中考数学一轮教案第一章实数与中考

合集下载

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数(附答案解析)

2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。

2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。

★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

数轴 1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。

2011年中考数学第一轮复习教案——数与式

2011年中考数学第一轮复习教案——数与式

第一章 数与式第1课时 实数的基本概念一、知识要点 1、实数分类①0⎧⎪⎨⎪⎩正实数:实数负实数:②⎧⎧⎪⎨⎨⎩⎪⎩整数:有理数实数分数:无理数:无限不循环小数: 2、数轴、相反数、绝对值、倒数①只有 的两个数互为相反数;若a 与b 互为相反数,则 . ②数轴:规定了 、 、 的直线;数轴上的点与 一一对应. ③绝对值:(ⅰ)代数意义:(0)(0)(0)a a a a >⎧⎪==⎨⎪<⎩(ⅱ)几何意义: . ④倒数:如果a 与b 互为倒数,则 ;特别注意: . 3、平方根、算术平方根、立方根 ①正数a 的平方根为 ,0的平方根是 ;②正数a 的平方根中正的那个平方根叫做a 的算术平方根,0的算术平方根是0; ③任意一个数r 的立方根记为 . 二、典例精析例1、(1)3-的倒数是 ; (22的绝对值是 ;(3)若1x =,2y =,且0xy >,则x y += .点评:实数的基本概念要准确理解,其中绝对值属于难点,当重点突破. 例2、把下列各数填到相应的集合中:13 3.140.1010010001π-- 、、、..22sin 30tan 4530.321 3.27︒︒---、、、、、. 整数集合{ }; 分数集合{ }; 无理数集合{ }.点评:对于实数的认识主要是理解无理数的意义,即对无限不循环小数的理解. 例3、已知实数a b 、在数轴上对应的点的位置如图所示,化简a b -+点评:数轴作为重要的数学工具,它让数形有机结合,正确认识数轴上的点与实数的一一对应关系.例4、若21(0m -+=,求m n 、的值.点评:绝对值、偶次幂以及偶次方根的非负性,认识需要全面而且准确.三、中考链接 1、(2009梅州)12-的倒数为( ) A .12B .2C .2-D .1- 2、(2009抚顺)2-的相反数是( )A .2B .12-C .2-D .123、(2009枣庄)实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -< 4、(2009包头)27的立方根是( ) A .3 B .3- C .9 D .9- 5、(2009郴州)-5的绝对值是( )A .5B .5-C .15D .15- 6、(2009中山)4的算术平方根是( )A .2±B .2C .D 7.(2009肇庆)实数2-,0.3,17π-中,无理数的个数是( ) A .2 B .3 C .4 D .5四、优化练习1、(2009南昌)写出一个大于1且小于4的无理数: . 2、(陕西省)零上13℃记作+13℃,零下2℃可记作( )A .2B .2-C .2℃D .-2℃3、(2009潍坊)一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是( )A .1a +B .21a +CD 14、(2009恩施市)若3a =,则a 的值是( )A .3-B .3C .13D .3± 5、(2009长沙)已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a -6、(2009烟台)如图,数轴上A B ,两点表示的数分别为1-B 关于点A 的对称点为C ,则点C 所表示的数为( )A .2-B .1-C .2-D .17、(四川省资阳市)如图,在数轴上表示到原点的距离为3个单位的点有( ) A .D 点 B .A 点 C .A 点和D 点 D .B 点和C 点8、(梅州)下列各组数中,互为相反数的是( ) A .2和21 B .-2和-21 C . -2和|-2| D .2和21ab第2课时 科学记数法及实数大小的比较一、知识要点1、科学记数法、近似数和有效数字 ① 科学记数法是指将一个数表示成为 的形式,其中1≤10a <,n 为整数;② 对于一个近似数,从左边第一个不为0的数开始到最末一个数为止,都是这个近似数的有效数字. 2、实数大小的比较①在数轴上表示两个数的点,右边的点表示的数比左边的点表示的数 ; ②正数大于 ,负数小于零;两个正数,绝对值大的数较大,两个负数,绝对值大的反而 ; ③设a b 、为任意两个实数,若0a b ->,则 ; 若0a b -=,则 ; 若0a b -<,则 . 3、零指数、负整指数的运算 ①01a =( ); ②1pp aa-=( ). 二、典例精析例1、①新建的北京奥运会体育场——“鸟巢”能容纳91000位观众,将91000用科学记数法表示为( ) A .39110⨯ B .291010⨯ C .49.110⨯D .39.110⨯②2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示这个数是A .0.156×10-5 B .0.156×105C .1.56×10-6 D .1.56×106 点评:科学记数法通常用于将较大(或较小)的数表示成相对简洁的形式,其中指数的确定是有规律可循的.例2、(2009年佛山市)黄金分割比是10.618033982=…,将这个分割比用四舍五入法精确到0.001为 . 例3、2008年我州旅游收入达52644.85万元,比2007年增长了40.7%.用科学记数法表示2008年我州的旅游收入是 ______ _ _元(保留三个有效数字). 点评:较大(较小)的数取近似值时通常要与科学记数法结合考虑,而取近似值时需遵守精确度或有效数字的要求.例4、计算 :01)2008(260cos π-++-.点评:零指数、负整指数的运算是一个重要的考点.例5、比较大小:14点评:实数大小的比较,除了基本的比较原则外,常见的方法还有作差法、平方法等.三、中考链接1、(2009咸宁)温家宝总理在2009年政府工作报告中提出,今后三年内各级政府拟投入医疗卫生领域的资金将达到8500亿元人民币,用科学记数表表示“8500亿”为( ) A .108510⨯B .108.510⨯ C .118.510⨯D .120.8510⨯2、(2009常德)为了响应中央号召,今年我市加大财政支农力度,全市农业支出累计达到234 760 000元,其中234 760 000元用科学记数法可表示为( )(保留三位有效数字). A .2.34×108元 B .2.35×108元 C .2.35×109 元 D .2.34×109元 3、(2009荆州)1在-1,1,0,-2四个实数中,最大的是( )A .-1B .1C .0D .-2 4、(09长春)下列四个数中,小于0的是( )A .2-B .0C .1D .3 5、(2008巴中)下列各式正确的是( ) A .33--= B .326-=-C .(3)3--=D .0(π2)0-= 四、优化练习 1、(2009衡阳)已知空气的单位体积质量为31024.1-⨯克/厘米3,31024.1-⨯用小数表示为( )A .0.000124B .0.0124C .-0.00124D .0.00124 2、(2009凉山州)长度单位1纳米910-=米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( ) A .625.110-⨯米B .40.25110-⨯米C .52.5110⨯米D .52.5110-⨯米 3、(2009河北)比较大小:-6 -8. (填“<”、“=”或“>”)4、实数a b ,在数轴上对应点的位置如图所示,则a b .(填“>”、“<”或“=”)5、0)12(3---= .6、计算:3120092-0⎛⎫+= ⎪⎝⎭.7、(2009湖州)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为( ) A .40.2110-⨯B .42.110-⨯C .52.110-⨯ D .62110-⨯ 8、(2009湘西自治州)截止到2008年底,湘西州在校小学生中的少数民族学生数约为21.2万人,约占全州小学生总数的80%,则全州的小学生总数大致为 万. (保留小数点后一位)第3课时 实数的运算一、知识要点 1、运算律①加法交换律: ; ②加法结合律: ; ③乘法交换律: ; ④乘法结合律: ; ⑤分配律: . 2、实数的运算包括加、减、乘、除、乘方、开方;运算顺序为先 ,再 ,最后算 ,有括号的先算括号里面的. 二、典例精析例1、①2(3)-的值是( ) A .9 B.-9 C .6 D .-6 ②23-的值是( )A .6B .-6C .9D .-9 点评:乘方运算是要重点突破的. 例2、下列运算正确的是( ) A 、39±= B 、33-=-C 、39-=-D 、932=-例3、(2009年孝感)若m n n m -=-,且4m =,3n =,则2()m n += .例4、计算:①102(1cos60-+-︒②13(tan 60)1(3.14)π-︒-+-. ③12--sin ()30π3++0°. 点评:实数的运算中,除了掌握基本的运算律、运算法则之外,涉及一些特殊形式的运算如特殊三角函数值等需要熟练掌握.例5、若()2240a c --=,则=+-c b a .三、中考链接1、(08宁夏)下列各式运算正确的是 ( ) A .1122-=- B. 326=C. 236222⋅= D.326(2)2=2、(2008江西)计算(-2)2-(-2) 3的结果是( )A .-4B .2C .4D .123、(2009淄博)如果2()13⨯-=,则“”内应填的实数是( ) A .32 B .23 C .23- D .32- 3、(2009成都)计算2×(12-)的结果是( )A .1-B . lC .2-D .2 4、(09宜昌)如果0ab <,那么下列判断正确的是( ). A .00a b <<, B .00a b >>, C .a ≥0,b ≤0D .00a b ><,或00a b <>, 5、(2009泰安)下列各式,运算结果为负数的是( )A .)3()2(----B .)3()2(-⨯-C .2)2(--D .3)3(-- 6、(2008年湘潭) 如图,数轴上A 、B 两点所表示的两数的( )A . 和为正数B . 和为负数C . 积为正数D . 积为负数 四、优化练习1、3(1)-等于( )A .-1B .1C .-3D .3 2、比1小2的数是( )A .1-B .2-C .3-D .13、(2009本溪)如果a 与1互为相反数,则|2|a +等于( )A .2B .2-C .1D .1- 4、(2009宜宾)在数轴上的点A 、B 位置如图所示,则线段AB 的长度为( )第 4 题 图-52BA .3-B .5C .6D .75、一种商品原价120元,按八折(即原价的80%)出售,则现售价应为 元.6、①计算:3(2)⨯-= ; ②计算:2)5(0+-= ; ③计算:212221-+--= 7、计算:①121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.②12--sin ()30π3++0°. ③112|20093tan303-⎛⎫+--+⎪⎝⎭°.0|2|(2π)+-.⑤101()(20094sin 302--+º-2-A BO -3第4课时 整式概念及加减运算一、知识要点 1、代数式①像3(1)2sa x t-+、等式子都是代数式,单个一个数或字母也是 .②一般地,用 代替代数式里的字母,按照代数式中的运算关系,计算得出结果,叫做代数式的值. 2、整式的分类比较(通过举例进行)①单项式的次数: ; ②多项式的次数: . 3、同类项:所含 相同,且 也相同的项叫做同类项. 4、合并同类项:只把系数 ,所含字母及字母的指数不变. 5、整式的加减运算:实际就是 . 6、幂的运算性质(k l m n 、、、均为整数) ①同底数幂的乘法:kla a ⋅= ; ②幂的乘方:()m na = ; ③积的乘方:()mab = ; ④同底数幂的除法:mna a ÷= . 二、典例精析例1、代数式322x b xm n mn p π-+-、、、、中,单项式有( )A .1个B .2个C .3个D .4个点评:对于整式概念的理解,包括系列概念的理解,其中最为重要的就是单项式与多项式.例2、(2009年烟台市)若523m x y +与3n x y 的和是单项式,则mn = . 点评:需要准确理解同类项与合并同类项的本质.例3、(2008乌鲁木齐)若0a >且2xa =,3y a =,则x y a -的值为( )A .1-B .1C .23D .32点评:幂运算的难点在于逆向变形运用.例4、代数式2346x x -+的值为9,则2463x x -+的值为 . 点评:求代数式的值,在目前主要是采用直接代入和整体代入两种方式.例5、如图,房间地面的图案是用大小相同的黑、白正方形镶嵌而成,图中,第1个黑色L 形由3个正方形组成,第2个黑色L 形由7个正方形组成,……那么第6个黑色L 形的正方形个数是( ) A .22 B .23 C .24 D .25三、中考链接 1、(2008咸宁)化简()m n m n +--的结果⎧⎧⎧⎪⎨⎪⎪⎨⎩⎨⎪⎩⎪⎪⎩单项式整式有理式多项式代数式分式无理式为( )A .2mB .2m -C .2nD .2n - 2、(2008龙岩)下列计算正确的是( ) A .3232a a a =+ B .428a a a =÷C .623·a a a = D .623)(a a = 3、(2008宁波)下列运算正确的是( ) A .336x x x +=B .23236x x x =C .33(2)6x x = D .2(2)2x x x x +÷= 4、(2008嘉兴)若23a b =,则ab= . 5、下列运算正确的是( )A .336a a a +=B .2()2a b a b +=+C .22()ab ab --=D .624a a a ÷= 四、优化练习1、(2008芜湖)若23(2)0m n -++=,则2m n +的值为( )A .4-B .1-C .0D .4 2、(2008嘉兴)下列运算正确的是( )A .235a a a =B .22()ab ab = C .329()a a =D .632a a a ÷=3、 (2009济宁)下列运算中,正确的是 A .39±= B .()a a 236=C .a a a 623=⋅D .362-=-4、(2008双柏县)下列运算正确的是( )A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 5、(2009太原)已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x + 6、(2008宜昌)2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a -1)米,三峡坝区的传递路程为(881a +2309)米.设圣火在宜昌的传递总路程为x 米. (1)用含a 的代数式表示s ; (2)已知a=11,求s 的值. 7、(2008泰州)让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5 ,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3;…………依此类推,则a 2008=_____________.第5课时 整式的乘除运算一、知识要点1、整式的乘法(各举一例)①单项式乘以单项式: ②单项式乘以多项式: ③多项式乘以多项式: 2、整式的除法(各举一例)①单项式除以单项式: ②多项式除以单项式: 3、乘法公式:①平方差公式: ②完全平方公式: 二、典例精析 例1、计算:①()()2121x x ++-= .②31(2)(1)4a a -⋅-= .点评:熟练掌握整式的乘法运算.例2、先化简,再求值:3(2)(2)()a b a b ab ab -++÷-;其中1a b ==-点评:准确熟练地进行整式的运算,是准确求值的前提;合理的化简对于求值而言往往可以起到事半功倍的效果.例3、(2009内江市)在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( ) A .2222)(b ab a b a ++=+B .2222)(b ab a b a +-=-C .))((22b a b a b a -+=-D .222))(2(b ab a b a b a -+=-+点评:用图形的方式解释公式,既直观,又蕴含重要的数学思想.例4、(2009北京)已知2514x x -=,求()()()212111x x x ---++的值.例5、先化简式子,再选取一个合适的x 的值,求出此时代数式的值。

中考数学一轮优化复习 第一部分 教材同步复习 第一章 数与式 第2讲 实数的大小比较与运算课件

中考数学一轮优化复习 第一部分 教材同步复习 第一章 数与式 第2讲 实数的大小比较与运算课件

12/10/2021 第6页
第六页,共十七页。
2.实数的四则运算法则 (1)加法:同号两数相加,取相同的符号,并把绝对值⑳____相_加_____;绝对值不 相等的异号两数相加,取○21 ____绝_对__值_____较大的加数的符号,并用较大数的绝对值 减去较小数的○22 __绝__对__值______;互为相反数的两个数相加得 0;一个数同 0 相加,仍
12/10/2021
第十七页,共十七页。
得这个数. (2)减法:减去一个数,等于加上这个数的○23 __相__反__数______,即 a-b=a+(-b).
12/10/2021 第7页
第七页,共十七页。
(3)乘法:两数相乘,同号得○24 ____正____,异号得○25 ____负____,并把绝对值相乘; |a|·|b|a,b同号,
第一(dìyī)部 分
教材同步(tóngbù)复习
第一章 数与式
第2讲 实数的大小比较与运算
12/10/2021
第一页,共十七页。
知识要点·归纳
知识点一 实数的大小比较
直接比较法 正数>0>负数 数轴法 在数轴上,右边的点所表示的数总比左边的点所表示的数大 两个正数比较大小,绝对值大的数比较大;两个负数比较大小, 绝对值法 绝对值大的数反而小,即 a<0,b<0,若|a|>|b|,则 a<b 平方 对任意正实数 a, b,有:a2>b⇔a> b(适用于含有根式的数的 比较法 大小比较或二次根式的估值)
【正解】原式=-9+1--1122+4 =-9+1-4+4 =-8.
12/10/2021 第 14 页
第十四页,共十七页。
2.(2018·张家界)计算:( 3-1)0+(-1)-2-4sin60°+ 12.

2025年贵州省九年级中考数学一轮复习课件:第一章数与式第1节实数(含二次根式)

2025年贵州省九年级中考数学一轮复习课件:第一章数与式第1节实数(含二次根式)
A. B. C. D.



6.(2021贵阳8题3分)如图,已知数轴上,两点表示的数分别是, ,则计算 正确的是( )
第6题图
A. B. C. D.

命题点
3
科学记数法(5年3考)
7.(2023贵州3题3分)据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民人均可支配收入为10870元.10870这个数用科学记数法表示正确的是( )

9.(2024贵阳市云岩区模拟)石墨烯是碳的同素异形体,具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学等方面具有重要的应用前景.单层石墨烯的厚度为 ,将0.0000000335这个数用科学记数法表示为( )
A. B. C. D.

命题点
4
二次根式及其运算(2024.13,贵阳2022.5)
18.(2022遵义17(1)题)计算: .
解:原式 .
命题点
6
实数的大小比较(5年3考)
19.(2024贵州1题3分)下列有理数中最小的数是( )
A. B.0 C.2 D.4
20.(2022安顺1题)下列实数中,比 小的数是( )
A. B. C.0 D.
21.(2021贵阳1题3分)在,0,1, 四个实数中,大于1的实数是____.
考点
6
实数的运算(重点)
例6 计算: .
解:原式 .
1.乘方①;②正数的任何次幂是正数,负数的奇数次幂是负数,偶数次幂是正数2.零次幂:
3.负整数指数幂:(, 为正整数)4.特殊角的三角函数值,, ,,, ,,,
考点
7
实数的大小比较

中考数学一轮总复习 第1课时 实数(无答案) 苏科版

中考数学一轮总复习 第1课时 实数(无答案) 苏科版

第1课时:实数【课前预习】 (一)知识梳理1、实数的概念:⎪⎪⎩⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧数无理数:无限不循环小数有限小数或无限循环小分数整数有理数 ⎪⎩⎪⎨⎧负数正数实数02、相关概念:数轴、相反数、绝对值、倒数.3、实数的大小比较.⎩⎨⎧作差法利用数轴进行比较4、实数的运算:运算法则、运算律、运算顺序、零指数幂和负整数指数幂、科学计数法、近似数. (二)课前练习1、-5的绝对值是 ,相反数是 ,倒数是 ,绝对值小于3的整数有 .2、数轴上点A 表示-5,点B 表示2,则A 、B 两点之间的距离是 .3、在实数-23,0-3.14,2π-0.1010010001…(每两个1之间依次多1个0),tan60°. 这8个实数中,无理数有 . 4、下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5、某市在一次扶贫助残活动中,共捐款25.8万元.将25.8万元用科学记数法表示为 .6、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 【解题指导】例1 下列各数中:-1,0,169,2π,1.101001…,0.6.,12-, 45cos ,- 60cos ,722,2,π-722.有理数集合{ …}; 正数集合{ …}; 整数集合{ …}; 自然数集合{ …}; 分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e(a+b )+12cd -2e °的值;(2)实数a 、b 、c 在数轴上的对应点如图所示,化简c a例3 计算:(-1)2009+ 3(tan 60︒)-1-︱1-3︱+(3.14-π)0.例4 已知(x-2)2=0,求xyz 的值.例5 用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1. 例如7☆4=42+1=17,那么-5☆3= ;当m 为实数时,m ☆(m ☆2)=【巩固练习】1、2的相反数是_____,1的绝对值是______,-23的倒数为_______= .2、绝对值大于1不大于4的所有整数的和为 .3、已知数2a -与23a -,若这两数的绝对值相等,则a 的倒数是 .4、下列各数中:-30,2,0.31,227,2π,2.161161161,(-2 005)0是无理数的5B 关于 点A 的对称点为C ,则点C 表示的数是 .6、实数a 、b 在数轴上的位置如图所示:化简2a +∣a -b ∣= .7、计算 03π316(2)20073⎛⎫-+÷-+- ⎪⎝⎭【课后作业】 姓名 一、必做题:1、32-= ;213-的倒数是 ;0(=_________;14-的相反数是_________.2、若()2240a c --=,则=+-c b a .3、绝对值最小的数是______;若 |a |<2,则a 的整数解为_______;已知|a +3|=1 ,那么a =______.4、计算:312-=_________,22131-⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=__________.5、定义2*a b a b =-,则(12)3**=______.6、地球上陆地面积约为149 100 000 km 2,用科学记数法可以表示为____________km 2(保留三个有效数字)7、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米 D .62.610⨯平方米8、在数轴上表示2-的点离开原点的距离等于( )A .2B .2-C .2±D .49、如果a <0,b >0,a +b <0,那么下列关系式中正确的是( ).A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a 10、若a,b 均为实数,下列说法正确的是( ). A .若a +b =0,则a 、b 互为相反数 B.a 的倒数是a1 C.a a =2D. b 2是一个正数 11、已知:3,2xy ==,且0xy <,则x y +的值等于( ). A.5或-5 B.1或-1 C.3或1 D.-5或-1 12、已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,求)21()(2122m m cd b a +-÷+--的值.13、计算:①︒-+--⎪⎭⎫ ⎝⎛--45sin )32(2102②||4+⎝ ⎛⎭⎪⎫12-1-(3-1)0-8cos45°.二、选做题1、在实数范围内定义运算“⊕”,其法则为:22a b ab ⊕=-,求方程(4⊕3)⊕24x =的解.2、我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3、将一根绳子对折1次从中间剪断,绳子变成3段;将一根绳子对折2次,从中间剪断,绳子变成5段;依此类推,将一根绳子对折n 次,从中间剪一刀全部剪断后,绳子变成 段.4、罗马数字共有7个:I (表示1),V (表示5),X (表示10),L (表示50),C (表示100),D (表示500),M (表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如:IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL= ,XI= .5、如图所示是标出长度单位和正方向的数轴,若点A 对应于实数a ,点B 对应于实数b ;a ,b 是整数,且2b a -=7,则图中数轴上的原点应是点,的算术平方根是 .6、设,a b为非零实数,则a a ).A. ±2B.±1或0C.±2或0D.±2或±1 7、计算:12345314,3110,3128,3182,31244,+=+=+=+=+=…归纳计算结果中的个位数字的规律,猜测200931+的个位数字是( )A. 0B. 2C. 4D. 8 8、已知:C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,….观察上面的计算过程,寻找规律并计算C 610=____________.........A B C D。

浙江省2020届中考一轮复习浙教版数学课件:第1讲 实数及其运算(共39张PPT)

浙江省2020届中考一轮复习浙教版数学课件:第1讲 实数及其运算(共39张PPT)

点拨

答案
(2)在一列数:a1,a2,a3,…,an中,a1=3,a2=7,从第三个数开始, 每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017 个数是( B )
A.1
B.3
C.7
D.9
解 依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3, a8=7;周期为6; ∵2017÷6=336…1, ∴a2017=a1=3.
3. 零指数幂,负整数指数幂
(1)任何不等于零的数的零次幂都等于1,即a0=_1__(a≠0).
(2)任何不等于零的数的-p次幂,等于这个数p次幂的倒数,即a-p

1 ap
(a≠0,p为正整数).
4. 实数的大小比较 (1)代数比较法:正数大于零,负数小于零,正数大于一切负数;两个 正数,绝对值大的数大;两个负数,绝对值大的数反而小. (2)数轴比较法:将两个实数分别表示在数轴上,右边的数总比左边的 数大. (3)差值比较法:设a,b是任意两个实数,则a-b>0⇔a>b;a-b< 0(4⇔)商a<值b比;较a-法b:=设0⇔a,a=b b是. 两个正数,则:ab>1⇔a>b;ab=1⇔a=b;ab< 1⇔a<b. 在具体解题时,视题目的情况灵活选择最优方法.

题型四 科学计数法
自主演练
1.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第
一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学
记数法可简洁表示为( A )
A.3.386×108
B.0.3386×109
C.33.86×107
D.3.386×109
答案
2.近似数5.0×102精确到( C )

中考数学实数的有关概念学案

中考数学实数的有关概念学案
③一个数同0相加,__________________。
(2)有理数减法法则:减去一个数,等于加上____________。
(3)有理数乘法法则:
①两数相乘,同号_____,异号_____,并把_________。任何数同0相乘,
都得________。
②几个不等于0的数相乘,积的符号由____________决定。当______________,
C.有最大的负数 D.有绝对值最小的有理数
3.在 这七个数中,无理数有()
A.1个;B.2个;C.3个;D.4个
4.下列命题中正确的是()
A.有限小数是有理数B.数轴上的点与有理数一一对应
C.无限小数是无理数D.数轴上的点与实数一一对应
5.近似数0.030万精确到位,有个有效数字,用科学记数法表示为万二:【经典考题剖析】
积为负,当_____________,积为正。
③几个数相乘,有一个因数为0,积就为__________.
(4)有理数除法法则:
①除以一个数,等于_______________________.__________不能作除数。
②两数相除,同号_____,异号_____,并把_________。 0除以任何一个
4. 的平方根是______
5.计算
(1) 32÷(-3)2+|- |×(- 6)+ ;(2)
二:【经典考题剖析】
1.已知x、y是实数,
2.请在下列6个实数中,计算有理数的和与无理数的积的差:
3.比较大小:
4.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是;320的个位数字是;

2024年九年级中考数学一轮复习大纲课件

2024年九年级中考数学一轮复习大纲课件
学习幂的运算方法, 了解幂的性质及其在 代数式中的应用。
指数与对数的运算
学习指数与对数的定 义及其运算规则,掌 握它们在代数式中的
应用。
函数与关系的建立
了解函数与关系的概 念,学会建立函数关 系式并进行相关运算。
代数式的综合应用
综合运用所学知识, 解决复杂的代数式问 题,提高解决问题的
能力。
一元一次方程与不等式
反比例函数
反比例函数的图像与性质
反比例函数基础
详解反比例函数的定义、性质和图像特征
反比例函数应用
阐述反比例函数在实际问题中的应用和解题技巧
反比例函数综合
探讨反比例函数的综合问题和解题策略
函数图像的识别与应用
函数图像的特点和应用场景
函数图像的基本性质
图像变换、对称性、单调性、最值问题
函数图像的识别
• 学习如何用区间表示一元一次方程和 一元一次不等式的解集。
二元一次方程与不等式
二元一次方程和不等式的解法与应用
二元一次方程基本概念
01
介绍二元一次方程的定义、组成及解法
解二元一次方程组
02
解析二元一次方程组的解法及应用
不等式基本概念
03
阐述不等式的定义、性质及解集表示
解二元一次不等式组
04
讲解二元一次不等式组的解法及应用
中考数学一轮复习
全面提高数学素养,备战中考
目录 1.实数与函数 2.几何 3.代数 4.统计与概率 5.综合应用题 6.数学思想与方法
实数与函数
实数与函数的基础知识和应用
实数概念及运算
实数的定义、分类和运算规则
实数的分类与表 示
实数分为有理数和无理数, 有理数可以表示为分数或 整数,无理数不能表示为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 实数与中考
中考要求及命题趋势
1.正确理解实数的有关概念;
2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;
3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。

4.掌握实数的四则运算、乘方、开方运算以及混合运算
5.会用多种方法进行实数的大小比较。

2007年中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。

实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。

应试对策
牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。

第一讲 实数的有关概念
【回顾与思考】
知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值 大纲要求:
1.使学生复习巩固有理数、实数的有关概念.
2.了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。

3.会求一个数的相反数和绝对值,会比较实数的大小
4.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。

考查重点:
1.有理数、无理数、实数、非负数概念;
2.相反数、倒数、数的绝对值概念;
3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。

实数的有关概念
(1)实数的组成
{}
⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数
(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数,
(3)相反数
实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称.
(4)绝对值
⎪⎩
⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a
从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离
(5)倒数
实数a(a ≠0)的倒数是
a
1(乘积为1的两个数,叫做互为倒数);零没有倒数. 【例题经典】
理解实数的有关概念 例1 ①a 的相反数是-15
,则a 的倒数是_______. ②实数a 、b 在数轴上对应点的位置如图所示:0a b
则化简│b-a │=______. ③(2006年泉州市)去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约______________________.
【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理解. 例2.(-2)3与-23( ).
(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16 分析:考查相反数的概念,明确相反数的意义。

答案:A
例 3.-3的绝对值是 ;-321 的倒数是 ;9
4的平方根是 .
分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。

答案:3,-2/7,±2/3
例4.下列各组数中,互为相反数的是 ( )D
A .-3与3
B .|-3|与一31
C .|-3|与31
D .-3与2(-3) 分析:本题考查相反数和绝对值及根式的概念
掌握实数的分类
例1 下列实数227、sin60
°、3
π0
、3.14159、
-2数有( )个
A .1
B .2
C .3
D .4
【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.
第二讲 实数的运算
【回顾与思考】
知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。

大纲要求:
1. 了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。

2. 了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。

3. 了解近似数和准确数的概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。

4 了解电子计算器使用基本过程。

会用电子计算器进行四则运算。

考查重点:
1. 考查近似数、有效数字、科学计算法;
2. 考查实数的运算;
3. 计算器的使用。

实数的运算
(1)加法
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。

取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值; 任何数与零相加等于原数。

(2)减法 a-b=a+(-b)
(3)乘法
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即
⎪⎩
⎪⎨⎧⋅-⋅=)(0),(||||),(||||为零或异号同号b a b a b a b a b a ab
(4)除法
)0(1≠⋅=b b
a b a (5)乘方 个
n n a aa a = (6)开方 如果x 2=a 且x ≥0,那么a =x ; 如果x 3
=a ,那么x a =3 在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.
3.实数的运算律
(1)加法交换律 a+b =b+a
(2)加法结合律 (a+b)+c=a+(b+c)
(3)乘法交换律 ab =ba .
(4)乘法结合律 (ab)c=a(bc)
(5)分配律 a(b+c)=ab+ac
其中a 、b 、c 表示任意实数.运用运算律有时可使运算简便.
【例题经典】
例1、(宝应 )若家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,则冷冻室的温度(℃)可列式计算为 A . 4―22 =-18 B.22-4=18 C. 22―(―4)=26 D.―4―22=-26
点评:本题涉及对正负数的理解、简单的有理数运算,试题以应用的方式呈现,同时也强调“列式”,即过程。

选(A )
例2.我国宇航员杨利伟乘“神州五号”绕地球飞行了14周,飞行轨道近似看作圆,其半径约为6.71×103千米,总航程约为(π取3.14,保留3个有效数字) ( )
A .5.90 ×105千米
B .5.90 ×106千米
C .5.89 ×105千米
D .5.89×106千米
分析:本题考查科学记数法 答案:A
例3.化简273
-的结果是( ).
(A)7-2 (B) 7
+2 (C)3(7-2) (D)3(7+2)
分析:考查实数的运算。

答案:B
例 4.实数a 、b 、c 在数轴上的对应点的位置如图所示,下列式子中正确的有( ).
①b+c>0②a+b>a+c ③bc>ac ④ab>ac
(A)1个 (B)2个 (C)3个 (D)4个
分析:考查实数的运算,在数轴上比较实数的大小。

答案:C
例5
(2006年成都市)计算:-1
13-⎛⎫ ⎪⎝⎭
+(-2)2×(-1)0-│ 【点评】按照运算顺序进行乘方与开方运算。

例5.校学生会生活委员发现同学们在食堂吃午餐时浪费现象十分严重,于是决定写一张标语贴在食堂门口,告诫大家不要浪费粮食.
请你帮他把标语中的有关例7.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级……逐步增加时,楼梯的上法数依次为:1,2,3,5,8,13,21,...…(这就是著名的斐波那契数列).请你仔细观察这列数中的规律后回答:上10级台阶共有 种上法.
分析:归纳探索规律:后一位数是它前两位数之和
答案:89
例8.观察下列等式(式子中的“!”是一种数学运算符号)
1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…,
计算:
!
98!100= . 分析:阅读各算式,探究规律,发现100!=100*99*98!答案:9900。

相关文档
最新文档