函数定义域求法总结(优选)
求函数的定义域值域方法总结

函数的定义域、值域方法总结一.常见函数(基本初等函数):1.)(为常数C C y = 2.)0(≠+=k b kx y 3.)0(2≠++=a c bx ax y 4.xy 1= 5.幂函数:)(Q a x y a∈=(包括前四个函数) 6.指数函数:)10(≠>=a a a y x 且 7.对数函数:)10(log ≠>=a a x y a 且8.三角函数:x y sin =,x y cos =,x y tan =,x y cot =,x y sec =,x y csc =由以上函数进行四则运算、复合运算得到的函数都是初等函数。
如:d cx bx ax y +++=23,x x y 2log 1sin +=,xxy 513+=,试着分析以上函数的构成。
二.定义域:“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、换元时易忽略定义域。
函数的三要素: 对应法则、定义域、值域只有当这三要素完全相同时,两个函数才能称为同一函数。
函数定义域的求法tan ...(,,)2y x x R x k k ππ=∈≠+∈Z 且cot y x = (),,x R x k k π∈≠∈Z 且例:判断下列各组中的两个函数是否是同一函数?为什么?1.3)5)(3(1+-+=x x x y52-=x y 解:不是同一函数,定义域不同2. 111-+=x x y )1)(1(2-+=x x y 解:不是同一函数,定义域不同3. x x f =)( 2)(x x g = 解:不是同一函数,值域不同 4.x x f =)( 33)(x x F = 解:是同一函数 5.21)52()(-=x x f 52)(2-=x x f 解:不是同一函数,定义域、值域都不同练习求下列函数的定义域 ①)2lg(2x x y -=②1112++-=x x y③02)45()34lg()(-++=x x x x f④)1(log 1|2|)(2---=x x x f⑤(x 1)(x)f x -=⑥1(x)tan f x =⑦(x)lgcos f x = ⑧(x)f =⑨2(x)lg(3x 1)f =++⑩ y =ln(x +1)-x2-3x +4关于复合函数例1、设 f (x )=2x -3 g (x )=x 2+2 则称 f [g (x )](或g [f (x )])为复合函数。
常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。
函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。
定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。
常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。
下面将逐个介绍这些函数解析式的定义域和值域的求法。
1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。
线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。
2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。
对于一般的二次函数,定义域是实数集,即(-∞, +∞)。
值域则取决于二次函数的开口方向和开口点的位置。
-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。
-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。
3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。
指数函数的定义域是实数集,即(-∞,+∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,指数函数的值域为(0,+∞)。
-当a>1时,指数函数的值域为(0,+∞)。
-当a=1时,指数函数的值域为{1}。
4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。
对数函数的定义域是正实数集,即(0, +∞)。
值域则取决于底数的大小和正负性。
-当0<a<1时,对数函数的值域为(-∞,+∞)。
-当a>1时,对数函数的值域为(-∞,+∞)。
5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的定义域是实数集,即(-∞,+∞)。
值域则取决于具体的三角函数类型。
-正弦函数的值域为[-1,1]。
-余弦函数的值域为[-1,1]。
函数定义域值域求法(全十一种)

文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x
故
22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。
常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结
一、常见函数解析式
1、二次函数
解析式:y=ax2+bx+c
定义域:全实数集
值域:ax2+bx+c的值
2、三角函数
解析式:y=sinx,y=cosx,y=tanx,y=cotx,y=secx,y=cscx
定义域:全实数集
值域:[-1,1]
3、反三角函数
解析式:y=arcsinx,y=arccosx,y=arctanx,y=arccotx,
y=arcsecx,y=arccscx
定义域:-[1,1],(-∞,+∞)
值域:[-π/2,π/2]
4、双曲函数
解析式:y=sinhx,y=coshx,y=tanhx,y=cothx,y=sechx,y=cschx 定义域:全实数集
值域:[-1,1]
5、对数函数
解析式:y=lgx,y=lnx
定义域:x>0
值域:(-∞,+∞)
6、指数函数
解析式:y=ex
定义域:全实数集
值域:(0,+∞)
二、定义域和值域的求法
1、函数的定义域
定义域的求法:一般取出函数的变量,求出它所在的域,如果有多个变量,一般要满足多个变量的取值范围,才能满足函数的定义域,比如:函数f(x,y)=x2+y2,则它的定义域就是x,y取得所有实数
2、函数的值域
值域的求法:一般取定义域,将变量取不同的值,将函数求出不同的值并且收集,得到函数的值域,比如:函数f(x)=x2+x+2,值域就是1,3,5,7……。
函数定义域方法总结

求函数定义域方法总结函数的定义域及求法1、 分式的分母()()g x f x 中,()0f x ≠;偶次方根的被开方数≥0;在0()f x 中, ()0f x ≠即:0次幂底数不为01、 2、 对数函数的真数>0;对数函数的底数>0且≠1;3、 正切函数:x ≠ k π + π/2 ,k∈Z;余切函数:x ≠ k π ,k∈Z ;4、 一次函数、二次函数、指数函数的定义域为R ;5、 定义域的相关求法: (1)解析式为整式时,x 取任何实数;(2)当解析式为分式时,x 取分母不为零.....的实数 (3)利用函数的图象(或数轴)法; (4)利用其反函数的值域法;(5)当解析式为偶次根式时,x 取被开方数为非负数........的实数 (6)当解析式为复合表达式时,首先逐个列出不等式,求出各部分的允许取值范围,再求其公共部分。
6、反三角函数的定义域函数y =arcsinx 的定义域是[-1,1],值域是;函数y =arccosx 的定义域是[-1,1],值域是[0,π] ; 函数y =arctgx 的定义域是R ,值域是;函数y =arcctgx 的定义域是R ,值域是(0,π)。
7、 复合函数定义域的求法:推理、取交集及分类讨论.若函数f (x )的定义域是A ,则函数))((x f ϕ的定义域相当于求:使得)(x ϕ A ∈的x 的取值范围;(2)若函数))((x f ϕ的定义域是A ,则f (x )的定义域相当于求:当))((x f ϕ中x ∈A 时,)(x ϕ的值域。
8、当解析式涉及到具体应用问题时,视具体应用问题而定。
如果使用函数反映实际问题时,自变量的取值除表示函数的数字式子有意义之外,还必须使实际问题有意义。
典型例题:例1求下列函数的定义域 (1)y=-5x 2, (2) y=3x+5, 解:(1)x 为一切实数;(2)x 为一切实数 例2.求下列函数的定义域(1)y=11-x (2) y=xx 312+-解:(1)∵x-1≠0 ∴函数的定义域是x ≠1的实数。
函数定义域求法总结

函数定义域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
(1)分母不为(2)偶次根式的被开方数 。
(3)对数中的真数 。
(4)指数、对数的底数(5)y=tanx 中 ;y=cotx 中 等等。
( 6 )0x 中 。
二、抽象函数的定义域1.已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。
2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。
3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。
4.已知()f x 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。
一、 求函数的定义域1、 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为 ;函数f x ()-2的定义域为 ;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ; 函数1(2)f x+的定义域为 。
4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。
函数定义域值域求法总结精彩

函数定义域值域求法总结精彩GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-函数定义域、值域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。
这些解题思想与方法贯穿了高中数学的始终。
常用的求值域的方法:(1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f ③=)(x f x11111++④xx x x f -+=0)1()( ⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x ∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧x x x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax 第一页∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。
2x2x 15例 1 求函数 y的定义域。
| x 3| 8解:要使函数有意义,则必须满足2x 2x 15 0① | x 3 | 8 0②由①解得 x 3或 x 5。
③由②解得x5或 x 11 ④ ③和④求交集得 x 3且 x 11或 x>5。
故所求函数的定义域为 {x | x 3且x 11} {x | x 5} 。
例 2 求函数1ysin x的定义域。
216 x解:要使函数有意义,则必须满足sin x0 ① 216 x② 由①解得 2kx2k ,kZ③ 由②解得 4 x 4 ④由③和④求公共部分,得4 x 或0 x 故函数的定义域为 ( 4, ] (0, ]评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。
(1)已知 f (x) 的定义域,求 f[g(x )] 的定义域。
(2)其解法是:已知 f (x) 的定义域是[a ,b ]求 f [g(x)] 的定义域是解 a g(x) b ,即为所求的定义域。
2 例3 已知 f (x) 的定义域为[-2,2],求 f ( x 1)的定义域。
2 解:令 2 x 1 2 2 ,得 1 x 32,即 0x3,因此 0 | x |3 ,从而3 x 3 ,故函数的定义域是 { x | 3 x 3} 。
(2)已知 f [g( x)] 的定义域,求 f(x) 的定义域。
其解法是:已知 f [g(x )] 的定义域是[a , b ],求 f(x) 定义域的方法是:由 a x b ,求g(x)的值域,即所求 f(x) 的定义域。
例 4 已知 f (2x 1) 的定义域为[1,2],求 f(x) 的定义域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已 知 f 2 x 1 的 定 义 域 为 ( 1 , 5 ] , 求 f ( x ) 的 定 义 域 .
解:由题意知: 1x5,
32 x 1 9 ,
f(x )的 定 义 域 为 3 ,9 .
17
已知f(2x+3)定义域是[-4,5), 求f (x)的定义域
三、已知f(g(x))的定义域求f(h(x))的定义域
2.已 知 f(2x1)的 定 义 域 为 [0,1), 求 f(13x)的 定 义 域 .
解:Q f (2x 1)的定义域为[0,1),即0 x 1, 1 2x 11, f (x)的定义域为[1,1), 即113x 1,0 x 2 .
3 f (13x)的定义域为(0, 2].
3
已知函数y=f(2x+1)的定义域为[1,2], 求函数y=f(4x-1)的定义域。
三、运算型的抽象函数
f (x) 若
的 定 义 域 为 3,5 , 求
(x) f (x) f (2x 5) 的定义域.
求由有限个抽象函数经四则运算 得到的函数的定义域,其解法是: 先求出各个函数的定义域,然后再 求交集.
2.已知f函 (x)的 数定义 [2域 , 4], 为求函 F(x)f(1x)f(1x)的定义域。
11
类型六:求抽象函数的定义域
抽象函数是指没有给出函数的具体解 析式,只给出了一些体现函数特征的 式子的一类函数
类型六:求抽象函数的定义域
一、已知 f (x) 的定义域,求 f g(x)的定义域
例 1 :已知函数 f (x) 的定义域为 1,5 ,
求 f (3x 5) 的定义域.
f ( x) 其解法是:若
第2课时 函数概念的综合应用
1
1.掌握简单函数的定义域的求法;(重点) 2.会求简单函数的值域;(重点、难点)
2
1.构成函数的三要素; 2.函数的定义域的概念; 3.函数值域的概念; 4.函数的对应关系.
3
探究点1: 函数定义域的求法
4
类型一:f(x)是整式
F(x)=2x F(x)= —3x+2 F(x)=2x2+x — 1 如果f(x)是整式,那么函数的定义域是实数集R .
2 3
函数的定义域为{x | 2 x 1或1 x 2}
练习(1)已知函数f (x) 的定义域为 0 x 2 2 求 f (x 2)的定义域;
(2)已知函数 f (x 1的) 定义域为 {x | 2 x 3} 求 f (1 2的) 定义域. x
函数定义域的逆向应用问题
例、(1)若函数
即-1x2
则 f( x 2 ) 的 定 义 域 为 [ 1 ,2 ] .
抽象函数的定义域
已 知 f x 的 定 义 域 为 0 , 2 , 求 f ( 2 x 1 ) 的 定 义 域 .
解: 由题意知: 0 2 x 1 2
1 x 3
2
2
故 :f(2 x 1 )的 定 义 域 是 { x1 x 3 } . 22
的定义域为 a ≤ x ≤ b ,
则在 f g(x)中, a ≤ g (x) ≤ b ,从中解得 x 的
取值范围即为 f g(x)的定义域.
类型六:求抽象函数的定义域
例 : 若 函 数 f ( x ) 的 定 义 域 为 [ 1 , 4 ] , 求 函 数 f ( x 2 ) 的 定 义 域 。
类型七:考虑f(x)的实际意义
某种笔记本每个5元,买 x 个笔记本需 要y(元),试求函数解析式并写出自 变量的取值范围
如果f(x)实际问题中的自变量取值,需要考虑实际意义。
练习
求函数y 4 x 2 的定义域 | x 1| 2
解:依题意有: 4 x2 0 | x 1| 2 0
解得:x21且 xx
类型二:f(x)是分式
y 1 1 | x |
y
x2
1 x
2
类型二: 如果f(x)是分式,那么函数的定义域是使分母不等于 零的实数的集合
类型三:f(x)根式
y 3-x
F(x)= 2 x x1
f( x) 3 x22x-8
如果f(x)是 偶次根式,那么函数的定义域是使根号内的式 子不小于0的实数的集合. 如果f(x)是 奇次根式,那么函数的定义域根号内式子有意 义的数的集合
特别提醒:对于抽象函数的定义域,在同一对应关系
f下,括号内整体的取值范围相同.
15
二、已知 f g(x)的定义域,求 f (x) 的定
义域
例 2: 已知函数 f (2x 2) 的定义域为 0, 3 ,求函数 f (x) 的定义域.
其解法是:若 f g(x) 的定义域为 m≤ x ≤n ,
则由 m≤ x ≤n 确定的 g(x) 的范围即为 f (x) 的定义 域.
当 a0 时,y 3 与 x轴无交点
当a0时,(2a)243a0即 0a3
a的取值范围是 0a3
例 : 若 函 数 f( x ) m x 2 3 x m x 1 3 的 定 义 域 为 R , 求 m 的 取 值 范 围 。 解 : 要 使 原 函 数 有 意 义 , 必 须 m x2m30,
提升总结: 求函数的定义域时常有的几种情况: ①若f(x)是整式,则函数的定义域是: 实数集R; ②若f(x)是分式,则函数的定义域是: 使分母不等于0的实数集; ③若f(x)是偶次根式,则函数的定义域是: 使根号内的式子大于等于0的实数集.
10
④若f(x)是由几个部分的数学式子构成的,则函数 的定义域是使各部分式子都有意义的实数集合; ⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.
y ax1 的定义域为 ax2 2ax3
R
求实数a的取值范围;
(2)若函数f(x) m2xmx1的定义域为R
求实数m的取值范围.
a 例(1)若函数 yax2ax2a1x的3 定义域为 R,求实数 的取值围
解:(1)
函数yax2ax2a1x3 的定义域为R
a2x2ax30无解
即 ya2x2ax3与 x轴无交点
求抽象函数的定义域
例 : 已 知 f (x 1 ) 的 定 义 域 为 [ 0 , 3 ] , 求 f ( x ) 的 定 义 域 。
注 : 求 此 类 题 目 的 解 题 方 法 是 : 若 f[(x ) ] 的 定 义 域 为 D , 则 (x ) 在 D 上 的 取 值 范 围 , 即 是 f(x ) 的 定 义 域 。
分 析 : 求 yf[ (x)]型 的 定 义 域 问 题 。
因 为 f(x)的 定 义 域 为 [ 1 , 4 ] , 若 使 对 应 关 系 f有 意 义 则 1x24 .
解 : Qf(x ) 的 定 义 域 为 [ 1 ,4 ],
使 f ( x 2 ) 有 意 义 的 条 件 是 1 x 2 4
类型四:f(x)是代数式的0次
f(x)(x2x2)0
如果 f(x)为代数式的0次 ,那么函数的定义域是使代数式不 等于0的实数的集合.
类型五:f(x)是组合式
(1)y2x2
x ; 3x2
(3)y 3 ; 1 1x
(2)y x1g1x; (4)y x23 5x.
如果f(x)是由几个部分的数学式子构成的,那么函数 定义域是使各部分式子都有意义的实数集合. (即求各部分集合的交集)
点击此处添加标题
欢迎使用 可删
由 于 函 数 的 定 义 域 是 R, 故 m x2m x30 对 一 切 实 数 x恒 成 立 。
① 当 m 0 时 , 3 0 成 立 , 则 m 0 满 足 条 件 。
② 当 m 0 时 , 有 V m 2 1 2 m 0 , 解 得 0 m 1 2 .
故由① ②可知 0m12.