整式的运算练习题资料
整式的运算练习题

整式的运算练习题一、加法运算1. (2x + 5) + (4x - 3)解:根据加法的交换律,我们可以将多项式的项进行重新排序,然后进行相同项的合并。
所以,我们可以先将上述多项式的项进行排序,得到 (2x + 4x) + (5 - 3) = 6x + 2。
答案:6x + 22. (3x^2 + 2x - 5) + (4x^2 + 3x + 1)解:在这个例子中,我们需要按照变量的次数进行排序,并将相同次数的项进行合并。
所以,我们可以将上述多项式的项进行排序,得到 (3x^2 + 4x^2) + (2x + 3x) + (-5 + 1) = 7x^2 + 5x - 4。
答案:7x^2 + 5x - 4二、减法运算1. (4x^2 + 3x - 5) - (2x^2 + 2x + 1)解:和加法运算类似,我们需要将多项式的项按照变量的次数进行排序,并进行合并。
所以,我们可以将上述多项式的项进行排序,得到 (4x^2 - 2x^2) + (3x - 2x) + (-5 - 1) = 2x^2 + x - 6。
答案:2x^2 + x - 62. (5x^3 - 2x^2 + 3x + 4) - (3x^3 - x^2 + 2x - 5)解:同样地,我们需要将多项式的项按照变量的次数进行排序,并进行合并。
所以,我们可以将上述多项式的项进行排序,得到(5x^3 - 3x^3) + (-2x^2 + x^2) + (3x - 2x) + (4 + 5) = 2x^3 - x^2 + x + 9。
答案:2x^3 - x^2 + x + 9三、乘法运算1. (2x + 3)(4x - 5)解:对于这个乘法的练习题,我们可以使用分配律来求解。
所以,我们可以将第一个多项式的每一项与第二个多项式的每一项进行相乘,然后将结果相加。
所以,我们有(2x × 4x) + (2x × -5) + (3 × 4x) + (3 × -5) = 8x^2 - 10x + 12x - 15 = 8x^2 + 2x - 15。
整式综合运算练习题(含答案)

整式专题训练测试题一、填空题:1、 单项式5)2(32y x -的系数是_________,次数是___________。
2、 多项式π2323232----x xy y x 中,三次项系数是_______,常数项是_________。
3、 若,3,2==n m a a 则___________,__________23==--n m n m a a 。
4、 单项式2222,2,21,2xy y x xy y x ---的和是_____________________________。
5、 若2333632-++=⋅x x x ,则x =_________________。
6、 )2131)(3121(a b b a ---=___________________。
7、 若n mx x x x --=-+2)3)(4(,则__________________,==n m 。
8、 ________________)6()8186(32=-÷-+-x x x x 。
9、 442)(_)(_________5⨯⨯⨯⋅⋅⋅⋅-=x x x x x 。
10、22413)(___)(_________y xy xy x +-=+-。
11、______________42125.0666=⨯⨯。
12、_____________)()(22++=-b a b a 。
二、选择题:1、 代数式4322++-x x 是A 、多项式B 、三次多项式C 、三次三项式D 、四次三项式2、 )]([c b a +--去括号后应为A 、c b a +--B 、c b a -+-C 、c b a ---D 、c b a ++-3、=⋅-+1221)()(n n x xA 、n x 4B 、34+n xC 、14+n xD 、14-n x4、下列式子正确的是A 、10=aB 、5445)()(a a -=-C 、9)3)(3(2-=--+-a a aD 、222)(b a b a -=-5、下列式子错误的是 A 、161)2(22=-- B 、161)2(22-=-- C 、641)2(32-=-- D 、 641)2(32=-- 6、=-⨯99100)21(2 A 、2 B 、2- C 、 21 D 、21- 7、=-÷-34)()(p q q pA 、q p -B 、q p --C 、p q -D 、q p +8、已知,109,53==b a 则=+b a 23 A 、50- B 、50 C 、500 D 、不知道9、,2,2-==+ab b a 则=+22b aA 、8-B 、8C 、0D 、8±10、一个正方形的边长若增加3cm ,它的面积就增加39cm ,这个正方形的边长原来是A 、8cmB 、6cmC 、5cmD 、10cm二、计算:1、42332)()()(ab b a ⋅⋅-2、4)2()21(232÷÷-xy y x 3、3334455653)1095643(y x y x y x y x ÷-+ 4、)3121()312(2122y x y x x -+-- 5、)1(32)]1(21[2-----x x x 6、⎭⎬⎫⎩⎨⎧-÷----)21()]2(3[2522222xy y x xy xy y x xy四、先化简,再求值1、2)3()32)(32(b a b a b a -+-+,其中31,5=-=b a 。
《整式的运算》练习题及答案

《整式的运算》练习题及答案《整式的运算》练习题及答案一、选择题。
1、下列判断中不正确的是()①单项式m的次数是0 ②单项式y的系数是1③ ,-2a都是单项式④ +1是二次三项式2、如果一个多项式的.次数是6次,那么这个多项式任何一项的次数()A、都小于6B、都等于6C、都不小于6D、都不大于63、下列各式中,运算正确的是()A、 B、C、 D、4、下列多项式的乘法中,可以用平方差公式计算的有 ()A、 B、C、 D、5 、在代数式中,下列结论正确的是()A、有3个单项式,2个多项式B、有4个单项式,2个多项式C、有5个单项式,3个多项式D、有7个整式6、关于计算正确的是()A、0B、1C、-1D、27、多项式中,最高次项的系数和常数项分别为()A、2和8B、4和-8C、6和8D、-2和-88、若关于的积中常数项为14,则的值为()A、2B、-2C、7D、-79、已知,则的值是()A、9B、49C、47D、110、若,则的值为()A、-5B、5C、-2D、2二、填空题11、 =_________。
12、若,则。
13、若是关于的完全平方式,则。
14、已知多项多项式除以多项式A得商式为,余式为,则多项式A为________________。
15、把代数式的共同点写在横线上_______________。
16、利用_____公式可以对进行简便运算,运算过程为:原式=_________________。
17、。
18、,则P=______, =______。
三、解答题19、计算:(1)(2 )( 3)20、解方程:21、先化简后求值:,其中。
参考答案一、选择题1、B2、D3、D4、B5、A6、B7、D8、B9、C10、C二填空题1 1、 12 、2;413、或714、15、(1)都是单项式(2)都含有字母、 ;(3)次数相同16、平方差;17、 18、 ;三、解答题19、(1 )1(2) (3)20、21、34。
数学整式计算练习题

数学整式计算练习题整式是指由数字、字母及其乘积组成的代数式,它是数学中重要的概念之一。
掌握整式的计算方法对于理解和解决数学问题具有重要意义。
本文将提供一些数学整式计算的练习题,帮助读者巩固和加深对整式计算的理解。
一、四则运算1. 计算下列整式的和:(3x² - 2x + 5) + (5x² + 4x - 3)2. 计算下列整式的差:(6x² + 3x - 2) - (4x² - 2x + 7)3. 计算下列整式的积:(2x³ + 3x)(4x² - 5x)4. 计算下列整式的商:(8x⁴ - 6x³ + 4) ÷ (2x²)二、配方法1. 解因式分解:x² + 6x + 92. 解因式分解:4x² - 25三、特殊情况1. 求下列方程的根:x² - 8x + 16 = 02. 求下列方程的根:x² + 6x + 9 = 0四、复合函数1. 如果 f(x) = 3x + 5,计算 f(2x - 1)2. 如果 g(x) = x² + 2,计算 g(2x - 1)3. 如果 h(x) = 4x² - 3x,计算 h(f(x))五、其他应用1. 一个长方形的长是x + 3,宽是3x + 2,计算其面积。
2. 一个长方形的周长是2x² + 4x,计算其长度和宽度的和。
六、综合练习1. 计算下列整式的和、差、积和商:(3x² + 4x + 6) + (2x² - 3x + 1)(4x³ - 2x + 1) - (x⁴ + 5x² + 3)(3x + 2)(2x + 1)(6x⁵ - 2x²) ÷ (2x)2. 解因式分解下列方程:x² + 6x + 9 = 04x⁴ - 16 = 0这些练习题涵盖了整式的基本计算、配方法、特殊情况、复合函数和其他应用等方面。
整式的运算基础练习题

整式的运算基础练习题整式的运算是数学中的一个重要分支,它涉及到各种基本运算规则,如加法、减法、乘法和除法等。
下面是一些关于整式运算的基础练习题,可以帮助大家巩固和加深对整式运算的理解。
1、单项式的加法1)计算:2x + 3x = __x2)计算:5a - 2a = __a答案:(1)5x;(2)3a2、多项式的加法1)计算:2x - 3x + 4x = __x2)计算:5a + 2b + 3a = __a + __b答案:(1)3x;(2)8a;2b3、单项式的乘法1)计算:2x × 3x = __x²2)计算:5a × 4b = __ab²答案:(1)6x2(2)20ab24、多项式的乘法1)计算:(2x + 3y) × (x - y) = __x² - __xy + __y²2)计算:(3a - 2b) × (4a + 5b) = __a×__b² + __a×__b - __a ×__b² - __a×__b答案:(1)x2xy+3y2(2)12a×4b+5a×2b−3a×5b−2a×4b即48ab+10ab−15ab−8ab,最终结果为45ab。
整式的运算测试题一、选择题1、下列哪个选项是整式?()A. 2/3B. 4x/3yC. x + 2yD. √22、下列哪个选项是整式的乘法?()A. 3(x + y)B. 4x^2yC. (x + 2y)(x - 2y)D. x + 2y = 03、下列哪个选项是整式的除法?()A. (x + y)/2B. (x + 2y)(x - 2y)C. x \div 2yD. 2x^2 - x = y二、填空题1、如果 a和 b是整数,那么 a + b的值是____。
2、如果 x和 y是整数,那么 x - y的值是____。
七年级数学第一章整式的运算练习题及答案

第一章《整式的运算》一、知识点填空:1、只有数与字母的 的代数式叫做单项式(单独的一个数或一个字母也是单项式);几个单项式的和叫做多项式;单项式和多项式统称整式。
下列代数式中,单项式共有 个,多项式共有 个。
-231a , 52243b a -, 2, ab ,)(1y x a +, )(21b a +, a ,712+x , x y π+ 2、一个单项式中,所有 的指数和叫做这个单项式的次数;一个多项式中,次数 的项的次数叫做这个多项式的次数。
(单独一个非零数的次数是0)(1)单项式232z y x -的系数是 ,次数是 ;(2)π的次数是 。
(3)22322--+ab b a c ab 是单项式 和,次数最高的项是 ,它是 次 项式,二次项是 ,常数项是 .3、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
如:()=⎪⎭⎫ ⎝⎛-xy z xy 3122。
(2)单项式与多项式相乘:()b a ab ab 22324+= 。
(3)多项式与多项式相乘:()()=-+y x y x 22。
4、平方差公式:两数和与这两数差的积,等于它们的平方差。
即:()()______a b a b +-=。
公式逆用:22_________a b -= 计算:(1)()()=-+x x 8585,(2)()()33_________x y x y -++=, (3)_______5.175.3722=-。
5、完全平方公式:()2222b ab a b a ++=+,()2222b ab a b a +-=-。
公式变形:(1)22_____________a b += (2)()22()______a b a b +--=。
公式推广:(3)()2__________________a b c ++= (4)()3_________a b +=。
整式的运算专项练习题

整式的运算专项练习题1. 计算下列整式的值:a) $3x^2 + 2xy + y^2$,当$x = 2$,$y = 3$时。
b) $(4x^2 - 5xy + 2y^2) - (2x^2 - 3xy + 5y^2)$,当$x = 4$,$y = 1$时。
c) $(x^2 - 2xy + y^2)(x + y)$,当$x = 3$,$y = 2$时。
2. 化简下列整式:a) $(2x - 3y)^2$。
b) $(3x - 2y)(3x + 2y)$。
c) $(x^2 - 4)(x^2 + 4)$。
d) $(a - b + c)^2 - (a + b - c)^2$。
3. 求解下列方程:a) $2x^2 + 5x - 3 = 0$。
b) $4(x - 1)^2 + 3 = 0$。
c) $x^4 - x^2 = 0$。
4. 解下列不等式:a) $2x^2 - 13x + 15 \geq 0$。
b) $(x - 1)(x + 2) < 0$。
c) $x^3 - 4x^2 + 4x > 0$。
5. 根据给定的条件,列出一个整式,并用已知的值计算其值:a) 一个整式,其中$x = 3$时,值为10;$x = -2$时,值为-3。
b) 一个整式,其中$x = 7$时,值为20;$x = -1$时,值为-8。
6. 根据问题描述,建立一个合适的整式,并回答问题:a) 温度从摄氏度转换为华氏度的公式是$F = \frac{9}{5}C + 32$。
求当摄氏度为25时,对应的华氏度。
b) 一块长方形的面积是$x^2 + 5x$,它的宽度是$x + 3$,求长方形的长度。
7. 以下是一些整式的性质:a) $(a + b)^2 = a^2 + 2ab + b^2$,你可以通过计算具体的整式,来验证这一性质。
b) $(a - b)^2 = a^2 - 2ab + b^2$,你可以通过计算具体的整式,来验证这一性质。
整式运算习题大全

整式运算习题大全整式是指由常数、变量和它们的乘积及其和、差所组成的代数表达式。
整式运算就是对整式进行加、减、乘和除的运算。
下面是一些整式运算的习题:1. 习题一:对下列整式进行加法运算。
(1) 3x^2 + 2x - 5 + 2x^2 - 3x + 7(2) 4y^3 - 2y^2 + 3y - 1 + 5y^3 + 2y^2 - 4y + 22. 习题二:对下列整式进行减法运算。
(1) 5a^2 - 3a + 2 - (2a^2 - 4a + 1)(2) 6b^3 + 2b - 3 - (4b^3 + 3b - 2)3. 习题三:对下列整式进行乘法运算。
(1) (x + 3)(x - 2)(2) (2y - 1)(3y + 2)4. 习题四:对下列整式进行除法运算。
(1) (4x^2 - 3x + 2) ÷ (2x - 1)(2) (6y^3 + 2y - 3) ÷ (3y + 1)5. 习题五:对下列整式进行混合运算。
(1) 2x^2 + 3x - 1 - (x^2 - 4x + 5) + 3(x - 2)(2) 5y^3 - 2y^2 + y - 1 + (2y^3 + 3y - 2) - 2(y - 3)6. 习题六:将下列整式进行合并同类项。
(1) 4x^2 + 2x - 3 + 2x^2 + 3x - 1(2) 3y^3 - 5y^2 + 2y - 1 + 2y^3 - y^2 + 3y + 27. 习题七:将下列整式进行分解。
(1) 3x^2 + 5x(2) 2y^3 + 4y^2 - 6y8. 习题八:将下列整式进行提取公因式。
(1) 6x^2 - 9x^3 + 12x(2) 8y^2 - 4y^3 + 10y^4这些习题涵盖了整式运算的基本内容,通过解题可以巩固整式运算的方法和技巧,并加深对整式的理解。
希望这些习题对你有所帮助!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整 式 的 运 算一、选择题。
(3分×10=30分,请把你的正确答案填入表格中) 1、下列计算正确的是( )A 、22=-a aB 、326m m m =÷C 、2008200820082x x x =+D 、632t t t =⋅2、下列语句中错误的是( )A 、数字 0 也是单项式B 、单项式 a 的系数与次数都是 1C 、32ab -的系数是 32- D 、2221y x 是二次单项式 3、代数式 2008 ,π1,xy 2 ,x 1 ,y 21- ,)(20081b a + 中是单项式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个4、一个整式减去22b a -等于22b a +则这个整式为 ( )A 、22bB 、22aC 、22b -D 、22a -5、下列计算正确的是:( )A 、2a 2+2a 3=2a 5B 、2a -1=12aC 、(5a 3)2=25a 5D 、(-a 2)2÷a=a 3 6、下列计算错误的是:( )①、(2x+y )2=4x 2+y 2 ②、(3b-a)2=9b 2-a 2 ③、(-3b-a)(a-3b)=a 2-9b 2④、(-x-y )2=x 2-2xy+y 2 ⑤、(x-12 )2=x 2-2x+14A 、1个B 、2个C 、3个D 、4个7、黎老师做了个长方形教具,其中一边长为b a +2,另一边为b a -,则该长方形周长为( )A 、b a +6B 、a 6C 、a 3D 、b a -108、下列多项式中是完全平方式的是 ( )A 、142++x xB 、1222+-y xC 、2222y xy y x ++D 、41292+-a a9、饶老师给出:1=+b a ,222=+b a , 你能计算出 ab 的值为 ( )A 、1-B 、3C 、23-D 、21- 10、已知552=a ,443=b ,334=c , 则a 、b 、c 、的大小关系为:( )A 、c b a >>B 、b c a >>C 、c a b >>D 、a c b >>二、填空题。
(2分×10=20分)11、单项式 23b a π-的系数是 ,次数是 次。
12、代数式 x x a x a 5154323+- 是______项式,次数是_____次。
13、化简:=---+)4()36(2222xy y x xy y x ________________。
14、若 c bx ax x x ++=-+2)4)(3( ,则=a _______、=b _______、=c _______。
15、计算:65105104⨯⨯⨯= ; 16、 ()_______)3(102=----π。
17、已知2×8m =42m求m= 。
18、已知2x 2-3x-1=0,求6x 2-9x-5= 19、若10m n +=,24mn =,则22m n += 。
20、2005200640.25⨯= 。
三、计算题。
(5分×7=35分)21、)12)(2(2++x x 22、)(5)21(22222ab b a a b ab a -++-23、 22232)2(21c b a bc a -⋅ 24、 )18()3610854(22xy xy xy y x ÷--25、 ()()()1122+--+x x x 26、))()((22y x y x y x -+-27、()()()24212121+++四、解答题。
(6分×2=12分)28、计算下图阴影部分面积(单位:cm)29、一个正方形的边长若增加4cm ,则面积增加64cm 2,求这个正方形的面积。
(列方程)五、探究及应用。
(30题6分、31题10分、32题7分,共23分)30、观察例题,然后回答: 例:x+1x=3,则x 2+ x -2= .解:由x+1x =3,得(x+1x )2=9,即x 2+x -2+2=9所以:x 2+x -2=9-2=7通过你的观察你来计算:当x=6时,求①x 2+x -2; ②(x- 1x)231、(1)通过观察比较左、右两图的阴影部分面积,可以得到乘法公式为 。
(2)运用你所得到的公式,计算下列各题:①7.93.10⨯ ② )2)(2(p n m p n m +--+32、 小明在做一道数学题:“两个多项式A 和B ,其中B=3a 2-5a-7,试求A+2B 时”,错误地将A+2B 看成了A-2B ,结果求出的答案是:-2a 2+3a+6,你能帮他计算出正确的A+2B 的答案吗?(写出计算过程)aa bb平方差公式1、选择(1)下列多项式的乘法,可以利用平方差公式计算的是( ) A 、(a-nb )(nb-a ) B 、(-1-a )(a+1) C 、(-m+n )(-m-n ) D 、(ax+b )(a-bx ) (2)(m 2-n 2)-(m-n)(m+n)等于 ( )A 、-2n 2B 、0C 、2m 2D 、2m 2-2n 2 2、计算(1)(x+2y )(x-2y )+(x+1)(x-1) (2)x (x-1)-(x-31)(x+31)(3)(a 4+b 4)(a 2+b 2)(a+b )(a-b )3、利用平方差公式进行计算。
(1)701×699 (2)99×101(3)121×119 (4)1007×993☆ 个性练习设计 计算:(1) 2008 (2)19972-1996×1997×199820082-2009×2007(一)幂的运算基本练习(1)10×10=_______; a·a =_______; a· a ·a =_______.a ·a =_______;(2)a+a=_______.x·x5·x7=_______.(a)=a·a·a·a=a.(3)(2)=_______;(10)=_______;(b)=_______;(a)=_______;(4)(y)=_______;(x)=_______;(y)·(y)=_______;(-3x)=_______;.(5)(2b)=_______;(2×a)=_______;(-a)=_______;(3a)=_______;(6)(-2×10)=_______.(-2×10)×(-8×105)=_____;=_______;(7)a÷a=(a≠0);a·()=a;(-a)÷(-a)=;(8)(2a)÷(2a)=;()()÷(-y)=(-y).(9)()·(-b)=(-b); x÷()=x;(a)÷a=;.(10) a÷a=;(-x)÷(-x)=; m÷m·m=; 9×9=;(11) a·b=; a=;(2x)=;(12)x÷x=;(-a)÷(-a)=;(p)÷p=; a÷(-a)=.(13)(a)÷(a)=;(x y)÷(x y)=; x·(x)÷x=;(14)(y)÷y÷(-y)=; 3x y·(-2xy)=;(-9a b)·8ab=;(15) 2a·(3a-5b)=;(-2a)·(3ab-5ab)=;(二)乘法公式基本练习(16)(2a+5b)(2a-5b)=;(3)(-2a-3b)(-2a+3b)=;(17)(-a+b)(a+b)=;(3a+b)=;(2a+b)=;(18)(-2m-n)=;(x+3)=;(2x+y)=;(19) a+6a+=(a+); 4x-20x+=(2x-);(20) a+b=(a-b)+;(x-y)+=(x+y);(-2m+n)=;(21)(x+2)(x-3)=___________;(x-2)(x+3)=__________;(x+2)(x+3)=__________;(22)(x+8)(x-8)=_______________;(x-a)(x+a)=____________;(x2-5)(x2+5)=___________;(23)999×1001=_________.498×502=__________; 1982=_____________; 992=_____________;(24)a+b=(a-b)+;(x-y)+=(x+y);9x-24x+=(3x-);(25) a+5a+=(a+); =_________;(26) =________________; =_______________;(三)整式除法基本练习(27)(2a b)÷(a b)=___________; (-x y)÷(3x y) _______ ;(-xy)÷(3xy)= _____。
(28) (2x y)÷(6x y)_______; (5a+10a)÷5a=_____________ ;( _______)÷4a=3a-2a+1 (29) (6c d-c d)÷(-2c d)= _________; (2a+b)÷(2a+b)= _____________;(30)(8a b c)÷(2a b)·(-a bc)= ____________;(3x y-xy+xy)÷(-xy) = _____________;(31) (-9×10)÷(3×10)×(1.5×10) = ____________;= ____________;化简求值(32)[(xy+2)(xy-2)-2x y+4]÷(xy) (33) [(x+y)-(x-y)]÷(2xy)其中x=10 ,y=-其中x= ,y=-1。
(三)易错题整理1.请利用举反例或推理等方法说明下列计算是错误的,并说明正确的结果(1)(2)(3)(4)2.填空(1)若x2+kx+25是一个完全平方式,则k=.(注意k要进行分类讨论)(2)如果x2-kxy+9y2是一个完全平方式,则常数k=________________;(注意k要进行分类讨论)(3)若是完全平方式,则k的值为_____________________;(注意k要进行分类讨论) (4)若2是完全平方式,则k的值为_______________.(注意k要进行分类讨论)(5)x(x+1)-3x(x-2) =_______________;(x+1)(x+1)(x+1)(x-1)=_______________;(6)在多项式中,若时,多项式的值为5,则当时,多项式的值为________.(7)若,则m=__________,n=___________.(8)已知,,则的值为_______________.(9)已知,,则的值为___________.(11) =___________.(2a-3b)-(3a-2b)=_________________. (12)若,则x=_________;若3m+2n-3=0时,则8m·4n=__________.(13)=_______;若,求=_______.3.计算:(14)若A=3x3+2x2-1,B=1-x+x2,先化简A-2B,再求值,其中x=-.(注意整体参与运算时一定要加括号,计算过程中尽可能不要跳步)(15)有一道题目是一个多项式减去,小强误当成了加法计算,结果得到。