北师大版数学七年级下册《整式的运算》单元测试卷及答案
北师大版七年级下册第一章整式的运算全章同步训练以及答案

第一章 整式的运算同步练习1.1 整式一、精心选一选⒈下列说法正确的个数是 【 】①单项式a 的系数为0,次数为0; ②21-ab 是单项式; ③-xyz 的系数是-1,次数是1; ④π是单项式,而2不是单项式. A .0个 B .1个 C .2个 D .3个 ⒉若单项式1232--x n m 和c b a 245的次数相同,则代数式322+-x x 的值为 【 】 A .14 B .20 C .27 D .35 二、耐心填一填:⒈3a 2b 3c 系数是次数是;πR 2系数是次数是. ⒉n =时,单项式231+n xy 的次数是6. 三、用心做一做:⒈ 下列各代数式是不是单项式?如果是,请指出它们的系数和次数. ⑴a 52⑵b a 2-⑶32ba -⑷0.1532y x ⑸2x +1 ⑹y ⑺-m⒉ 小明认为既然单项式322y x 的次数是5,那么多项式322y x +的次数也是5.他的想法对吗?为什么?由此,你能谈谈单项式和多项式次数的确定有什么不同吗?相信你能完成一、精心选一选⒈下列说法正确的个数是 【 】①单项式是整式;②单项式也是多项式;③单项式和多项式都是整式. A .0个 B .1个 C .2个 D .3个⒉把3a 3-5和a 2b +ab 2+1按某种标准进行分类时属于同一类,则下列哪一个多项式也属于此类【 】A .-a 5-b 5B .4x 2-7C .xyz -1D .a 2+2ab +b 2⒊若多项式(m +4)x 3+2x 2+x -1的次数是2,则m 2-m 的值为 【 】 A .10 B .12 C .16 D .20 二、耐心填一填⒈多项式x 3y +5xy -6-4xy 2是的和. ⒉5x 2+4x -3是次项式,其中常数项是.⒊如图1-1-1,“小房子”的平面图形由长方形和三角形组成, 则这个平面图形的面积是。
三、用心做一做: ⒈ 请写出系数是21-,且必须含字母a 和字母b 而不含其它字母的所有四次的单项式.请你试一试已知多项式:x 10-x 9y +x 8y 2……-xy 9+y 10 ⑴该多项式有什么特点和规律;⑵按规律写出多项式的第六项,并指出它的次数和系数; ⑶这个多项式是几次几项式?1.2 整式的加减⑴一、精心选一选⒈下列说法正确的是【 】A .单项式与单项式的和一定是单项式B .单项式与单项式的和一定是多项式C .多项式与多项式的和一定是多项式D .整式与整式的和一定是整式 ⒉若M =2a 2b ,N =-4a 2b ,则下列式子正确的是【 】A .M +N =6a 2bB .N +M =-abC .M +N =-2a 2bD .M -N =2a 2b1-1-1二、耐心填一填:⒈2x-(-3x)=;⒉光明中学初一级有x人,初二级人数比初一级的3倍要少100人,则光明中学初一和初二级共有人⒊A=4a2-2b2-c2,A+B=-4a2+2b2+3c2,则B=_________________.三、用心做一做:⒈(3x2-2x+5)-(4-x+7x2) ⒉(6xy-5y2)-5xy-3(2xy-2x2)相信你能完成一、精心选一选⒈要使多项式3x2-2(5+x-2x2)+mx2化简后不含x的二次项,则m等于【】A.0 B.1 C.-1 D.-7⒉(xyz2-4yx-1)+(xyz2-3xy-3)-(2xyz2+xy)的值【】A.与x、y、z大小无关B.与x、y大小有关,而与z大小无关C.与x大小有关,而与y、z大小无关D.与x、y、z的大小都有关二、耐心填一填⒈多项式2x3-6x+6与x3-2x2+2x-4的和是__________________.⒉2(6x2-7x-5)-()=5x2-2x+3.⒊小华把一张边长是a厘米的正方形纸片的边长减少1厘米后,重新得到一个正方形纸片,这时纸片的面积是厘米;三、用心做一做:⒈在求多项式3x2-x+2与2x2+2x-5的差时,小彬的做法是这样的:3x2-x+2-2x2+2x-5=x2+x-3.请问他的做法对吗?为什么?⒉求多项式(4x2-3x)+(2+4x-x2)-(2x2+x+1)的值,其中x=-2请你试一试小明做某个多项式减去ab -2bc +3ac 时,由于粗心,误以为加上此多项式,结果得到答案为2ab -3ac +2bc ,你能说出该题的正确答案吗?1.2 整式的加减⑵你一定能完成一、精心选一选⒈下面各式计算结果为-7x -5x 2+6x 3的是【 】 A .3x -(5x 2+6x 3-10x ) B .3x -(5x 2+6x 3+10x ) C .3x -(5x 2-6x 3+10x ) D .3x -(5x 2-6x 3-10x ) ⒉下列去括号正确的是【 】A .a 2-(2a -b +c )=a 2-2a -b +cB .3x -[5x -(2x -1)]=3x -5x -2x +1C .a +(-3x +2y -1)=a -3x +2y -1D .-(2x -y )+(z -1)=-2x -y -z -1 二、耐心填一填:⒈若A =3x 2-xy +2y 2,B =2x 2+6xy +y 2,则A +B =_____________.⒉某公园的成人票价是20元,儿童票价是8元.甲旅行团有a 名成人和b 名儿童;乙旅行团的成人数是甲旅行团的23倍,儿童数是甲旅行团的43;两个旅行团的门票费用总和为元.⒊一个长方形的宽为p cm ,长比宽的3倍多2cm ,这个长方形的周长为cm . 三、用心做一做:⒈三角形的第一边是(a +2b ),第二边比第一边大(b -2),第三边比第二边小5,求三角形的周长?⒉3a 2b -[2ab -2(a 2b +2ab 2)]相信你能完成一、精心选一选化简2-[2(x+3y)-3(x-2y)]的结果是【】A.x+2 B.x-12y+2 C.-5x+12y+2 D.2-5x二、耐心填一填当k=_____时,多项式x2-2(k+2)xy-9y2+6x-7中不含有xy项.三、用心做一做:⒈已知x2+y2=7,xy=-2,求5x2-3xy-4y2-11xy-7x2+2y2的值.⒉⑴如图1-2-1中第①个图形有个点,第②个图形有个点,第③个图形有个点。
七年级数学下册第一章单元测试题(3套)及答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±2二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -,ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
北师大版七年级数学下册第一章《整式的乘除》单元测试卷附答案

第一章《整式的乘除》单元测试卷(最新题型卷共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)0等于()A.1B.0C.-2D.122.(跨学科融合)叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.000 05米.其中,0.000 05用科学记数法表示为()A.5×10-5B.5×10-4C.0.5×10-4D.50×10-33.下列各式计算正确的是()A.a+2a2=3a3B.(a+b)2=a2+ab+b2C.2(a-b)=2a-2bD.2ab·ab=2ab24.若24×22=2m,则m的值为()A.8B.6C.5D.25.计算(8a2b3-2a3b2+ab)÷ab的结果是()A.8ab2-2a2b+1B.8ab2-2a2bC.8a2b2-2a2b+1D.8a2b-2a2b+16.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-67.若(a+2b)2=(a-2b)2+A,则A等于()A.-8abB.8abC.8b2D.4ab8.下面四个整式中,不能表示图中阴影部分面积的是()A.(m+5)(m+3)-3mB.m(m+5)+15C.m2+5(m+3)D.m2+8m第8题图第10题图9.已知M=79a-1,N=a2-119a(a≠1),则M,N的大小关系为()A.M=NB.M<NC.M>ND.不能确定10.(创新题)如图,两个正方形的边长分别为a,b,若a+b=10,ab=18,则阴影部分的面积为()A.21B.22C.23D.24二、填空题(本大题共5小题,每小题3分,共15分)11.比较大小:2-2π0.(选填“>”“<”或“=”)12.计算:2a2(3a2-5b)=.13.若x2-(m+1)x+1是完全平方式,则m的值为.14.若a+3b-2=0,则3a·27b=.15.(数学文化)我国宋朝数学家杨辉在其著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律:杨辉三角两腰上的数都是1,其余每个数为它的上方(左右)两数之和.例如:(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,中间项系数2等于上方数字1加1,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,中间项系数3等于上方数字1加2,系数分别为1,3,3,1,系数和为8;……则(a+b)4的展开式中系数和为.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.计算:2-1+(π-3.14)0+(-2)-(-1)2 023.。
北师大版数学七年级下册《整式的运算》单元测试卷及答案

第一章 整式及其运算单元测试一、选择题:(每题3分,共36分)1.下列计算正确的是 ( )347.235A x x x ⋅= 3331243.x x x B =⋅ 336.235C x x x += 325.428D x x x ⋅=2.下列多项式乘法,能用平方差公式计算的是 ( ))23)(23(+--⋅x x A ))((a b b a B +---⋅ (32)(23C x x ⋅-+- )32)(23(-+⋅x xD 3.下列各式正确的是 ( )222)(b a b a A +=+⋅ 2(6)(6)6B x x x ⋅+-=-22)()(x y y x C -=-⋅⋅ 42)2(22++=+⋅x x x D4.下列计算正确的是 ( )1052.(10)(5)2A a a a ÷= 2321.n n n B x x x +-+÷=2()()C a b b a a b ⋅-÷-=- 43331.(5)(10)2D a b c a b ac -÷=- )45)(45.(52222y x y x +--运算的结果是 ( )441625.y x A -- 4224164025.y y x x B -+-⋅44.2516C x y - 4224164025.y y x x D +-6.下列计算正确的是 ( );:4)2(:6)3(;872222221055y y y b a b a q p pq x x x =⋅-=-==+④③②①6322242:();b b b p q p q ÷=-=-⑤⑥A. ①②④B.②③⑤C.③④D.④⑥7.运算结果是 42221b a ab +-的是 ( )22.(1)A ab -+ 22)1.(ab B +222.(1)C a b -+ 222.)1.(b a D --8.若)1)(2(-+-x a x 中不含x 的一次项,则 ( )1.=a A 1.-=a B .2C a =-2.=a D9.若,2,32==x x b a 则232)()(x x b a -的值为 ( )A. 0B. 1C. 3D. 510.长方形一边长为,2b a +另一边比它小a b -则长方形面积为 ( )222.b ab a A -+ ab a B +22.2244.b ab a C ++ 22.252D a ab b ++11.下列多项式的积,计算结果为3372234+--+x x x x 的是 ( ))3)(12)(1(2++-⋅x x x A )1)(12)(3(2++-⋅x x x B2(1)(21)(3)C x x x ⋅+-- )3)(1)(12(2---⋅x x x D12.若2449x mx -+是一个完全平方式,则聊的值为 ( ).14 .14 .28 .28A B C D ±± 二、填空题:(每空2分,共46分)23.132y x -的系数是 ,次数是 . 14.若2512m x y --与122+n xy 是同类项,则_______ m n +=⋅ 23522315()()()_______;()()()_____b b b x x x ⋅---=---=⋅23232316.(2)_____.(2)(4)_____xy a b a b -=÷-=⋅2217(2)(2)______;(35)(_______)259.a b a b x y y x ⋅---=+=-221218(2)______,()_______.43x y a b ⋅-=--= 19.计算:4026911162()()_______(710)(410)________33--⨯⨯---=⋅⨯⨯=⋅ 220082009120.200920082010_______;(3)()_______3-⨯=-⨯-=⋅ 2221(32)(32)(94)________(1)(1)________.a b a b a b m n m n ⋅+-+=⋅----=22.已知:3m 2,5,_________m n n a a a +===⋅则23.若,2632-=--x x 则2266_______.x x -+=24.若,0323=--y x 则84_______.x y ÷=25.若,51=-x x 则21()________x x+=⋅ 26.已知:,0136422=++-+y x y x 则_______x y +=⋅27.若x ,y 为正整数,且,3222=⋅y x 则x ,y 的值共有 对.三、解答题:(共68分)28.计算:(每小题4分,共40分);)()1(33a a a s ÷-⋅23235223(2)2()2.(2)x x x x x x -⋅-⋅+(3)(2)(3);a a +-);12(6)2)(4(23-+-x x x x2(5)()(2)(2);x y x x +-+-)3)(3()23)(32)(6(x y y x x y y x +---+2)2(2)4)(2)(7(y x y x y x ++-+.)2()4824)(8(2223223xy y x y x y x -+-+-2211(9)(2)(2)22x y x y -+ 2111(10)(3)(9)(3)242a a a --+ 29.先化简,再求值:(每小题5分,共10分)2(1)(2)(21)5(1)(1)3(1)m m m m m +--+-++其中.1-=m),21(:)](2)())[(2(222y y x y y x y x ---+--+其中.1,21-==y x 30.(5分)解方程:.)2(3223)1)(1(2-+-=--+x x x x x 31.(8分)若,2,52-==-xy y x 求下列各式的值:.)2)(2(;4)1(222y x y x ++32.(5分)菜单位为响应政府发出的全民健身的号召,打算在长宽分别为20米和11米的长方形大厅内修建一长方形健身房ABCD,该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为口元,平方米,比新建(含装修)墙壁的费用每平方米少50元,设健身房的高为3米,一面旧墙壁AB的长为x米,BC为)5x米,则修建健身房墙壁的总投入(为多少元?(用含口、x的代数式表示)参考答案一、DBCDB DACBD CD二、13.32- ,3 14.5 15.10b ,7x 16.3648,2x y a --17.224,53a b y x -+- 18.222211444,1639x xy y a ab b -+++ 19.168,2.810-⨯ 20. 12008,3-- 21.44228116,21a b n m m --+- 22.4023.14 24.825.29 26.略 27.4三、28.(1)835a a a =-÷=-(2)6282688882().282284x x x x x x x x x =--+=--+=(3)222366a a a a a =+--=--(4)333233228(6126)861262126x x x x x x x x x x x =-+-=--+=-+(5)22222424x xy y x xy y =++-+=++(6)222222943391278y x xy x y xy y x xy =---++=-+(7)222222828836x xy y x xy y x xy =--+++=+(8)32232222(2484)(4)621x y x y x y x y x y =-+-÷=-+-(9)=2222224224111[(2)()](4)1622416x y x y x x y y -=-=-+ (10)=22224211191(9)(9)(9)81444216a a a a a --=-=-+ 29. (1)2222325(1)3(21)96;1m m m m m m m =+---+++=+=-当时;原式=-3(2)=211(42)()84;22xy y y x y -÷-=-+当x=,y=-1时;原式=-8 30.222222321442366924624246692244246 13x=26x=2x x x x x x x x x x x x x x x ---=+-+--=-+-+---+=-++31.22222222(1)(2)444()425,2425817x y x xy y x xy x y xyx y xy x y -=-+∴+=++-==-∴+=-= 222222(2)(2)44417,2(2)1789x y x xy y x y xy x y +=+++==∴+=-= 且32.[3(5)3][3(5)3](50)12303007503(25)(250)()x x a x x a ax a x x a +-⨯⨯++-⨯⨯+=-+-=-+元。
七年级数学下册单元测试全套及答案

最新北师大版七年级数学下册单元测试全套及答案北师大版七年级下册 第一章 整式的运算单元测试题一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是( )A. 8421262x x x =⋅B. ()()m m m y y y =÷34C. ()222y x y x +=+D. 3422=-a a3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是( ) A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=- 6. 若()682b a b a n m =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 327.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x - , ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322b a 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。
北师大版七年级数学下册《整式的乘除》测试卷及答案

北师大版七年级数学下册第 1 章《整式的乘除》单元测试试卷及答案(1)一、选择题1.P M2.5 是指大气中直径小于或等于 0.000 002 5 m 的颗粒物,将 0.000 002 5 用科学记数法表 示为( ).A .0.25×10-5B .0.25×10-6C .2.5×10-5D .2.5×10-62.李老师做了个长方形教具,其中一边长为 2a +b ,另一边长为 a -b ,则该长方形的面积为).( A .6a +b B .2a -ab -b C .3a D .10a -b2 2 3.计算:3 的结果是( ). -2 1 9 1 9A .-9B .-6C .- D. 4.计算(-a -b) 等于( ).2 A .a +b B .a -b C .a +2ab +b D .a -2ab +b2 2 22 2 2 2 2 5.下列多项式的乘法中可用平方差公式计算的是( A .(1+x)(x +1) B .(2 a +b)(b -2 a) ). C .(-a +b)(a -b) D .(x -y)(y +x) -1 -12 2 6.一个长方体的长、宽、高分别为 3a -4,2a ,a ,则它的体积等于( A .3a -4a B .a C .6a -8a D .6a -8a).3 2 2 3 2 3 7.计算 x -(x -5)(x +1)的结果,正确的是( ).2 A .4x +5 B .x -4x -5 C .-4x -5 D .x -4x +52 2 8.已知 x +y =7,xy =-8,下列各式计算结果正确的是( ).A .(x -y) =91B .x +y =65C .x +y =511D .(x -y) =5672 2 2 2 2 2 9.下列各式的计算中不正确的个数是( ①10 ÷10 =10 ②10 ×(2×7) =1 000 ).0 -1 -40 ③(-0.1) ÷(-2 ) =8 ④(-10) ÷(-10 ) =-1 0 -1 -3 -4 -1 -4 A .4 B .3 C .2 D .1二、填空题10.用小数表示 1.21×10 是________.-4 11.自编一个两个单项式相除的题目,使所得的结果为- 6a ,你所编写的题目为 3 ________________________________________________________________________.12.已知(9 ) =3 ,则 n =__________.n 2 8 13.长为 3m +2n ,宽为 5m -n 的长方形的面积为__________.14.用小数表示 3.14×10 =__________. -415.要使(ax -3x)(x -2x -1)的展开式中不含 x 项,则 a =__________.2 23 16.100 ·1 000的计算结果是__________. m n 三、解答题17.计算:112 -113×111. 21 218.先化简,再求值:(a b -2ab -b )÷b -(a +b)(a -b),其中 a = ,b =-1. 2 2 3 19.先化简,再求值:(3x -y) -(2x +y) -5x(x -y),其中 x =0.2,y =0.01.2 2 20.如图,一块半圆形钢板,从中挖去直径分别为x ,y 的两个半圆:(1)求剩下钢板的面积;(2)若当x=4,y=2时,剩下钢板的面积是多少?(π取3.14)21.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:(1)把这个数加上2后平方;(2)然后再减去4;(3)再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?22.八年级学生小明是一个喜欢思考问题而又乐于助人的好学生,一天邻居家读小学的小李,请他帮忙检查作业:7×9=63;8×8=64;11×13=143;12×12=144;24×26=624;25×25=625.小明仔细检查后,夸小李聪明,作业全对了!小明还从这几题中发现了一个规律,你知道小明发现了什么规律吗?请用字母表示这一规律,并说明它的正确性.参考答案1.D 点拨:0.000 002 5=2.5×10 ,故选 D. -62.B 点拨:根据长方形的面积=长×宽可列出代数式为:长方形的面积=(2a +b )· (a -b), 然后计算整理化为最简形式即可.1 1 3 92 3.D 点拨:3 = = . -2 4.C 点拨:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.5.B 点拨:本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一 项互为相反数,并且相同的项和互为相反数的项必须同时具有.6.C 点拨:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.根据 长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.7.A 点拨:x -(x -5)(x +1)=x -(x -4x -5)=4x +5.2 2 2 8.B 点拨:(x -y) =(x +y) -4xy =7 -4×(-8)=81;x +y =(x +y) -2xy =7 -2×(-8)2 2 2 2 2 2 2 =65.9.B 点拨:根据零指数幂、负指数幂和有理数的乘方等知识分别进行计算,然后根据实数 的运算法则求得计算结果.10.0.000 121 点拨:根据负指数幂的意义把 10 的负指数幂转化为小数即可. 1.21×10 = -41.21×0.000 1=0.000 121.11.答案不唯一,如-12a ÷2a5 2 12.2 点拨:先把 9化为 3 ,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得 n 2n 出 4n =8,从而求得 n 的值.13.15m +7mn -2n 点拨:本题考查了整式的乘法运算,涉及长方形的面积公式,正确列出 2 2 代数式是解答本题的关键.14.0.000 314 15.-3 点拨:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项2时,应让这一项的系数为 0,同时要注意各项符号的处理.16.102m +3n 点拨:100 ·1 000 =(10 ) · (10 ) =10 ·10 =102m +3n . m n 2 m 3 n 2m 3n 17.解:原式=112 -(112+1)(112-1)2 =112 -(112 -1)2 2 =112 -112 +12 2 =1.18.解:(a b -2ab -b )÷b -(a +b)(a -b)2 23 =a -2ab -b -(a -b )2 2 2 2 =a -2ab -b -a +b2 2 2 2 =-2ab .1 当 a = ,b =-1 时, 21 2原式=-2× ×(-1)=1. 点拨:本题考查多项式除单项式,平方差公式,运算时要注意符号.19.解:原式=9x -6xy +y -(4x +4xy +y )-5x +5xy =-5xy .2 2 2 2 2 当 x =0.2,y =0.01 时,原式=-5×0.2×0.01=-0.01.1 + + 1 x y2 x 2 y 2 20.解:(1)S = ·π· 剩 - = π . xy 2 4 4 4 π 4答:剩下钢板的面积为 xy . 1 4 (2)当 x =4,y =2 时,S = ×3.14×4×2=6.28. 剩点拨:本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.21.解:设这个数为 x ,据题意得,[(x +2) -4]÷x2=(x+4x+4-4)÷x2=x+4.如果把这个商告诉主持人,主持人只需减去4就知道你所想的数是多少.点拨:本题考查了完全平方公式,多项式除单项式,读懂题目信息并列出算式是解题的关键.22.解:n(n+2)=(n+1)-1.2点拨:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.参考答案1.D 点拨:0.000 002 5=2.5×10 ,故选 D. -62.B 点拨:根据长方形的面积=长×宽可列出代数式为:长方形的面积=(2a +b )· (a -b), 然后计算整理化为最简形式即可.1 1 3 92 3.D 点拨:3 = = . -2 4.C 点拨:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.5.B 点拨:本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一 项互为相反数,并且相同的项和互为相反数的项必须同时具有.6.C 点拨:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.根据 长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.7.A 点拨:x -(x -5)(x +1)=x -(x -4x -5)=4x +5.2 2 2 8.B 点拨:(x -y) =(x +y) -4xy =7 -4×(-8)=81;x +y =(x +y) -2xy =7 -2×(-8)2 2 2 2 2 2 2 =65.9.B 点拨:根据零指数幂、负指数幂和有理数的乘方等知识分别进行计算,然后根据实数 的运算法则求得计算结果.10.0.000 121 点拨:根据负指数幂的意义把 10 的负指数幂转化为小数即可. 1.21×10 = -41.21×0.000 1=0.000 121.11.答案不唯一,如-12a ÷2a5 2 12.2 点拨:先把 9化为 3 ,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得 n 2n 出 4n =8,从而求得 n 的值.13.15m +7mn -2n 点拨:本题考查了整式的乘法运算,涉及长方形的面积公式,正确列出 2 2 代数式是解答本题的关键.14.0.000 314 15.-3 点拨:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项2时,应让这一项的系数为 0,同时要注意各项符号的处理.16.102m +3n 点拨:100 ·1 000 =(10 ) · (10 ) =10 ·10 =102m +3n . m n 2 m 3 n 2m 3n 17.解:原式=112 -(112+1)(112-1)2 =112 -(112 -1)2 2 =112 -112 +12 2 =1.18.解:(a b -2ab -b )÷b -(a +b)(a -b)2 23 =a -2ab -b -(a -b )2 2 2 2 =a -2ab -b -a +b2 2 2 2 =-2ab .1 当 a = ,b =-1 时, 21 2原式=-2× ×(-1)=1. 点拨:本题考查多项式除单项式,平方差公式,运算时要注意符号.19.解:原式=9x -6xy +y -(4x +4xy +y )-5x +5xy =-5xy .2 2 2 2 2 当 x =0.2,y =0.01 时,原式=-5×0.2×0.01=-0.01.1 + + 1 x y2 x 2 y 2 20.解:(1)S = ·π· 剩 - = π . xy 2 4 4 4 π 4答:剩下钢板的面积为 xy . 1 4 (2)当 x =4,y =2 时,S = ×3.14×4×2=6.28. 剩点拨:本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.21.解:设这个数为 x ,据题意得,[(x +2) -4]÷x2=(x+4x+4-4)÷x2=x+4.如果把这个商告诉主持人,主持人只需减去4就知道你所想的数是多少.点拨:本题考查了完全平方公式,多项式除单项式,读懂题目信息并列出算式是解题的关键.22.解:n(n+2)=(n+1)-1.2点拨:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.参考答案1.D 点拨:0.000 002 5=2.5×10 ,故选 D. -62.B 点拨:根据长方形的面积=长×宽可列出代数式为:长方形的面积=(2a +b )· (a -b), 然后计算整理化为最简形式即可.1 1 3 92 3.D 点拨:3 = = . -2 4.C 点拨:本题主要考查我们对完全平方公式的理解能力,如何确定用哪一个公式,主要看两数的符号是相同还是相反.5.B 点拨:本题主要考查了平方差公式的结构.注意两个二项式中有一项完全相同,另一 项互为相反数,并且相同的项和互为相反数的项必须同时具有.6.C 点拨:本题考查了多项式乘单项式的运算法则,要熟练掌握长方体的体积公式.根据 长方体的体积=长×宽×高,列出算式,再根据单项式乘多项式的运算法则计算即可.7.A 点拨:x -(x -5)(x +1)=x -(x -4x -5)=4x +5.2 2 2 8.B 点拨:(x -y) =(x +y) -4xy =7 -4×(-8)=81;x +y =(x +y) -2xy =7 -2×(-8)2 2 2 2 2 2 2 =65.9.B 点拨:根据零指数幂、负指数幂和有理数的乘方等知识分别进行计算,然后根据实数 的运算法则求得计算结果.10.0.000 121 点拨:根据负指数幂的意义把 10 的负指数幂转化为小数即可. 1.21×10 = -41.21×0.000 1=0.000 121.11.答案不唯一,如-12a ÷2a5 2 12.2 点拨:先把 9化为 3 ,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得 n 2n 出 4n =8,从而求得 n 的值.13.15m +7mn -2n 点拨:本题考查了整式的乘法运算,涉及长方形的面积公式,正确列出 2 2 代数式是解答本题的关键.14.0.000 314 15.-3 点拨:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项2时,应让这一项的系数为 0,同时要注意各项符号的处理.16.102m +3n 点拨:100 ·1 000 =(10 ) · (10 ) =10 ·10 =102m +3n . m n 2 m 3 n 2m 3n 17.解:原式=112 -(112+1)(112-1)2 =112 -(112 -1)2 2 =112 -112 +12 2 =1.18.解:(a b -2ab -b )÷b -(a +b)(a -b)2 23 =a -2ab -b -(a -b )2 2 2 2 =a -2ab -b -a +b2 2 2 2 =-2ab .1 当 a = ,b =-1 时, 21 2原式=-2× ×(-1)=1. 点拨:本题考查多项式除单项式,平方差公式,运算时要注意符号.19.解:原式=9x -6xy +y -(4x +4xy +y )-5x +5xy =-5xy .2 2 2 2 2 当 x =0.2,y =0.01 时,原式=-5×0.2×0.01=-0.01.1 + + 1 x y2 x 2 y 2 20.解:(1)S = ·π· 剩 - = π . xy 2 4 4 4 π 4答:剩下钢板的面积为 xy . 1 4 (2)当 x =4,y =2 时,S = ×3.14×4×2=6.28. 剩点拨:本题考查了完全平方公式,(1)中注意大圆的半径需从图上得出,注意这里都是半圆.21.解:设这个数为 x ,据题意得,[(x +2) -4]÷x2=(x+4x+4-4)÷x2=x+4.如果把这个商告诉主持人,主持人只需减去4就知道你所想的数是多少.点拨:本题考查了完全平方公式,多项式除单项式,读懂题目信息并列出算式是解题的关键.22.解:n(n+2)=(n+1)-1.2点拨:解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.。
北师大版七年级下第一章《整式的运算》单元测试题(3)

七年级(下)数学《整式的运算》测试卷(满分120分,考试时间90分钟)班级 ____________ 姓名 _____________ 考号 _______一、选择题(3分×10=30分,请把你的正确答案填入括号中)1.代数式:πab x x x abc ,213,0,52,17,52--+-中,单项式共有( )个. A .1个 B .2个 C .3个 D .4个2.单项式221ab -的系数和次数分别为 A 、 -21,2 B 、 -21,3 C 、21,2 D 、 21,3 3.林老师做了个长方形教具,其中一边长为2a b +,另一边为a b -,则该长方形周长为A .6a b +B .6aC .3aD .10a b -4.下列运算正确的是A .a 3÷a 2=aB .a 3+a 2=a 5C .(a 3)2=a 5D .a 2·a 3=a 65.两整式相乘的结果为122--a a 的是A 、()()43-+a aB 、()()43+-a aC 、()()26-+a aD 、()()26+-a a6.下列式子可用平方差公式计算的是:A .()()a b b a --B .(1)(1)x x -+-C .()()a b a b ---+D .(1)(1)x x --+7.下列各式中,相等关系一定成立的是A .22)()(x y y x -=-B .6)6)(6(2-=-+x x xC .222)(y x y x +=+D .6)2)(3(2-=-+x x x8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+A .23bB .26bC .29bD .236b9.在式子①2)12(--y ②)12)(12(+---y y ③)12)(12(++-y y ④2)12(-y ⑤2)12(+y 中相等的是( ) A .①④ B .②③ C .①⑤ D .②④10.形如222a ab b ++和222a ab b -+的式子称为完全平方式,若812++ax x 是一个完全平方式,则a 等于A .9B .18C .9±D .18±二、填空题(2分×11=22分)11.计算:① =-32)2(a ; ②=÷)5()10(3234bc a c b a ;③=-)3(22y x x x ; ④542_______x x x -⋅=⑤=⨯⋅⨯)105()104(45 ;⑥208)21(-⨯= 。
七年级数学下册各单元测试试卷含答案

北师大版七年级数学下册第一章 整式的乘除 单元测试卷(一)班级 姓名 学号 得分一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( ) A. 3 B. 4 C. 5 D. 62.下列计算正确的是 ( ) A. 8421262x x x =⋅ B. ()()m mm y y y =÷34C. ()222y x y x +=+ D. 3422=-a a3.计算()()b a b a +-+的结果是 ( ) A. 22a b - B. 22b a - C. 222b ab a +-- D. 222b ab a ++- 4. 1532+-a a 与4322---a a 的和为 ( ) A.3252--a a B. 382--a a C. 532---a a D. 582+-a a 5.下列结果正确的是 ( )A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-6. 若()682b a b a nm =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 32 7.要使式子22259y x +成为一个完全平方式,则需加上 ( ) A. xy 15 B. xy 15± C. xy 30 D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。
2.单项式z y x 425-的系数是 ,次数是 。
3.多项式5134+-ab ab 有 项,它们分别是 。
4. ⑴ =⋅52x x 。
⑵ ()=43y 。
⑶ ()=322ba 。
⑷ ()=-425y x 。
⑸ =÷39a a 。
⑹=⨯⨯-024510 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整式及其运算
单元测试
一、选择题:(每题3分,共36分)
1.下列计算正确的是 ( )
347.235A x x x ⋅= 3331243.x x x B =⋅ 336.235C x x x += 325.428D x x x ⋅=
2.下列多项式乘法,能用平方差公式计算的是 ( )
)23)(23(+--⋅x x A ))((a b b a B +---⋅ (32)(23)C x x ⋅-+- )32)(23(-+⋅x x D
3.下列各式正确的是 ( )
222)(b a b a A +=+⋅ 2(6)(6)6B x x x ⋅+-=-
22)()(x y y x C -=-⋅⋅ 42)2(22++=+⋅x x x D
4.下列计算正确的是 ( )
1052.(10)(5)2A a a a ÷= 2321.n n n B x x x +-+÷=
2()()C a b b a a b ⋅-÷-=- 43331.(5)(10)2
D a b c a b ac -÷=- )45)(45.(52222y x y x +--运算的结果是 ( )
441625.y x A -- 4224164025.y y x x B -+-⋅
44.2516C x y - 4224164025.y y x x D +-
6.下列计算正确的是 ( )
;
:4)2(:6)3(;872222221055y y y b a b a q p pq x x x =⋅-=-==+④③②①6322242:();b b b p q p q ÷=-=-⑤⑥
A. ①②④
B.②③⑤
C.③④
D.④⑥
7.运算结果是 42221b a ab +-的是 ( )
22.(1)A ab -+ 22)1.(ab B +
222.(1)C a b -+ 222.)1.(b a D --
8.若)1)(2(-+-x a x 中不含x 的一次项,则 ( )
1.=a A 1.-=a B .2C a =-
2.=a D
9.若,2,32==x x b a 则232)()(x x b a -的值为 ( )
A. 0
B. 1
C. 3
D. 5
10.长方形一边长为,2b a +另一边比它小a b -则长方形面积为 ( )
222.b ab a A -+ ab a B +22.
2244.b ab a C ++ 22.252D a ab b ++
11.下列多项式的积,计算结果为3372234+--+x x x x 的是 ( )
)3)(12)(1(2++-⋅x x x A )1)(12)(3(2++-⋅x x x B
2(1)(21)(3)C x x x ⋅+-- )3)(1)(12(2---⋅x x x D
12.若2449x mx -+是一个完全平方式,则聊的值为 ( )
.14 .14 .28 .28A B C D ±±
二、填空题:(每空2分,共46分)
2
3.132y x -的系数是 ,次数是 . 14.若2512
m x y --与122+n xy 是同类项,则_______ m n +=⋅ 23522315()()()_______;()()()_____b b b x x x ⋅---=---=⋅
23232316.(2)_____.(2)(4)_____xy a b a b -=÷-=⋅
2217(2)(2)______;(35)(_______)259.a b a b x y y x ⋅---=+=-
221218(2)______,()_______.43
x y a b ⋅-=--= 19.计算:4026911162()()_______(710)(410)________33
--⨯⨯---=⋅⨯⨯=⋅ 220082009120.200920082010_______;(3)()_______3
-⨯=-⨯-=⋅ 2221(32)(32)(94)________(1)(1)________.a b a b a b m n m n ⋅+-+=⋅----=
22.已知:3m 2,5,_________m n n a a a +===⋅则
23.若,2632-=--x x 则2266_______.x x -+=
24.若,0323=--y x 则84_______.x y ÷=
25.若,51=-x x 则21()________x x
+=⋅ 26.已知:,0136422=++-+y x y x 则_______x y +=⋅
27.若x ,y 为正整数,且,3222=⋅y x 则x ,y 的值共有 对.
三、解答题:(共68分)
28.计算:(每小题4分,共40分)
;)()1(33a a a s ÷-⋅
23235223(2)2()2.(2)x x x x x x -⋅-⋅+
(3)(2)(3);a a +-
);12(6)2)(4(23-+-x x x x
2(5)()(2)(2);x y x x +-+-
)3)(3()23)(32)(6(x y y x x y y x +---+
2)2(2)4)(2)(7(y x y x y x ++-+
.)2()4824)(8(2223223xy y x y x y x -+-+-
2211(9)(2)(2)22
x y x y -+ 2111(10)(3)(9)(3)242
a a a --+ 29.先化简,再求值:(每小题5分,共10分)
2(1)(2)(21)5(1)(1)3(1)m m m m m +--+-++其中.1-=m
),21(:)](2)())[(2(222y y x y y x y x -
--+--+其中.1,2
1-==y x 30.(5分)解方程:.)2(3223)1)(1(2-+-=--+x x x x x 31.(8分)若,2,52-==-xy y x 求下列各式的值:.)2)(2(;4)1(222y x y x ++
32.(5分)菜单位为响应政府发出的全民健身的号召,打算在长宽分别为20米和11米的
长方形大厅内修建一长方形健身房ABCD,该健身房的四面
墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为口元,平方米,比新建(含装修)墙壁的费用每平方米少50元,设健身房的高为3米,一面旧墙壁AB
的长为x米,BC为)5
x米,则修建健身房墙壁的总投入
(
为多少元?(用含口、x的代数式表示)
参考答案
一、DBCDB DACBD CD
二、13.32
- ,3 14.5 15.10b ,7x 16.3648,2x y a --
17.224,53a b y x -+- 18.222211444,1639
x xy y a ab b -+++ 19.168,2.810-⨯ 20. 12008,3
-- 21.44228116,21a b n m m --+- 22.40
23.14 24.8
25.29 26.略 27.4
三、28.(1)835a a a =-÷=-
(2)6282688882().282284x x x x x x x x x =--+=--+=
(3)222366a a a a a =+--=--
(4)3
33233228(6126)861262126x x x x x x x x x x x =-+-=--+=-+
(5)22222424x xy y x xy y =++-+=++
(6)222222943391278y x xy x y xy y x xy =---++=-+
(7)222222828836x xy y x xy y x xy =--+++=+
(8)32232222(2484)(4)621x y x y x y x y x y =-+-÷=-+-
(9)=2222224224111[(2)()](4)1622416
x y x y x x y y -=-=-+ (10)=22224211191(9)(9)(9)81444216a a a a a --=-=-+ 29. (1)2222325(1)3(21)96;1m m m m m m m =+---+++=+=-当时;原式=-3
(2)=211(42)()84;22
xy y y x y -÷-
=-+当x=,y=-1时;原式=-8 30.
2222223214423
6692462424
6692244246 13x=26
x=2
x x x x x x x x x x x x x x x ---=+-+--=-+-+---+=-++
31.
222
22222(1)(2)444()425,2
425817
x y x xy y x xy x y xy
x y xy x y -=-+∴+=++-==-∴+=-= 222
222(2)(2)44417,2
(2)1789x y x xy y x y xy x y +=+++==∴+=-=且
32.
[3(5)3][3(5)3](50)12303007503(25)(250)()x x a x x a ax a x x a +-⨯⨯++-⨯⨯+=-+-=-+元。