函数定义域的几种求法

合集下载

函数定义域值域求法十一种

函数定义域值域求法十一种

高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。

解:要使函数有意义,则必须满足x 2 2x 15 0①11 或 x>5。

3且x 11} {x |x 5}。

1例2求函数y '定义域。

*16 x 2解:要使函数有意义,则必须满足sinx 0 ① 16 x 2 0② 由①解得2k x 2k ,k Z ③ 由②解得4x4④由③和④求公共部分,得4 x 或 0 x故函数的定义域为(4, ] (0,]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知f(x)的定义域,求f [g(x)]的定义域。

(2)其解法是:已知f (x)的定义域是]a , b ]求f [g(x)]的定义域是解a g(x) b , 即为所求的定义域。

例3已知f(x)的定义域为[—2, 2],求f (x 23 x 3,故函数的定义域是{x |x(2)已知f [g(x)]的定义域,求f(x)的定义域。

其解法是:已知f [g(x)]的定义域是]a , b ],求f(x)定义域的方法是:由 a x b ,求g(x)的值域,即所求f(x)的定义域。

例4已知f(2x 1)的定义域为]1,2],求f(x)的定义域。

解:因为 1 x 2,2 2x 4,3 2x 1 5。

即函数f(x)的定义域是{x 13 x 5}。

三、逆向型即已知所给函数的定义域求解析式中参数的取值范围。

特别是对于已知定义域为 R ,求参数的范围问题通常是转化为恒成立问题来解决。

例5已知函数y . mx 2 6mx m 8的定义域为R 求实数m 的取值范围。

分析:函数的定义域为 R ,表明mx 2 6mx 8 m 0 ,使一切x € R 都成立,由x 2项例1求函数y,x 2 2x 15 |x 3| 8 的定义域。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法方法一:直接根据函数的定义进行求解。

这是最基本的一种方法,即根据函数的定义来求解定义域。

例如,对于一个多项式函数f(x),定义为f(x) = 2x^2 + 3x - 1,我们可以直接根据定义域的限制条件来求解。

由于多项式函数的定义域是全体实数,因此该函数的定义域为(-\infty, +\infty)。

方法二:挑选一些特殊的数进行验证。

这是一种常用的方法,即通过挑选一些特殊的数进行验证,看它们是否在函数的定义域内。

例如,对于一个有理函数g(x),定义为g(x) = \frac{1}{x},我们可以挑选x的一些特殊值进行验证。

首先,x不能为0,否则分母为零,函数无定义。

另外,由于有理函数对应的分母不能为零,因此定义域为(-\infty, 0) \cup (0, +\infty)。

方法三:求解不等式得到定义域的范围。

对于一些复杂的函数,可以通过求解不等式来得到定义域的范围。

例如,对于一个开方函数h(x),定义为h(x) = \sqrt{x^2 - 4x},我们可以通过求解不等式x^2 - 4x \geq 0来确定定义域的范围。

首先,将不等式化简为(x-2)(x-2) \geq 0,得到x \leq 2或x \geq 2,因此定义域为(-\infty, 2] \cup [2, +\infty)。

方法四:分段定义域的求解。

对于一些函数是在不同区间有不同定义域的情况,可以采用分段定义域的求解方法。

例如,对于一个分段函数j(x),定义为j(x) = \begin{cases}2, & \text{if } x\leq 0\\\sqrt{x}, & \text{if } x > 0\end{cases}这个函数在x\leq 0时有定义,且在x > 0时也有定义。

因此定义域为(-\infty, 0] \cup (0, +\infty)。

方法五:利用基本函数的定义域性质进行推导。

高中数学函数定义域的求法

高中数学函数定义域的求法

高中数学函数定义域的求法
求函数定义域的方法有以下几种:
1. 根据函数的解析式确定:
- 如果函数的解析式为有理式,那么函数的定义域就是使得
有理式的分母不为零的实数值。

- 如果函数的解析式为无理式,那么函数的定义域就是使得
无理式的被开方数不小于零的实数值。

- 如果函数的解析式为指数、对数函数,那么函数的定义域
就是使得指数的底不为零或负数,对数的底大于零且不等于1。

2. 根据函数的图象确定:
- 如果函数的图象是一个连续的曲线,那么函数的定义域就
是曲线所覆盖的所有实数值。

- 如果函数的图象是一个离散的点集,那么函数的定义域就
是这些点的横坐标所组成的集合。

3. 根据问题的实际意义确定:
- 如果函数表示一个实际问题,如时间、长度、面积等,那
么函数的定义域就是使得问题有意义的实数值范围。

需要注意的是,在某些情况下,函数的定义域可能是一个给定的特定集合,如正整数集、实数集等,这时需要根据题目要求进行判断和筛选。

同时,也要留意函数的特殊性质,如间断点、极值点等,可能会对函数的定义域有影响。

求定义域的方法

求定义域的方法

求定义域的方法
一、代数法求定义域。

对于一些简单的函数,可以通过代数方法来求其定义域。

例如
对于多项式函数,有理函数,指数函数和对数函数等,可以通过对
函数进行分析,找出函数中自变量的取值范围,从而求出定义域。

二、图像法求定义域。

对于一些复杂的函数,可以通过绘制函数的图像来求其定义域。

通过观察函数的图像,可以直观地看出函数的定义域是什么样的。

这种方法对于一些无法通过代数方法求解的函数来说是非常有效的。

三、条件法求定义域。

对于一些复杂的函数,可以通过条件法来求其定义域。

例如对
于含有根号的函数,需要满足根号中的值大于等于0,才能使得函
数有意义。

因此可以通过这种条件来求解函数的定义域。

四、综合法求定义域。

对于一些特殊的函数,可能需要综合运用代数法、图像法和条件法来求解其定义域。

通过综合运用多种方法,可以更准确地求解函数的定义域。

综上所述,求定义域的方法有代数法、图像法、条件法和综合法。

不同的函数可能需要采用不同的方法来求解其定义域,需要根据具体情况来选择合适的方法。

在实际应用中,求定义域是解决函数定义范围的重要问题之一,对于深入理解函数的性质和特点具有重要意义。

希望以上方法能够帮助到大家,更好地理解和掌握函数的定义域求解问题。

函数定义域的几种求法

函数定义域的几种求法

函数定义域的几种求法函数定义域指的是函数的自变量可能取的值的集合,也就是函数的有效输入值集合。

求函数定义域的几种方法有:1、根据函数的表达式或方程求解法这是最常见的求解函数定义域的方法,根据函数表达式或者是方程,计算有效解集,从而求出函数定义域。

例如:函数f(x) = x2 +1 = 0, 求它的定义域;由此等式我们可以得到 x2 = -1,则有x=$$\sqrt{-1}$$, 但是$$\sqrt{-1}$$不存在,从而该函数f(x)的定义域就是空集。

2、根据函数的几何图形特征求解法这是一种不常用的求解函数定义域的方法,简而言之就是通过分析函数的几何图形特征,来求出函数定义域。

例如:如果我们想求函数y= 1/x的定义域,则我们可以发现,当x的值小于0时,y的值会变成负数,而当x的值大于0时,y的值会变成正数;所以我们可以得出结论,这个函数的定义域为 x>0。

3、根据定义求解法例如:求函数g(x) = $$\sqrt{x}$$的定义域,由于x的开平方根√x必须大于等于0,所以该函数的定义域就是[0,+∞)。

4、根据解析学原理求解法对于一般函数,我们还可以运用解析学原理求解函数定义域,这个是一种较为复杂但可以非常准确的求解函数定义域的方法。

例如:求函数h(x) = |x| - 1的定义域;首先,我们使用变量y来表示y = |x| ,并且通过解析学原理可以得到y = x, x≥ 0 或者 y = -x, x < 0 。

根据等式 y - 1 =0 我们可以得到|x| - 1 = 0,即x=1或者x= -1。

所以该函数的定义域为( -∞, -1] U [1,∞)。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法定义域是指一个函数中所有可能输入的集合。

具体来说,定义域是指函数中的自变量可以取得的所有值。

在数学中,求定义域是解决一个函数的自变量的取值范围的问题。

下面是八种常见的方法来求定义域。

方法1:显式定义对于一些函数,定义域可以通过其显式定义来确定。

例如,对于函数f(x)=1/x,定义域可以通过注意到除数不能为零来确定,即x不能为0。

因此,定义域就是除去0之后的实数集合:R\{0}。

方法2:关系定义有些函数的定义域可以通过直接观察定义函数的关系来确定。

例如,对于函数f(x)=√(2x-1),注意到根号内的表达式必须大于等于零,即2x-1≥0。

解这个不等式可以得到定义域为x≥1/2方法3:对数函数对于对数函数,定义域必须满足底数必须大于零且不等于1,并且实数必须大于零。

例如,对于函数f(x) = log₂(x + 3),定义域为x + 3 > 0,即x > -3方法4:分式函数对于分式函数,定义域必须使分母不等于零。

例如,对于函数f(x)=1/(x-2),定义域为x≠2方法5:根式函数对于根式函数,定义域必须使根号内的表达式大于等于零。

例如,对于函数f(x)=∛(x-4),根号内的表达式必须大于等于零,即x-4≥0,解不等式可得x≥4、因此,定义域为x≥4方法6:三角函数对于三角函数,定义域是实数的所有值,因为三角函数在整个数轴上都有定义。

例如,对于函数f(x) = sin(x),定义域为所有实数:(-∞, ∞)。

方法7:反三角函数对于反三角函数,定义域必须使其定义范围内的表达式满足相应的条件。

例如,对于函数f(x) = arcsin(x),由于反正弦函数的定义域是[-1, 1],因此定义域必须满足-1 ≤ x ≤ 1方法8:参数化定义对于一些函数,可以通过将函数参数化来求取定义域。

例如,对于函数f(x)=√(x²-1),我们可以通过取x²-1≥0来求取定义域。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法在数学领域中,关于定义域的求解方法有许多种。

下面将介绍其中的八种方法。

方法一:根据函数公式求取定义域。

对于一些简单的函数,可以通过函数的公式直接求取定义域。

例如对于一个分式函数,如f(x)=1/(x-2),由于分母不能为0,所以定义域为{x,x≠2}。

方法二:分析函数的基本性质。

有些函数拥有特定的性质,根据这些性质可以求得函数的定义域。

例如对于多项式函数,常数函数和指数函数,它们都定义在实数域上,因此定义域为实数集。

方法三:考虑函数中的根。

对于包含根的函数,定义域不能使这些根使得函数的值出现未定义的情况。

例如对于开方函数f(x)=√(x-3),由于根号下的值不能为负,所以定义域为{x,x≥3}。

方法四:考虑函数的分段定义。

对于分段定义的函数,需要分别考虑每个分段的定义域。

例如对于函数f(x)=,x,分段定义为{x当x>=0时;-x当x<0时},因此定义域为实数集。

方法五:考虑函数的限制条件。

有时函数在定义域上有一些限制条件。

例如对于对数函数f(x) =ln(x),由于对数函数只对正数有定义,所以定义域为{x , x > 0}。

方法六:考虑函数的参数限制。

对于含有参数的函数,需要考虑参数的限制条件。

例如对于双曲正弦函数f(x) = sinh(x),由于双曲正弦函数对所有实数都有定义,所以定义域为实数集。

方法七:考虑函数的复合性质。

对于复合函数,需要分析组成函数的定义域。

例如对于函数f(g(x)),需要保证g(x)的定义域是f(x)的定义域。

例如对于函数f(g(x)) = 1/x,如果g(x) = sin(x) + 2,由于sin(x)的定义域为实数集,所以g(x)的定义域与f(x)的定义域保持一致。

方法八:考虑函数的图像。

对于一些函数,通过画出函数的图像可以直观地确定定义域。

例如对于一个二次函数f(x)=x^2+1,通过函数的图像我们可以看到函数的定义域为实数集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域
求函数的定义域的基本方法有以下几种:
一、已知函数的解析式,若未加特殊说明,则定义域是使解析式有意义的自变量的取值范围。

一般有以下几种情况:
✍✍分式中的分母不为零;
✍✍偶次方根下的数(或式)大于或等于零;
✍✍指数式的底数大于零且不等于一;
✍✍对数式的底数大于零且不等于一,真数大于零。

✍✍正切函数
当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

例1. 函数的定义域为。

例题2.函数的定义域是____
例题3.14.(湖南卷)函数f(x)=的定义域是()
A.-∞,0] B.[0,+∞
C.(-∞,0) D.(-∞,+∞)
二、抽象函数的定义域的求法。

抽象函数是指没有明确给出具体解析式的函数,其有关问题对同学们来说具有一定难度,特别是求其定义域时,许多同学解答起来总感棘手.下面结合实例具体介绍一下抽象函数定义域问题的几种题型及求法.
1、已知的定义域,求
的定义域
例1已知函数的定义域为
,求的定义域.
例2若函数的定义域为
,则的定义域为。

2、已知的定义域,求
的定义域
例3已知函数的定义域为,求函数
的定义域.
例 4 若的定义域为
,求的定义域.。

相关文档
最新文档