2), 而BA 1→=(0,-1,1),∴cos θ=1+223=32,∴θ=30°.∴直线A 1B 与平面BDE 成60°角.9.正方形纸片ABCD ,沿对角线AC 折起,使点D 在面ABCD 外 ,这时DB 与平面ABC 所成角一定不等于( )A .30°B .45°C .60°D .90°[答案] D[解析] 当沿对角线AC 折起时,BD 在面ABC 上的射影始终在原对角线上,若BD ⊥面ABC ,则此时B 、D 重合为一点,这是不成立的,故选D.10.已知等腰直角△ABC 的一条直角边BC 平行于平面α,点A ∈α,斜边AB =2,AB 与平面α所成的角为30°,则AC 与平面α所成的角为( )A .30°B .45°C .60°D .90°[答案] B[解析] 过B 、C 作BB ′⊥α于B ′,CC ′⊥α于C ′, 则BB ′=CC ′=1,∴sin θ=22,∴θ=45°.故选B. 二、填空题11.正三棱柱ABC —A 1B 1C 1的所有棱长都相等,则AC 1与平面BB 1C 1C 的夹角的余弦值为________.[答案]104[解析] 设三棱柱的棱长为1,以B 为原点,建立坐标系如图,则C 1(0,1,1),A ⎝⎛⎭⎪⎫32,12,0,AC 1→=⎝ ⎛⎭⎪⎫-32,12,1, 又平面BB 1C 1C 的一个法向量n =(1,0,0), 设AC 1与平面BB 1C 1C 的夹角为θ.sin θ=|cos 〈n ,AC 1→〉|=|AC 1→·n ||AC 1→||n |=64,∴cos θ=1-sin 2θ=104. 12.正四棱锥S —ABCD 中,O 为顶点S 在底面内的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面PAC 所成的角是________.[答案] 30°13.AB ∥α,AA ′⊥α, A ′是垂足,BB ′是α的一条斜线段,B ′为斜足,若AA ′=9,BB ′=63,则直线BB ′与平面α所成角的大小为________.[答案] 60°14.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为AA 1、A 1D 1的中点,则EF 与面A 1C 1所成的角为________.[答案] 45° 三、解答题15.如图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求SC 与平面ABCD 所成的角.[解析] 解法1:如图所示,设n 是平面α的法向量,AB 是平面α的一条斜线,A ∈α,则AB 与平面α所成的角为π2-arccos |AB →·n ||AB →|·n ;AS →是平面ABCD 的法向量,设CS →与AS →的夹角为φ.∵CS →=CB →+BA →+AS →,∴AS →·CS →=AS →·(CB →+BA →+AS →)=AS →·AS →=1. |AS →|=1,|CS →|=(CB ―→+BA ―→+AS ―→)2 =|CB ―→|2+|BA ―→|2+|AS ―→|2=3, ∴cos φ=AS →·CS→|AS →|·|CS →|=33.∴φ=arccos33. 从而CS 与平面ABCD 所成的角为π2-arccos 33.解法2:连结AC ,显然∠SCA 即为SC 与平面ABCD 所成的角.计算得:AC =2,∴tan∠SCA=22, 故SC 与平面ABCD 所成角为arctan22. 16.如图,在直三棱柱ABO —A ′B ′O ′中,OO ′=4,OB =3,∠AOB =90°.D 是线段A ′B ′的中点,P 是侧棱BB ′上的一点.若OP ⊥BD ,试求:(1)OP 与底面AOB 所成的角的大小; (2)BD 与侧面AOO ′A ′所成的角的大小.[解析] 如图,以O 为原点建立空间直角坐标系,由题意,有B (3,0,0),D ⎝ ⎛⎭⎪⎫32,2,4,设P (3,0,z ),则BD →=⎝ ⎛⎭⎪⎫-32,2,4,OP →=(3,0,z ).∵BD ⊥OP ,∴BD →·OP →=-92+4z =0,z =98.∴P ⎝ ⎛⎭⎪⎫3,0,98.(1)∵BB ′⊥平面AOB ,∴∠POB 是OP 与底面AOB 所成的角. ∵tan∠POB =983=38,∴∠POB =arctan 38.故OP 与底面AOB 所成角的大小是arctan 38.(2)∵OB →=(3,0,0),且OB →⊥平面AOO ′A ′, ∴平面AOO ′A ′的法向量为OB →=(3,0,0). 又DB →=(3,0,0)-⎝ ⎛⎭⎪⎫32,2,4=⎝ ⎛⎭⎪⎫32,-2,-4,∴OB →·DB { =3×32+(-2)×0+(-4)×0=92.又|OB →|=3, |DB →|=⎝ ⎛⎭⎪⎫322+(-2)2+(-4)2=892, ∴cos〈OB →,DB →〉=OB →·DB →|OB →|·|DB →|=923×892=389 .∴BD 与侧面AOO ′A ′所成的角的大小为π2-〈OB →,DB →〉=π2-arccos 389(或写成arcsin389).17.如图,正方体ABCD -A 1B 1C 1D 1中,E 是CC 1的中点,求BE 与平面B 1BD 所成角的正弦值.[解析] 如图,建立空间直角坐标系,设正方体的棱长为2,则B (2,2,0),B 1(2,2,2),E (0,2,1),BD →=(-2,-2,0),BB 1→=(0,0,2),BE →=(-2,0,1).设平面B 1BD 的法向量为n =(x ,y ,z ), ∵n ⊥BD ,n ⊥BB 1∴⎩⎪⎨⎪⎧n ·BD →=-2x -2y =0n ·BB 1→=2z =0,∴⎩⎪⎨⎪⎧x =-yz =0,令y =1时,则n =(-1,1,0), cos<n ,BE →>=n ·BE →|n ||BE →|=105.即BE 与平面B 1BD 所成的角的正弦值为105.18.(2009·北京)如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(1)求证:BC ⊥平面PAC ;(2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的大小; [解析] 考查线面垂直,直线与平面所成角,以及二面角等内容,可以用直接法实现,也可用向量法.解法一:(1)∵PA ⊥底面ABC ,∴PA ⊥BC . 又∠BCA =90°,∴AC ⊥BC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴DE =12BC .又由(1)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E .∴∠DAE 是AD 与平面PAC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB ,又PA =AB ,∴△ABP 为等腰直角三角形, ∴AD =12AB .在Rt△ABC 中,∠ABC =60°,∴BC =12AB .∴在Rt△ADE 中,sin∠DAE =DE AD =BC 2AD =24.∴AD 与平面PAC 所成的角的大小为arcsin24. 解法二:(1)如图,以A 为原点建立空间直角坐标系A -xyz .设PA =a ,由已知可得A (0,0,0),B ⎝ ⎛⎭⎪⎫-12a ,32a ,0,C ⎝ ⎛⎭⎪⎫0,32a ,0,P (0,0,a ). (1)∵AP →=(0,0,a ),BC →=⎝ ⎛⎭⎪⎫12a ,0,0,∴BC →·AP →=0, ∴BC ⊥AP .又∵∠BCA =90°, ∴BC ⊥AC . ∴BC ⊥平面PAC .(2)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴D ⎝ ⎛⎭⎪⎫-14a ,34a ,12a ,E ⎝ ⎛⎭⎪⎫0,34a ,12a .又由(1)知,BC ⊥平面PAC . ∴DE ⊥平面PAC ,垂足为点E . ∴∠DAE 是AD 与平面PAC 所成的角.∵AD →=⎝ ⎛⎭⎪⎫-14a ,34a ,12a ,AE →=⎝ ⎛⎭⎪⎫0,34a ,12a ,∴cos∠DAE =AD →·AE →|AD →||AE →|=144.∴AD 与平面PAC 所成的角的大小为arccos144.。
高中数学直线与平面夹角解析

高中数学直线与平面夹角解析在高中数学中,直线与平面夹角是一个重要的概念,涉及到几何图形的相互关系和空间几何的应用。
本文将从基本概念入手,通过具体题目的举例,分析解题技巧,帮助高中学生或他们的父母更好地理解和应用直线与平面夹角的知识。
一、基本概念直线与平面夹角是指直线与平面之间的夹角,可以用来描述直线在平面上的位置关系。
在几何图形中,我们常常遇到直线与平面相交的情况,这时候直线与平面夹角的计算就显得尤为重要。
二、题目分析与解题技巧1. 题目一:已知直线l与平面α垂直,平面α与平面β的夹角为60°,求直线l与平面β的夹角。
解题思路:根据题目所给条件,我们可以得知直线l与平面α垂直,即直线l与平面α的法向量垂直。
而平面α与平面β的夹角为60°,说明平面α的法向量与平面β的法向量夹角为60°。
根据向量的性质,两个垂直的向量的夹角为90°,所以直线l与平面β的夹角为90°-60°=30°。
2. 题目二:已知直线l与平面α平行,直线m与平面α的夹角为45°,求直线m与平面β的夹角。
解题思路:根据题目所给条件,我们可以得知直线l与平面α平行,即直线l与平面α的法向量平行。
而直线m与平面α的夹角为45°,说明直线m与平面α的法向量夹角为45°。
根据向量的性质,平行的向量的夹角为0°,所以直线m与平面β的夹角为45°。
3. 题目三:已知直线l与平面α的倾斜角为30°,平面α与平面β的夹角为60°,求直线l与平面β的夹角。
解题思路:根据题目所给条件,我们可以得知直线l与平面α的倾斜角为30°,即直线l与平面α的法向量与平面α的法向量夹角为30°。
而平面α与平面β的夹角为60°,说明平面α的法向量与平面β的法向量夹角为60°。
根据向量的性质,两个向量的夹角等于它们的夹角的余角,所以直线l与平面β的夹角为90°-30°-60°=0°。
人教版【高中数学】选修2-1第三章直线与平面的夹角讲义

案例(二)----精析精练课堂 合作 探究重点难点突被知识点一 公式cos θ=cos θ1·cos θ 2如右图,已知OA 是平面a 的一条斜线,AB⊥a,则OB 是OA 在平面a 内的射影,设OM 是a 内通过点O的任意一条直线,OA 与OB 所成的角为θ1,OB 与OM 所成的角为θ2,OA 与OM 所成的角为θ,则有cos θ=cos θ1·cos θ2,我们简称此公式为三余弦公式,它反映了三个角的余弦值之间的关系.在上述公式中,因为0≤cos θ2≤1,所以cos θ<cos θ1,因为θ1和θ都是锐角,所以θ1≤0,由此我们可以得到最小角定理:斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成的角中最小的角.知识点二 斜线和平面所成的角(1)定义:斜线和它在平面内的射影的夹角叫做斜线和平面所成的角(或斜线和平面的夹角).(2)斜线和平面所成角的范围:(0,2π). (3)直线和平面所成角的范围:[O,2π],其中当一条直线与一个平面垂直时,这条直线与平面的夹角为,当一条直线与个平面平行或在平面内时,这条直线与平面的夹角为0.(4)直线和平面所成角的求法:①几何法:用几何法求直线和平面所成角的步骤:i)找(或作)出直线和平面所成的角;ii)计算,即解三角形;iii)结论,即点明直线和平面所成角的大小.②向量法:若直线AB 与平面a 所成的角为θ,平面a 的法向量为n,直线与向量n 所成的角为ϕ,则θ+ϕ=2π,利用向量的夹角公式求出cos ϕ再根据sin θ=|cos ϕ|求出θ③利用公式cos θ=cos θ1cos 2求解.典型例题分析题型1 几何法求直线和平面的夹角【例1】 如下图,在长方体ABCD-A 1B 1C 1D 1中,AB=4,BC=3,AA 1=5,试求B 1D 1与面A 1BCD 1所成角的正弦值解析 作出B 1点在平面A 1BCD 1上的射C 影,从而得到B 1D 1在平面上的射影.又因为平面 A 1B 1D⊥面A 1BCD 1,故只要过B 1作A 1B 的垂线,垂足就是B 1的射影.答案 作B 1E⊥A 1B,又因为A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥B 1E.由B 1E⊥A 1B 及B 1E⊥A 1D 1得知B 1E⊥面A 1BCD 1,所以,D 1E 就是D 1B 1在平面A 1BCD 1上的射影,从而∠B 1D 1E 就是D 1B 1与面A 1BCD 1所成的角.在Rt△B 1D 1E 中,有sin∠B 1D 1E=111B D EB 上的射影. 但D1B1=211211D A B A +=915+=5,又11BB A S ∆=21A 1B 1·EB 1=21A 1B 1·BB 1,A 1B=1625+=14,∴EB 1=4154⨯=420,∴sin∠B 1D 1E=54120=41414. 方法指导 如果随意地在直线B 1D 1上取一点,然后过这一点向平面A 1BCD 1作垂线,虽然也可以找出直线B 1D 1和平面A 1BCD 1所成的角,但面临的一个问题是如何求出这个角,因此“作、证、求”三者是紧密联系在一起的,必须系统地统筹考虑.【变式训练1】 已知直角三角形ABC 的斜边BC 在平面a 内,直角边AB,AC 分别和a 成30°和45°角.求斜边BC 上的高AD 与平面a 所成角的大小.答案 如下图,作AO⊥a,O 为垂足,连结OB,OC,OD,则∠ABO,∠ACO,∠ADO 分别为AB,AC,AD 与a 所成的角,则∠ABO=30°,∠ACO=45°.设AO=h,则AC=2h,AB=2h.∴BC=6h,∴AB=32=∙BC AB AC h. ∴Rt△AOD 中,sin∠ADO=23=AD AO ,∠ADO=60°. ∴AD 与平面a 所成的角的大小为60°.【例2】 如下图所示,在棱长为1的正方体ABCD-A 1B 1C 1D 1中,求直线AA 1与平面A 1BD 所成的角.解析 在确定A 在平面上的射影时,既可以利用线面垂直,也可以分析四面体A 1-ABD 的性质.答案 解法一:连结AC,设AC∩BD=O,连结A 1O,在△A 1AO 内作AH⊥A 1O,H 为垂足. ∵A 1A⊥平面ABCD,BD ⊂平面ABCD,∴A 1A⊥BD .又BD⊥AC,AC∩A 1A=A,∴BD⊥平面A 1AD,∴BD⊥AH .又AH⊥A 1O,A 1O∩BD=O,∴AH⊥平面A 1BD,∴∠AA 1H 为斜线A 1A 与平面A 1BD 所成的角.在Rt △A 1AO 中,A 1A=1,AO=22,∴A 1O=26. ∵:A 1A·AO=A 1O·AH,∴AH=332622111=⨯=∙O A AO A A . ∴sin∠A A 1H=331=A A AH .∠AA 1H=arc sin 33. ∴A 1A 平面A 1BD 所成角的大小为arc sin33. 解法二:∵AA 1=AD=AB,∴点A 在平面A 1BD 上的射影H 为△A 1BD 中心,连结A 1H,则A 1H 为正△A 1BD 外接圆半径, ∵正△A 1BD 边长为2,∴A 1H=33·2=36. Rt△AHA 1中,cos∠AA 1H=A A H A 11=36. ∵∠AA 1H 为AA 1与平面A 1BD 所成的角,∴A 1A 与平面A 1BD 所成角的大小为 arc sin 33. 解法三:同解法二分析,A 1H 为∠BA 1D 的平分线,∴∠BA 1H=30°,又∠AA 1B=45°,∴由最小角原理公式cos∠AA 1B=cos∠AA 1H·cos∠BA 1H,得cos∠AA 1H=︒︒=∠∠30cos 45cos cos cos 11H BA B AA =36 ∴∠AA 1H=arc cos 36方法指导 在研究空间图形时,基本元素的位置关系和数量关系是密不可分、相互转化的.解法二在数量关系AA 1=AD=AB 的基础上,得到A 在平面A 1BD 上的射影的性质,解法三在找到基本图形-----三棱锥A 1-ABD 后,利用最小角原理公式,最小角原理公式是立体几何的重要公式之一,解法三利用该公式,解法简捷明了.【变式训练2】 如下图,在四棱锥P 一ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD⊥DC,E 是PC 的中点.(1) 证明PA∥平面EDB ;(2) 求EB 与底面ABCD 所成的角的正切值.答案 (1)连结AC,AC 交BD 于O.连结EO.∵底面ABCD 是正方形,∴点O 是AC 的中点.在△PAC 中,EO 是中位线,∴PA∥EO .而EOC ⊂平面EDB 且PA ⊄平面EDB,所以PA∥平面EDB.(3) 作EF⊥DC 交DC 于F,连结BF,设正方形ABCD 的边长为a.∵PD⊥底面ABCD,∴PD⊥DC .∴EF∥PD,F 为DC 的中点∴EF⊥底面ABCD,BF 为BE 在底面ABCD 内的射影,故∠EBF 为直线EB 与底面ABCD 所成的 角.在Rt △BCF 中,BF=a a a CF BC 25)2(2222=+=+. ∴EF=21PD=2a ,∴在Rt △EFB 中,tan ∠EBF=55252==a aBF EF . 所以EB 与底面ABCD 所成的角的正切值为题型2 向量法求直线与平面的夹角【例3】 在以边长为1的正方体ABCD-A 1B 1C 1D 1中,E 和F 分别是BC 和C 1D 1上的点,BE=C 1F= 31,试求EF 与平面A 1BD 所成的角的余弦值. 解析 如下图建立恰当的空间直角坐标系,用坐标向量及平面的法向量求解. 答案 以A 为原点,分别以AB ,AD ,1AA 方向为x轴,y 轴,z 轴的正方向而建立坐标系,如上图所示,则A 1(0,0,1),B(1,0,0),D(0,1,0),C(1,1,1),E(1,31,0),F(32,1,1). 1AC =(1,1,1),B A 1=(1,0,-1),D A 1(0,1,-1).由于1AC ·B A 1=(1,1,1)·(1,0,-1)=1-1=0,∴1AC ⊥B A 1,1AC .D A 1=(1,1,1)·(0,1,-1)=1-1=0,∴1AC ⊥D A 1,∴1AC ⊥平面A 1BD,故1AC 是平面A 1BD 的法向量.又EF =(-31,32,1),EF ·1AC =(-31,32,1)·(1,1,1)=34,|EF |=314,|1AC |=3. 记ϕ为EF 与1AC 之间所成之角则cos ϕ=11AC EF =424331443=∙.以θ记EF 与平面A 1BD 所成之角,则θ=ϕπ-2,∴cos=θ=cos(2π-ϕ)=sin ϕ=21273211342161cos 12==-=-ϕ. 规律总结 利用向量法求直线与平面所成角的解题步粟可以分解为:①根据题设条件,图形特征建立适当的空间直角坐标系;②得到相关点的坐标,进而求出相关向量的坐标;③利用分式cos<a,b>=b a b a ∙,进行计算,其中向量a 是直线的方向向量,b 可以是平面的法向量,可以是直线在平面内射影的方向向量;④将(a,b)转化为所求的线面角.这里要注意的是:平面的斜线的方向向量与平面法向量所成的锐角是平面的斜线与平面所成角的余角.【变式训练3】 如下图所示,已知直角梯形ABCD,其中AB=BC=2AD,AS⊥平面ABCD,AD∥BC,AB⊥BC 且AS=AB.求直线SC 与底面ABCD 的夹角的余弦值.答案 由题设条件知,可建立以AD 为x 轴,AB 为y 轴,AS 为z 轴的空间直角坐标系,如下图所示,设AB=1,则A(0,0,0),B(0,1,0),C(1,1,0),D(21,0,0),S(0,0,1).∴AS =(0,0,1),CS =(-1,-1,1).显然AS 是底面的法向量,它与已知向量CS 的夹角β=90°-θ,故有sin θ=cos β33311=⨯=,于是 cos θ=36sin 12=-θ. 【例4】 如下图,在直三棱柱ABC-A 1B 1C 1中,底面是等腰直角三角形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G.求A 1B 与平面ABD 所成角的大小.(结果用反三角函数值表示)解析 求线面角关键在于找到平面的一个法向量,法向量与直线所在的向量夹角的互余的角,即为所求的角,因此结合图形的特征,可以先建立空间直角坐标系,求出平面ABD 的法向量,再按公式求解.答案 以C 为原点,CA 所在直线为x 轴建立空间直角坐标系,设AC 的长为a,则A(a,0,0),B(0,a,0)D(0,0,1)A1(a,0,2,)则点G(3a ,3a ,31),E(2a ,2a ,1).由于E 在面ABD 内的射影为G 点,所以GE⊥面ABD.又DA =(a,0,-1),AB =(-a,a,0)=(6a ,6a ,32),,由AB ·=0及 ·=0可得⎪⎪⎩⎪⎪⎨⎧=+-=-,066,0326222a a a 解得a=2. 取=(6a ,6a ,32)=(31,31,32,)为平面ABD 的法向量,B A 1=(-2,2,-2).设A 1B 和平面ABD 所成的角为θ,则sin θ=32222949191|343232|222=++++-+-. 故所求A1B 和平面ABD 所成的角为arin2方法指导 本题也可以不用向量方法求解,而用传统的几何方法求解,但处理的过程不像向量法简单直接.请读者用传统方法试着处理一下.规律 方法 总结(1)利用平面a 的法向量n 求斜线AB 与平面a 的夹角θ时,应注意关系,sin θ=|cos<AB ,n>),其中θ∈⎥⎦⎤⎢⎣⎡2,0π,不要认为<AB ,n>或<BA ,n>就是θ角; (2)求直线与平面夹角的常见方法:①当直线与平面垂直时,直线与平面所成的角为90°,当直线与平面平行或在平面内时,直线与平面所成的角为0°;②当直线与平面斜交时,用以下三种方法求角:方法一:定义法:在直线上任取不同于斜足的一点作面的垂线,确定射影,找出斜线与平面所成的角,通过解三角形求得;方法二:向量法:建立空间直角坐标系,求出平面的法向量,由向量夹角公式,求出法向量n 与斜线对应向量的夹角θ(锐角),则所求线面角为2π-θ; 方法三:由公式cos θ=cos θ1·cos θ2,求斜线与平面所成的角.定时 巩固 检测基础训练1.平面的一条斜线和这个平面所成角θ的范围是 ( )A.0°<θ<90°B.0°≤θ≤90°C.0°<θ≤90D.0°<θ<180°【答案】 A(点拨:由与平面相交但不垂直的直线为平面的斜线知0°<θ<90°.)2.一条直线与平面a 所成的角为30°,则它和平面a 内所有直线所成的角中最小的角是 ( )A.30°B.60°C.90°D.150°【答案】 A(点拨:本题考查最小角定理,斜线与平面所成的角是斜线与平面内直线所成角中最小的角.)3.如下图,正方体ABCD-A 1B 1C 1D 1中BC 1与对角面BB 1D 1D 所成的角是 ( )A.∠C 1BB 1 B∠C 1BD C.∠C 1BD 1 D.∠C 1BO【答案】 D(点拨:∵O 是点C 1在平面BB 1D 1D 上的射影,∴BO 为BC 1在平面BB 1D 1D 内的射影.∵∠C1BO 为所求.)4.PA,PB,PC 是从P 点引出的三条射线,每两条夹角都为60°,则直线PC 与平面APB 所成角的余弦值为 ( )A. 21 B.36 C.33 D.23 【答案】 C(点拨,设PC 与平面APB 所成角为θ,则由cos60°=cos θ·cos30°得cos θ=33.) 5.正方体ABCD-A 1B 1C 1D 1中,O 为侧面BCC 1B 1的中心,则AO 与平面ABCD 所成角的正弦值为( ) A.33 B.21 C.66 D.23 【答案】 C(点拨:取BC 中点M,连AM,OM,易知∠OAM 即为AO 与平面ABCD 所成的角,可求得sin∠OAM=66.) 能力提升 6.如右图所示,点P 是△ABC 所在平面外的一点,若PA 、PB 、PC 与平面a 所成的角均相等,则点P 在平面a 上的射影P′是△ABC 的 ( )A.内心B.外心C.重心D.垂心【答案】 B(点拨:由于PA 、PB 、PC 与平面a 所成的角均相等,所以这三条由点P 出发的平面ABC 的斜线段相等,故它们在平面ABC 内的射影P ′A 、P ′B 、P ′C 也都相等,故点P 是 △ABC 的外心,因此,应选B.)7.从同一点O 引出不共面的三条射线OA,OB,OC 且两两成60°角,OA 与平面BOC 的夹角为 .【答案】 arc cos 33(点拨:设OA 与平面BOC 的夹角为θ,由上述分析可得co s60°=c os θ·c o s30°,即cos θ=33,所以OA 与.平面BOC 的夹角为arc cos 33.) 8.已知正方体ABCD-A 1B 1C 1D 1中,M 、N 分别是AB 、C 1D 1的中点,求A 1B 1与平面A 1MCN 所成角的大小.【答案】 法一:分别以DA,DC,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如上图,设正方体的棱长为1,则A 1(1,0,1),M(1,21,1),N(0,21,1),B 1(1,1,1),所以11B A =(0,1,0),M A 1=(0,21,-1),N A 1=(-1,21,0).设平面A 1MCN 的一个法向量为n=(x,y,z),则有⎪⎩⎪⎨⎧⊥⊥,,11M A n A n 得⎪⎪⎩⎪⎪⎨⎧=-=+-.021,021z y y x 即⎪⎪⎩⎪⎪⎨⎧==y z y x 2121, 令y=2,则x=z=1,所以n=(1,2,1).cos<11B A ,n)=6121111⨯=∙∙n B A n B A =36. 所以直线A 1B 1与平面A 1MCN 所成的角为arc cos 36. 法二:连接MN,B 1C,A 1D,A 1C,如右图、所示,由三垂线定理可得MN⊥A 1B 1,MN⊥B 1C,所以MN⊥平面A 1B 1CD,又MN ⊂平面A 1MCN,所以平面A 1MCN⊥平面A 1B 1CD,又平面A 1MCN 与平面A 1B 1CD 的交线是A 1C,故点B 1在平面A 1MCN 内的射影在直线A 1C 上,所以∠B 1A 1C 就是A 1B 1与平面A 1MCN 所成的角,在Rt△B 1A 1C 中,tan∠B 1A 1C=111B A C B =2,即A 1B 1与平面A 1MCN 所成的角的大小是arc tan 2.9.如右图在矩形ABCD 中,2AB=BC,沿对角线AC 将△ACB 折起到ACB ′的位置,使平面ADB ′⊥平面ACD.(1)求证:平面ACB ′⊥平面CBD ;(2)求AD 与平面ACB ′所成角的大小. 【答案】 (1) ⎪⎭⎪⎬⎫='⊥'⊥AD ACD B AD ACD B AD ADCD 平面平面平面平面 ⇒CD ⊥平面ADB ′⎪⎭⎪⎬⎫=''⊥'⇒⊥'C C B CD C B B A CD B A ⇒⎭⎬⎫'⊂''⊥'B AC B A D B C B A 平面平面 ⇒平面ACB ′⊥平面CB ′D.(2) 作DE ⊥B ′C 于E,连接AE.如图,由(1)知平面ACB ′⊥平面CB ′D,所以DE ⊥平面ACB ′.所以∠DAE 为AD 与平面ACB ′所成的角.设CD=1,则BC=2,在Rt △B ′DC 中,∠CDB ′=90°,B ′C=BC=2,CD=1,所以B ′D=3,所以DE=′CD BD ′CB ∙=23所以在R △AED 中,sin ∠DAE=AD DE =223=43,故直线AD 与平面ACB ′所成的角为 arcsin=43. 10.P 是△ABC 所在平面外一点,PA,PB,PC 两两互相垂直,且PA=10,PB=8,PC=6,求PA 与平面ABC 所成的角.【答案】∵AP ⊥PB,PA ⊥PC,∴PA ⊥平面PBC,PA ⊥BC,过A 作AD⊥BC 于D,连接PD,那么BC ⊥平面PAD,过P 作PO ⊥AD 于O.∴PO ⊥AD;BC ⊥PO,∴PO ⊥面ABC,∠PAO 就是PA 与面ABC 所成的角,∵PB=8,PC=6,∴BC=10,PD=BC PC PB ∙=524,tan ∠PAD=10524=2512, 因此PA 与面ABC 所成的角为arctan 2512. 11.如下图,在四棱锥P 一ABCD 中,底面为直角梯形,AD ∥BC,∠BAD=90°,PA ⊥底面ABCD,且PA=AD=AB=2BC,M 、N 分别为PC 、PB 的中点.求:CD 与平面ADMN 所成的角.【答案】建立如下图所示的空间直角坐标系Axyz,设PA=2,则P(0,0,2),B(2,0,0),D(0,2,0),C(2,1,0),则=(2,0,-2),=(0,2,0),=(2,-1,0).因为PB ·AD =(2,0,-2)·(0,2,0)=0,所以PB ⊥AD.又因为由三垂线定理可得PB ⊥DM,所以PB ⊥平面ADMN.因此<,>的余角即是CD 与平面ADMN 所成的角.因为cos(,=510,所以CD 与平面ADMN 所成的角为arcsin 510.。
高中数学线面角与线线角例题、习题-学生

线面角与线线角专练(小练习一)【知识网络】1、异面直线所成的角:(1)范围:(0,]2πθ∈;(2)求法;2、直线和平面所成的角:(1)定义:(2)范围:[0,90];(3)求法;【典型例题】例1:(1)在正方体1111ABCD A BC D -中,下列几种说法正确的是 ( )A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1BC 成60角(2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( )A 、2个B 、4个C 、6个D 、8个(3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( )A .90ºB .60ºC .45ºD .30º(4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。
(5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___.例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。
(I )若D 为BC 的中点,E 为AD 上不同于A 、D 的任意一点,证明EF ⊥FC 1;(II )试问:若AB =2a ,在线段AD 上的E点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。
例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面PAB ⊥底面ABCD.(Ⅰ)证明:BC ⊥侧面PAB;(Ⅱ)证明: 侧面PAD ⊥侧面PAB;(Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C DPA B C H S M 线面角与线线角专练(小练习二)例4:设△ABC 内接于⊙O ,其中AB 为⊙O 的直径,PA ⊥平面ABC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-直线与平面的夹角练习课后导练基础达标1.直线a与平面α内任一条线所成最小的角为θ,a是平面α的斜线,b是平面α内与a 异面的任意直线,则a与b所成的角()πA.最小值为θ,最大值为π-θB.最小值为θ,最大值为2πC.最小值为θ,无最大值D.无最小值,最大值为2答案:B2.如右图所示,在正方体ABCD-A1B1C1D1中,求直线A1C1与平面ABC1D1所成的角()A.30°B.60°C.45°D.90°答案:A3.正方体ABCD-A1B1C1D1中,A1B和面BB1D1D所成的角为()A.15°B.45°C.60°D.30°答案:D4.如左下图,正方体ABCD-A1B1C1D1中,E是CC1的中点,求BE与平面B1BD所成角的余弦值________________.15答案:55.如右上图,S是△ABC所在平面外一点,SA,SB,SC两两垂直,判断△ABC的形状_________. 答案:锐角三角形6.四面体S-ABC中,SA、SB、SC两两垂直,∠SBA=45°,∠SBC=60°,M为AB的中点,求:(1)BC与平面SAB所成的角;(2)SC与平面ABC所成角的正弦值.解析:(1)如右图,∵SA、SB、SC两两垂直,∴SC⊥面SAB.∴∠CBS 是BC 与平面SAB 所成的角. ∵∠CBS=60°,∴BC 与平面SAB 所成的角为60°.(2)连结MC,在Rt△ASB 中,∠SBA=45°,则SM⊥AB. 又SC⊥面SAB, ∴SC⊥AB,∴AB⊥面SMC.过S 作SO⊥MC 于点O,则SO⊥AB, ∴SO⊥面ABC,∴∠ SCM 是SC 与平面ABC 所成的角. 设SB=a,则SC=3a,SM=22a, 在Rt△CSM 中,CM=214a, ∴sin∠SCM=77=MC SM . 7.在Rt△ABC 中,∠A=90°,AB=3,AC=4,PA 是平面ABC 的斜线,∠PAB=∠PAC=60°,(1)求PA 与平面ABC 所成角的大小;(2)PA 的长等于多少时,点P 在平面ABC 上的射影O 恰好在BC 边上?解:(1)如右图,过P 作PO⊥平面ABC 于O,则∠PAO 为PA 与平面ABC 所成的角, 易证AO 为∠BAC 的平分线,则∠OAB=45°.由公式cosθ=cosθ1·cosθ2可得 cos∠PAO=OABPAB∠∠cos cos=2245cos 60cos =, ∴∠PAO=45°.∴PA 与平面ABC 所成的角为45°.(2)若O∈BC,在△AOB 中, BO=715,sinB=54, 由正弦定理可求得AO=2712. ∴PA=724sin =B AO f, 即PA=724时,点P 在平面ABC 上的射影O 恰好在BC 边上.8.如右图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,P 是侧棱CC 1上的一点,CP=m. 试确定m,使得直线AP 与平面BDD 1B 1所成角的正切值为32.解:建立如右图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),P(0,1,,m),C(0,1,0),D(0,0,0), B 1(1,1,1),D 1(0,0,1)所以BD =(-1,1,0),1BB =(0,0,1),AP =(-1,1,m),AC =(-1,1,0),又由AC ·BD =0,AC ·1BB =0知, AC 为平面BB 1D 1D 的一个法向量. 设AP 与平面BB 1D 1D 所成的角为θ, 则sinθ=cos(2π-θ) =2222||||mAC AP AC AP +•=依题意有22)23(123222+=+•m,解得m=31,故当m=31时,直线AP 与平面BDD 1B 1所成角的正切值为32. 9.如右图,已知正四棱柱ABCD —A 1B 1C 1D 1中,AB=2,AA 1=4,E 为BC 的中点,F 为直线CC 1上的动点,设FC F C λ=1C 1F=λFC.当λ=3时,求EF 与平面ABCD 所成的角.解析:如右图建立空间直角坐标系,则D(0,0,0),E(1,2,0).当λ=3时,F(0,2,1),EF =(-1,0,1).设平面ABCD 的法向量为n ,则n =(0,0,1).设EF 与n 的夹角为θ,则cosθ=22||||=•n EF n EF ∴EF 与平面ABCD 所成的角为45°. 综合运用10.如下图所示,正四棱柱ABCD-A 1B 1C 1D 1中,对角线BD 1=8,BD 1与侧面BC 1所成的角为30°. 求:BD 1和底面ABCD 所成的角.解:正四棱柱AC 1中,CC 1⊥底面A 1C 1, ∴CC 1⊥D 1C 1,∵底面是正方形,∴D 1C 1⊥B 1C 1, ∴D 1C 1⊥侧面BC 1, ∴D 1C 1⊥BC 1,∴∠D 1BC 1就是BD 1与侧面BC 1所成的角. ∴∠D 1BC 1=30°,∵D 1B=8,∴D 1C 1=4,B 1D 1=24=BD.∵D 1D⊥底面AC,∴∠D 1BD 就是BD 1与底面AC 所成的角. △D 1BD 中,cos∠D 1BD=228241==BD BD . ∴∠D 1BD=45°,即BD 1和底面ABCD 所成的角为45°.11.正三棱柱ABC-A 1B 1C 1底面边长为a ,侧棱长为2a.(1)建立适当的坐标系,并写出点A 、B 、A 1、C 1的坐标; (2)求AC 1与侧面ABB 1A 1所成的角. 解:(1)以点A 为坐标原点O,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系, 由已知,得A(0,0,0)、B(0,a,0)、A 1(0,0,2a)、C 1(-23a,2a,2a). (2)坐标系如右图,取A 1B 1的中点M ,于是有M (0,2a,2a ),连结AM 、MC 1,有1MC =(23-a,0,0)且AB =(0,a,0),1AA =(0,0,2a).由于1MC ·AB =0,1MC ·1AA =0,∴MC 1⊥面ABB 1A 1.∴AC 1与AM 所成的角就是AC 1与侧面ABB 1A 1所成的角. ∵1AC =(23-a,2a ,2a),AM =(0,2a,2a), ∴1AC ·AM =0+42a +2a 2=49a 2.而|1AC |=2222443a a a ++=3a,|AM |=2224a a +=23a.∴cos〈1AC ,AM 〉=23233492=•a a a. ∴1AC 与AM 所成的角,即AC 1与侧面ABB 1A 1所成的角为30°. 12.如下图,正方体ABCD-A 1B 1C 1D 1中,求证:A 1C⊥平面C 1BD.证明:因为ABCD-A 1B 1C 1D 1是正方体,所以A 1A⊥平面ABCD. 连结AC,则AC 是A 1C 在平面ABCD 内的射影. 又BD⊥AC,故由三垂线定理知BD⊥A 1C. 又A 1B 1⊥平面B 1BCC 1,连结B 1C,则B 1C 是A 1C 在平面B 1BCC 1内的射影. 因为BC 1⊥B 1C,所以由三垂线定理知 BC 1⊥A 1C.因为BD∩BC 1=B , 所以A 1C⊥平面C 1BD. 拓展研究13.如下图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD⊥底面ABCD ,PD=DC ,E 是PC 的中点.(1)证明PA∥平面EDB ;(2)求EB 与底面ABCD 所成的角为正切值.分析:如下图所示建立空间直角坐标系,D 是坐标原点,设DC=a.(1)证明:连结AC,AC 交BD 于G,连结EG. 依题意得A(a,0,0),P(0,0,a),E(0,2a ,2a ). 因为底面ABCD 是正方形,所以G 是此正方形的中心. 故点G 的坐标为(2a ,2a,0).所以PA =(a,0,-a). EG =(2a ,0,-2a).所以PA =2EG . 这表明PA∥EG.而EG ⊂平面EDB 且PA ⊄平面EDB ,因为PA∥平面DEB. (2)解:依题意得B(a,a,0),C(0,a,0).取DC 的中点F(0,2a,0),连结EF,BF. 因为FE =(0,0,2a ),FB =(a,2a,0),DC =(0,a,0).所以FE ·FB =0, FE ·DC =0.所以FE⊥FB,FE⊥DC.所以EF⊥底面ABCD,BF 为BE 在底面ABCD 内的射影. ∠EBF 为直线EB 与底面ABCD 所成的角. |EF |=2a ,|FB |=22)2(a a +=25a.所以25252||==a aFB FE . 所以,EB 与底面ABCD 所成的角的正切值为55.。