2019~2020学年湖北省武汉市汉南区职教中心高一上学期期中考试数学试题(答案不全)

合集下载

2019-2020学年高一数学上学期期中试题(含解析)_13

2019-2020学年高一数学上学期期中试题(含解析)_13

2019-2020学年高一数学上学期期中试题(含解析)考试时间:120分钟注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用铅笔在答题卡上的相应位置填涂考生号。

2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷(共60分)一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合,则=A. B. C. D.【答案】C【解析】试题分析:由补集的概念,得,故选C.【考点】集合的补集运算【名师点睛】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.2.函数的定义域为()A. [,3)∪(3,+∞)B. (-∞,3)∪(3,+∞)C. [,+∞)D. (3,+∞)【答案】A【解析】【分析】根据幂函数的定义域与分母不为零列不等式组求解即可.【详解】因为函数,解得且;函数的定义域为, 故选A.【点睛】定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数的定义域为,则函数的定义域由不等式求出.3. 下列函数中,既是奇函数又是增函数的为()A. B. C. D.【答案】D【解析】A是增函数,不是奇函数;B和C都不是定义域内的增函数,排除,只有D正确,因此选D.点评:该题主要考察函数的奇偶性和单调性,理解和掌握基本函数的性质是关键.4.设函数=则 ( )A. B. C. 1 D. 4【答案】D【解析】【分析】根据函数的解析式得到=,.【详解】函数=,=,.故答案为:D.【点睛】这个题目考查了分段函数的解析式和性质,求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值;求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.5.,,的大小关系是()A. B. C. D.【答案】D【解析】【分析】将、、均化为的指数幂,然后利用指数函数的单调性可得出、、的大小关系.【详解】,,,且指数函数在上是增函数,则,因此,.故选:D.【点睛】本题考查指数幂的大小比较,考查指数函数单调性的应用,解题的关键就是将三个数化为同一底数的指数幂,考查分析问题和解决问题的能力,属于中等题.6.函数的图象是()A. B.C. D.【答案】C【解析】【分析】根据函数的解析式,化简为,再根据图象的变换,即可得到答案.【详解】由题意,函数可化简得:则可将反比例函数的图象由左平移一个单位,再向上平移一个单位,即可得到函数的图象,答案为选项C.【点睛】本题主要考查了函数图象的识别与图象的变换,其中解答中正确化简函数的解析式,合理利用函数的图象变换是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7.已知函数在区间上单调递减,则取值的集合为A. B. C. D.【答案】C【解析】分析:首先求出函数的对称轴,以及函数的单调递减区间,根据题意可知是函数单调递减区间的子集.详解:函数的对称轴是,因为是开口向下的抛物线,所以单调递减区间是,若函数在区间上单调递减,所以,即,解得,故选C.点睛:本题考查了利用函数的单调性求参数的取值范围,意在考查学生转化与化归的能力,属于基础题型.8.已知函数,且,则的值为A. -2017B. -3C. -1D. 3【答案】D【解析】【分析】设函数=g+2,其中g是奇函数,= -g +2,= g+2,故g,g是奇函数,故g,代入求值即可.【详解】函数=g+2,其中g是奇函数,= g+2= -g+2= g+2,故g g是奇函数,故g,故= g+2= 3.故答案:D.【点睛】这个题目考查了函数的奇偶性,奇偶函数常见的性质有:奇函数关于原点中心对称,在对称点处分别取得最大值和最小值;偶函数关于y轴对称,在对称点处的函数值相等,中经常利用函数的这些性质,求得最值.9.已知是定义在上的偶函数,那么的最大值是()A. B. C. D.【答案】C【解析】【分析】根据函数为偶函数,得出定义域关于原点对称,可求得的值,再由二次函数的对称轴为轴得出,然后由二次函数的单调性可得出函数的最大值.【详解】由于函数是定义在上的偶函数,则定义域关于原点对称,所以,,解得,,对称轴为直线,得,,定义域为.由二次函数的单调性可知,函数在上单调递减,在上单调递增.由于,因此,函数的最大值为.故选:C.【点睛】本题考查利用函数的奇偶性求参数,同时也考查了二次函数的最值问题,在考查函数的奇偶性时,需要注意定义域关于原点对称这一条件的应用,考查分析问题和解决问题的能力,属于中等题.10.函数是上的减函数,则的取值范围是( )A. (0,1)B.C.D.【答案】B【解析】【分析】当x<0时,函数f(x)是减函数,当x≥0时,若函数f(x)=ax是减函数,则0<a<1.要使函数f(x)在(﹣∞,+∞)上是减函数,还需满足0+3﹣3a≥a0,从而求得a的取值范围.【详解】当x<0时,函数f(x)=﹣x+3﹣3a是减函数,当x≥0时,若函数f(x)=ax是减函数,则0<a<1.要使函数f(x)在(﹣∞,+∞)上是减函数,需满足0+3﹣3a≥a0,解得a≤,故有即0<a≤.故答案为:B.【点睛】本题主要考查指数函数的单调性的应用,体现了分类讨论的数学思想,属于中档题.考查了分段函数已知单调性求参的问题,首先保证每一段上的单调性,之后再保证整个定义域上的单调性.11.已知偶函数在区间上单调递增,则满足的的取值范围是()A. B. C. D.【答案】D【解析】【分析】由偶函数性质可将不等式化为,由函数在区间上的单调性得出,解出该不等式即可.【详解】由于函数为偶函数,则,由可得,函数在区间上单调递增,则有,即,解得,因此,实数的取值范围是.故选:D.【点睛】本题考查利用奇偶性与单调性解函数不等式,在涉及到偶函数的问题时,可充分利用性质来将不等式进行等价转化,考查运算求解能力,属于中等题.12.已知是定义域为的奇函数,满足.若,则()A. B. C. D.【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.第Ⅱ卷(共90分)二、填空题(每题5分,共4题20分)13.不论为何值,函数的图象一定经过点P,则点P的坐标为___________.【答案】【解析】【分析】函数过的定点,即需要指数的次数等于0即可.【详解】不论为何值,函数的图象过的定点为:x-2=0,x=2,代入解析式求得y=2,故点P(2,2).故答案为:.【点睛】本题考查了指数函数型函数所过的定点,即不受底数的影响,此时使得指数部分为0即可,形如的指数型函数过的定点是:.14.设函数,若,则实数 .【答案】-4,2.【解析】【分析】先根据自变量范围分类讨论,再根据对应解析式列方程,解出结果.【详解】当时,,所以;当时,,所以故 .【点睛】本题考查根据函数值求自变量,考查分类讨论思想以及基本分析求解能力.15.已知,则__________.【答案】【解析】【分析】先利用换元法求出函数的解析式,然后可计算出的值.【详解】令,得,,,因此,.故答案为:.【点睛】本题考查函数解析式的求解,同时也考查了函数值的计算,解题的关键就是利用换元法求出函数的解析式,考查运算求解能力,属于中等题.16.设a>0,且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,则实数a的值为________.【答案】或3【解析】【分析】首先换元,设,函数变为,再分和两种情况讨论的范围,根据的范围求二次函数的最大值,求得实数的范围.【详解】令t=ax(a>0,且a≠1),则原函数化y=f(t)=(t+1)2-2(t>0).①当0<a<1,x∈[-1,1]时,t=ax∈,此时f(t)在上为增函数.所以f(t)max=f=-2=14.所以=16,解得a=- (舍去)或a=.②当a>1时,x∈[-1,1],t=ax∈,此时f(t)在上是增函数.所以f(t)max=f(a)=(a+1)2-2=14,解得a=3或a=-5(舍去).综上得a=或3.【点睛】本题考查了二次型函数求值域,考查了分类讨论的思想,属于中档题型.三、解答题:解答题应写出文字说明、证明过程或演算步骤。

2019-2020学年高一数学上学期期中试题(含解析)_33

2019-2020学年高一数学上学期期中试题(含解析)_33

2019-2020学年高一数学上学期期中试题(含解析)I卷(共17题,满分100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确案填涂在答题纸上的相应位置.)1.设集合,则()A. B. C. D.【答案】B【解析】【分析】根据表示元素的范围以及表示元素是整数先分别用列举法写出集合,然后再计算的结果.【详解】因为,,所以.故选:B.【点睛】本题考查集合集合的表示方法以及集合的交集运算,难度较易.2.下列各组函数是同一函数的是()A. 与B. 与C. 与D. 与【答案】D【解析】【分析】选项A、C中分析每组函数的定义域是否相同;选项B中分析分析函数的值域;选项D中分析函数的定义域和值域.【详解】的定义域为{x|x≠0},的定义域为R,故A选项错误;值域为,值域为R,故B选项错误;与的定义域为{x|x≠0},定义域为R,故C选项错误;与的定义域和值域均为R,故D选项正确.故选:D.【点睛】判断两个函数是否为同一函数可以先从定义域进行分析,定义域不同,则不是同一函数;定义域相同则再分析对应关系,若对应关系也相同则为同一函数,若对应关系不相同则不是同一函数.3.下列函数中,在区间是增函数的是()A. B. C. D.【答案】C【解析】【分析】直接判断一次函数、二次函数、反比例函数、幂函数在区间上的单调性即可得到结果.【详解】、、在区间是减函数,在区间是增函数.故选:C.【点睛】一次函数的单调性判断:,当时在上递增,当时在上递减;二次函数的单调性判断:,当时在上递减,在上递增;当时在上递增,在上递减.4.命题“对任意x∈R,都有x2≥0”的否定为()A. 对任意x∈R,都有x2<0B. 不存在x∈R,都有x2<0C. 存在x0∈R,使得x02≥0D. 存在x0∈R,使得x02<0【答案】D【解析】因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.【此处有视频,请去附件查看】5.已知函数的图象是两条线段(如图,不含端点),则()A. B. C. D.【答案】B【解析】【分析】根据函数图象先用分段函数形式写出的解析式,然后根据分段函数的解析式计算出的值.【详解】由图象可知:,所以.故选:B.【点睛】本题考查分段函数求值问题,难度较易.对于给定图象的函数,首先可考虑通过图象求出函数的解析式,然后再考虑计算函数值.6.已知是实数,则“且”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】考虑“且”与“”互相推出的成立情况,判断出是何种条件.【详解】根据不等式的性质可知:由“且”可以推出“”,但由“”不能推出“且”,例如:,此时推不出“且”,所以是充分不必要条件.故选:A.【点睛】对于充分、必要条件的判断要分两步考虑:判断充分性是否满足、判断必要性是否满足,再根据判断的结果得到是属于四种条件中的何种条件.7.如图所示,是吴老师散步时所走的离家距离与行走时间之间的函数关系的图象,若用黑点表示吴老师家的位置,则吴老师散步行走的路线可能是()A. B.C. D.【答案】D【解析】【分析】根据图象中有一段为水平线段(表示离家的距离一直不变),逐项判断此时对应选项是否满足.【详解】图象显示有一段时间吴老师离家距离是个定值,所以A、B、C三个选项均不符合,只有D选项符合题意.故选:D.【点睛】本题考查实际问题中对应的函数图象问题,难度较易.8.已知集合为正整数},则的所有非空真子集的个数是()A. 30B. 31C. 510D. 511【解析】分析】根据为正整数可计算出集合中的元素,然后根据非空真子集个数的计算公式(是元素个数)计算出结果.【详解】因为为正整数,所以{−,0,,1,,2,,3,},所以集合中共有9个元素,所以的非空真子集个数为29-2=510,故选:C.【点睛】本题考查用列举法表示集合以及计算集合的非空真子集的个数,难度较易.一个集合中含有个元素则:集合的子集个数为:;真子集、非空子集个数为:;非空真子集个数为:.二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸上的相应位置.)9.方程组的解集用列举法表示为______________.【答案】【解析】首先根据方程组求出其解,然后运用列举法表示出对应的解集即可(以有序数对的形式表示元素).【详解】因为,所以,所以列举法表示解集为:.故答案为:.【点睛】本题考查二元一次方程组解集的列举法表示,难度较易.二元一次方程组的解用列举法表示时,可将元素表示成有序数的形式:.10.已知函数,则方程的解集为__________.【答案】【解析】【分析】分别考虑时的解,求出解时注意判断是否满足定义域的要求.【详解】当时,,所以或(舍);当时,,所以或(舍);所以解集为:.故答案为:.【点睛】本题考查函数与方程的简单应用,难度较易.已知是分段函数,求解方程的解时,可以根据的定义域分段考虑,求出每一段符合要求的解,最后写出解集.11.某公司一年购买某种货物吨,每次购买吨,运费为万元/次,一年的总存储费用为万元.要使一年的总运费与总存储费用之和最小,则的值是__________.【答案】【解析】【详解】总费用为,当且仅当,即时等号成立.故答案为30.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.若函数在区间上不是单调函数,那么实数的取值范围是__________.【答案】(2,5)【解析】【分析】根据二次函数的对称轴以及开口方向与单调性的关系,判断出二次函数的对称轴在区间内,由此计算出的取值范围.【详解】因为函数f(x)=x2-2(a-1)x+2在区间(1,4)上不是单调函数,所以对称轴x=a-1位于区间(1,4)上,即1<a-1<4,所以2<a <5.故答案为:.【点睛】判断二次函数的单调性,可以通过二次函数的开口方向以及对称轴来进行分析:开口向上,在对称轴左侧单调递减,在对称轴右侧单调递增;开口向下,在对称轴左侧单调递增,在对称轴右侧单调递减.13.几位同学在研究函数时给出了下面几个结论:①函数的值域为;②若,则一定有;③在是增函数;④若规定,且对任意正整数都有:,则对任意恒成立.上述结论中正确结论的序号为__________.【答案】①②③④【解析】【分析】考虑时对应函数的值域、单调性、奇偶性即可判断出①②③是否正确,利用归纳推理的思想判断是否正确.【详解】的定义域为,当时且是单调递增的,当时且是单调递增的,当时,又因为,所以是奇函数,由此可判断出①②③正确,因为,,,由归纳推理可得:,所以④正确.故答案为:①②③④.【点睛】本题考查函数的值域、单调性、奇偶性的综合运用,难度较难.(1)分段函数的值域可以采用分段求解,最后再取各段值域的并集;(2)分段函数在判断单调性时,除了要考虑每一段函数单调性,还需要考虑到在分段点处各段函数的函数值的大小关系.14.函数,若存在,使得,则的取值范围是___________.【答案】【解析】【分析】先根据的范围计算出的值域,然后分析的值域,考虑当两个值域的交集不为空集时对应的取值范围即可.【详解】因为,所以当时,因为,所以当时,由题意可知,当时,或,所以或,综上可知:.故答案为:.【点睛】本题考查根据函数值域的关系求解参数范围,难度一般. 当两个函数的值域的交集不为空集时,若从正面分析参数的范围较复杂时,可考虑交集为空集时对应的参数范围,再求其补集即可求得结果.三、解答题(本大题共3小题,每题10分,共30分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)15.设全集是实数集,,.(1)当时,求和;(2)若,求实数的取值范围.【答案】⑴,.⑵.【解析】本试题主要是考查了集合的运算以及二次不等式的求解的综合运用。

2019-2020第一学期高一数学期中考试试卷及答案(定稿20191031)(1)

2019-2020第一学期高一数学期中考试试卷及答案(定稿20191031)(1)

2019~2020学年第一学期期中考试高一数学试题答案一、选择题:本大题共10小题,每小题5分,共50分.请把答案直接填涂在答题卡相应.....位置上.... 1.B ;2.C ;3.D ;4.A ;5.D 6.B ;7.A ;8.C ;9.A ;10.C二、填空题:本大题共6小题,每小题5分,共30分.请把答案直接填写在答题卡相应.....位置上.... 11.0;12.6;13.21x -+;14.15;15.120;16.[]1,0- 三、解答题:本大题共6小题,共70分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知集合A ={x |a ≤x ≤a +2},{}|[1,8]B y y x ==∈-.(1)求集合B ;(2)若A B B =,求实数a 的取值范围.【解】(1)因为[1,8]x ∈-,所以1[0,9]x +∈[0,3],所以[0,3]B =. ……………4分(2)因为A B B =,所以B A ⊆, ……………6分因为A ={x |a ≤x ≤a +2}.所以⎩⎪⎨⎪⎧a ≥0,a +2≤3, ……………8分 所以0≤a ≤1,所以实数a 的取值范围为[]0,1. ……………10分18.(本小题满分12分) 已知函数()121xa f x =++为奇函数. (1)求a 的值,并证明()f x 是R 上的增函数;(2)若关于t 的不等式f (t 2-2t )+f (2t 2-k )<0的解集非空,求实数k 的取值范围.【解】(1)因为)(x f 定义在R 上的奇函数,所以(0)0f =,得2-=a . 此时,221()12121x x x f x -=-=++,2112()()2112x x x xf x f x -----===-++,所以)(x f 是奇函数, 所以2-=a . ……………………2分任取12,x x ∈R ,且21x x <,则1222x x <,因为122112211222()()(1)(1)212122 21212(22) 0,(21)(21)x x x x x x x x f x f x -=---++=-++-=<++所以12()()f x f x <,所以()f x 是R 上的增函数. ……………6分(2)因为)(x f 为奇函数,f (t 2-2t )+f (2t 2-k )<0的解集非空,所以)2()2(22t k f t t f -<-的解集非空, ……………8分又)(x f 在R 上单调递增,所以2222t k t t -<-的解集非空,即0232<--k t t 在R 上有解, ……………10分所以0>∆得31->k . ……………12分 19.(本小题满分12分) 已知函数11()1(0)2f x x x =-+>. (1)若0m n >>时,()()f m f n =,求11m n+的值; (2)若0m n >>时,函数()f x 的定义域与值域均为[],n m ,求所有,m n 值.【解】(1)因为()()f m f n =,所以11111122m n -+=-+ 所以1111m n -=-, ………………………………2分所以1111m n -=-或1111m n-=-, 因为0m n >>,所以112m n+=.………………………………4分(2)101n m <<< 当时,11()2f x x =-在[],n m 上单调递减, 因为函数()f x 的定义域与值域均为[],n m ,所以⎩⎨⎧==n m f m n f )()(,两式相减得1=mn 不合,舍去.…………6分 2 1m n >>当时,31()2f x x=-在[],n m 上单调递增, 因为函数()f x 的定义域与值域均为[],n m ,所以⎩⎨⎧==n n f m m f )()(,无实数解. …………………………8分 3 01n m <<<当时,11, [,1],2()31, (1,],2x n x f x x m x⎧-∈⎪=⎨⎪-∈⎩ 所以函数()f x 在]1,[n 上单调递减,在],1m (上单调递增.…………10分因为函数()f x 的定义域与值域均为[],n m , 所以1(1)2n f ==,13()22m f ==. 综合所述,32m =,12n =. …………………………12分 20.(本小题满分12分)设函数()(01)x x f x t t t t -=->≠,,3(1)2f -=. (1)求t 的值;(2)求函数()442()x x g x kf x -=++,[]0,1x ∈的最大值()h k .【解】(1)因为()(01)x x f x t t t t -=->≠,,3(1)2f -=, 所以13(1)2f t t -=-=,……………2分 所以22320t t --=,所以(2)(21)0t t -+=,因为01t t >≠,,所以2t =. ……………4分(2)2()(22)2(22)2x x x x g x k --=---+,记22x x --3(0)2u u =≤≤, 则222()()22()2g x u u ku u k k ϕ==-+=-+-,……………6分 当34k ≤时,max 3()()2g x u ==1734k -, ……………8分 当34k >时,max ()(0)g x u ==2,……………10分 综上所述:1733,,44()32,.4k k h k k ⎧-⎪=⎨⎪>⎩≤……………12分 21.(本小题满分12分)某市每年春节前后,由于大量的烟花炮竹的燃放,空气污染较为严重.该市环保研究所对近年春节前后每天的空气污染情况调查研究后发现,每天空气污染的指数()f t 随时刻t (时)变化的规律满足表达式()3()lg 1328f t t a a =+-++,[]0,24t ∈,其中a 为空气治理调节参数,且(0,1)a ∈.(1)令()3lg 18x t =+,求x 的取值范围; (2)若规定每天中()f t 的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过5,试求调节参数a 的取值范围.【解】(1)因为()[]3lg 1,0,248x t t =+∈,所以[]0,1x ∈.……………4分 (2)因为42,0,()()3222,1,x a x a f t g x x a a x a a x -++⎧==-++=⎨++<⎩≤≤≤ 所以()g x 在[]0,a 上单调递减,在(],1a 单调递增.……………6分 所以{}{}max 142,1,2()(0),(1)max 42,23123,0,2a a g x g g a a a a ⎧+<⎪==++=⎨⎪+<<⎩≤……8分 所以111,0,22425,235,a a a a ⎧⎧<<<⎪⎪⎨⎨⎪⎪++⎩⎩≤或≤≤得304a <≤. ……………12分 22.(本小题满分12分)已知函数()2(0)m f x x x x=+->的最小值为0. (1)求实数m 的值;(2)函数222()(2)2k g x f x x k x x =-+--有6个不同零点,求实数k 的取值范围. 【解】(1)当0m ≤时,f (x )在()0,+∞上单调递增,所以f (x )没有最小值,不合题意;当0m >时,在()0,+∞上任意上任取12,x x 且12x x <, 则()()121212121212()()()1x x x x m m f x f x x x x x x x --⎛⎫-=--= ⎪⎝⎭ ,当120x x <<时, 1212()()0,()(),f x f x f x f x ->>即()f x 在(是减函数;12x x <<时, 1212()()0,()(),f x f x f x f x -<<即()f x 在)+∞是增函数. ………4分 (未证明单调性直接利用单调性得2分)所以min ()20,1f x f m ====. ……………6分(2)令22(0)x x t t -=≠,则t 在(,0),(1,2)-∞是减函数,在(0,1),(2,)+∞是增函数,则()0g x =有6个不同根,得2(2)(21)0t k t k -+++=有2个不同根, 一根1(0,1)t ∈, 另一根2(1,)t ∈+∞, ……………8分 记2()(2)(21)u t t k t k =-+++,则(0)210(1)12210u k u k k =+>⎧⎨=--++<⎩得102k -<<.……………12分。

湖北省武汉市汉南区职教中心2019_2020学年高一数学上学期期中试题(无答案)

湖北省武汉市汉南区职教中心2019_2020学年高一数学上学期期中试题(无答案)

湖北省武汉市汉南区职教中心2019-2020学年高一数学上学期期中试题(无答案)一.选择题。

(共12小题,每题5分)1.已知集合A ={1,2,3},B ={2,3},则( )A .A =B B .A ∩B =∅C .A BD .B A2. 设全集U =R ,M ={x |x <-2,或x >2},N ={x |1<x <3},则图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}3.下列根式与分数指数幂的互化,正确的是 ( )A .12()(0)x x x -=-≥B 1623(0)x x x =≤C .334410)x x x -⎛⎫=> ⎪⎝⎭ D .1330)x x x -=≠4.已知函数f (x )=1x 在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于() A .12 B .-12 C .1 D .-15.计算:log 225·log 522=( )A .3B .4C .5D .66.设f (x )是定义在R 上的奇函数,且当x ≤0时,f (x )=x 2-12x ,则f (1)=()A .-32B .-12C .32D .127.下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( )A .y =x -2B .y =x -1C .y =x 2D .y =x 13 8.设函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23 D.1399.设甲、乙两地的距离为a (a >0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为( )10.若f (x )满足f (-x )=f (x )在区间(-∞,-1]上是增函数,则( )A .f ⎝ ⎛⎭⎪⎫-32<f (-1)<f (2)B .f (-1)<f ⎝ ⎛⎭⎪⎫-32<f (2) C .f (2)<f (-1)<f ⎝ ⎛⎭⎪⎫-32 D .f (2)<f ⎝ ⎛⎭⎪⎫-32<f (-1) 11.在同一直角坐标系中,函数()()0a f x x x =≥,()log a g x x =-的的图象可能是( )A .B .C .D .12.函数f (x )是定义在R 上的奇函数,下列命题:①f (0)=0;②若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1;③若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数;④若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x .其中正确命题的个数是( )A .1B .2C .3D .4二.填空题(共4小题,每题5分)13.函数f (x )=a x -1+3的图象一定过定点P ,则P 点的坐标是________.14.函数f (x )=-x 2+b 在[-3,-1]上的最大值是4,则它的最小值是__________. 15.设f ⎝ ⎛⎭⎪⎫1x -1=x ,则f (x )=________. 16.已知幂函数()y f x =的图象过点()4,2,则()f x =__________;三.解答题。

2019-2020学年高一数学上学期期中试题(含解析)_20

2019-2020学年高一数学上学期期中试题(含解析)_20

2019-2020学年高一数学上学期期中试题(含解析)(本试卷满分150分考试时间120分钟)一、选择题(共12小题,每小题5分,共60分)1.已知全集,,,那么集合是()A. B. C. D.【答案】D【解析】【分析】分别求解,,,,即可得出答案.【详解】故选:D.【点睛】本题考查了集合的补集,并集和交集运算,掌握集合运算基本知识是解题关键,属于基础题.2.设,且,则 ( )A. B. 10 C. 20 D. 100【答案】A【解析】【分析】将指数式化为对数值,然后利用对数运算公式化简,由此求得的值.【详解】由得,所以,,故选A.【点睛】本小题主要考查指数式和对数式互化,考查对数运算,属于基础题.【此处有视频,请去附件查看】3.若函数满足,则的解析式是( )A. B.C. D. 或【答案】B【解析】【详解】试题分析:设,故选B.考点:换元法求解析式4.已知为偶函数,则在区间上为()A. 增函数B. 增函数C. 先增后减D. 先减后增【答案】C【解析】试题分析:因为为偶函数,所以,即,根据对应系数相等可得,,.函数的图像是开口向下对称轴为轴的抛物线,所以此函数在上单调递增,在上单调递减.故C正确.考点:1偶函数;2二次函数的单调性.【方法点睛】本题重点考查偶函数和二次函数的单调性,难度一般.本题可以根据偶函数的定义由对应系数相等求得的值,也可以根据偶函数图像关于轴对称求得的值,但此方法前须验证时不满足题意.二次函数的单调性由图像的开口方向和对称轴决定,根据这两点即可求得二次函数的单调性.5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p%为()A. 10% B. 12% C. 20% D. 25%【答案】D【解析】【分析】欲求税率,只须求出去年的总收入即可,而总收入由两部分构成:去年的利润,广告费超支.根据税率公式计算即得答案.【详解】由题意得,去年的利润为:(万元)广告费超支:(万元)税率为:故选:D.【点睛】根据题意列出利润,广告费超支和税率是解题关键,考查运算求解能力,解决实际问题的能力,属于基础题.6.已知,则为()A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据自变量范围代入对应解析式,解得结果.【详解】故选:A【点睛】本题考查分段函数求值,考查基本分析求解能力,属基础题.7.若,则等于()A. 0B. 2或0C. 2D. -2或0【答案】B【解析】【分析】根据对数的运算性质,可将原方程化为,通过换元法求解的值,即可得到答案.【详解】,令,则解得:或或故选:B.【点睛】解对数方程时,要将方程化为同底数对数形式,利用真数相等求解方程,这是解本题的关键.8.函数f(x)=log3x-8+2x的零点一定位于区间A. B. C. D.【答案】B【解析】试题分析:根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理9.已知,则方程实数根个数是()A. 2B. 3C. 4D. 与a无关【答案】A【解析】【分析】画出和的函数图像,根据图像即可得出交点个数.【详解】画出和的函数图像由图像可知两函数图像有两个交点,故方程有两个根.故选:A.【点睛】将求解实数根个数转化为求解和的函数交点个数,数形结合是解本题的关键.10.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)( )A. 在[-7,0]上是增函数,且最大值是6B. 在[-7,0]上是减函数,且最大值是6C. 在[-7,0]上是增函数,且最小值是6D. 在[-7,0]上是减函数,且最小值是6【答案】B【解析】【详解】∵函数是偶函数,而且在[0,7]上为增函数,∴函数在[-7,0]上是减函数.又∵函数在x=7和x=-7的左边是增函数,右边是减函数,且f(7)=f(-7),∴最大值为f(7)=f(-7)=6.故选B.11.已知y=f(x)与y=g(x)的图像如下图:则F(x)=f(x)·g(x)的图像可能是下图中的()A. B.C. D.【答案】A【解析】试题分析:在时,沿轴正方向f(x)先为负值后为正值,而g(x)恒为正值,所以F(x)=f(x)·g(x)也必须先为负值,后为正值,可能选项为A,D,同理在时,f(x)先为负值后为正值,而g(x)恒为负值,所以F(x)=f(x)·g (x)也必须先为正值,后为负值,可能选项为A;综上所述,正确选项应该为A.考点:函数的图象.【方法点睛】本题主要考查函数的图象,判断函数的大致图像是否正确,主要从以下几点取判断:1、函数的零点(多适用于某函数零点已知);2、函数正负值所对区间(多适用于两函数相乘);3、函数的单调性区间(适合于两函数求和或者求差).本题为f(x)·g(x)所以选用函数正负值所对区间这一方法.12.若函数f(x)=lg(10x+1)+ax是偶函数,是奇函数,则a+b的值是A. B. 1 C. D. -1【答案】A【解析】【分析】利用函数的奇偶性求得a,b的值,然后计算a+b的值即可.【详解】偶函数满足,即:,解得:,奇函数满足,则,解得:,则.本题选择A选项.【点睛】本题主要考查奇函数的性质,偶函数的性质等知识,意在考查学生的转化能力和计算求解能力.二、填空题(共4小题,每小题5分,共20分)13.若函数的定义域为[0,2],则函数的定义域是_______.【答案】【解析】【详解】由,得0≤x<1,即定义域是[0,1),故答案为.14.函数y=lnx的反函数是__________.【答案】【解析】分析】由函数解得,把与互换即可得出【详解】函数把与互换可得:原函数的反函数为:故答案为:【点睛】在求解反函数时,要先求出原函数的值域,因为原函数的值域是反函数的定义域,这是解本题关键.15.函数的递增区间是__________.【答案】【解析】【分析】令,当,是增函数;当,是减函数.对于在定义域上是减函数, 根据复合函数单调性同增异减,即可得出函数的递增区间.【详解】令当是增函数当是减函数对于在定义域上是减函数根据复合函数单调性同增异减在上是单调递增.故答案为:.【点睛】对于复合函数单调性的判断要掌握同增异减,对函数的内层和外层分别判断,即可得出单调性.16.函数与函数的图像有四个交点,则的取值范围是____________.【答案】【解析】试题分析:函数的图象如下图所示,结合图象可得:当时,函数与的图象有四个交点,所以实数的取值范围是.考点:方程根的存性及根的个数的判定.【方法点晴】本题主要考查了方程根存在性及根的个数的判定,着重考查了一元二次函数的图象与性质,函数与方程关系等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化思想和数形结合思想的应用,本题解答的关键在于作出函数的图象,借助数形结合法求解.属于中档试题.三、解答题(共6小题,共70分)17.(1)计算:(2)解方程【答案】(1) (2)【解析】【分析】(1)利用指数的运算法则即可得出答案.(2)将化简为,即可得出答案.【详解】(1)(2)由方程得,经检验,是原方程的解,故原方程的解为【点睛】本题考查了指数的运算和求解对数方程.解对数方程时,要将方程化为同底数对数形式,利用真数相等求解方程,这是解本题的关键,属于基础题.18.讨论函数(a>0)在的单调性并证明.【答案】答案见解析【解析】【分析】根据定义法证明函数单调性,即在函数的定义域内任取,且,可通过作差法比较和大小,即可得到单调性【详解】在函数的定义域内任取,且则故故在上是单调增函数.【点睛】本题考查了用定义法证明函数单调性.在用定义法证明函数单调时要注意在所给定义内要任取两个自变量,化简表达式, 时单调递增, 时单调递减.19.已知奇函数.(1)求实数的值;(2)做的图象(不必写过程);(3)若函数在区间上单调递增,求的取值范围.【答案】(1)2;(2)图象见解析;(3).【解析】【分析】(1)求出当x<0时,函数的解析式,即可求得m的值;(2)分段作出函数的图象,即可得到y=f(x)的图象;(3)根据图象,利用函数f(x)在区间[﹣1,a﹣2]上单调递增,建立不等式,即可求a的取值范围.【详解】(1)设x<0,则﹣x>0,∴f(﹣x)=﹣x2﹣2x∵函数是奇函数,∴f(x)=﹣f(﹣x)=x2+2x(x<0)∴m=2;(2)函数图象如图所示:(3)要使在区间上单调递增,结合图象可知,﹣1<a﹣2≤1,∴1<a≤3.所以实数a的取值范围是.【考点】利用奇函数的定义求解析式,从而确定m值;利用函数的单调性确定参数a的取值范围.【点睛】利用数形结合的方法是解决本题的关键.20.已知函数的定义域为集合,函数的值域为集合,且,求实数的取值范围.【答案】.【解析】【详解】试题分析:根据函数的定义域和指数函数的性质,得到集合,再利用,即可求解实数的取值范围.试题解析:由题意得由,得即,,,得考点:函数的定义域与值域;集合的运算.21.已知集合.(1)若是空集,求的取值范围;(2)若中只有一个元素,求的值,并把这个元素写出来.【答案】(1)(2)时,;时,【解析】【详解】试题分析:(1)有由是空集,可得方程无解,故,由此解得的取值范围;(2)若中只有一个元素,则或,求出的值,再把的值代入方程,解得的值,即为所求.试题解析:(1)要使为空集,方程应无实根,应满足解得.(2)当时,方程为一次方程,有一解;当,方程为一元二次方程,使集合只有一个元素的条件是,解得,.∴时,,元素为:;时,.元素为:22.若f(x)是定义在(0,+∞)上的增函数,且(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)−f()<2.【答案】(1) (2)【解析】分析】(1)令,即可求得.(2)利用和对,结合单调性即可求出答案.【详解】(1)令得:故:(2)化简为:即又可得:是定义在(0,+∞)上的增函数则:解①得解②得解③:当得:得方程的解为:综上所述,原不等式的解集为 .【点睛】利用函数单调性解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉" ",转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.2019-2020学年高一数学上学期期中试题(含解析)(本试卷满分150分考试时间120分钟)一、选择题(共12小题,每小题5分,共60分)1.已知全集,,,那么集合是()A. B. C. D.【答案】D【解析】【分析】分别求解,,,,即可得出答案.【详解】故选:D.【点睛】本题考查了集合的补集,并集和交集运算,掌握集合运算基本知识是解题关键,属于基础题.2.设,且,则 ( )A. B. 10 C. 20 D. 100【答案】A【解析】【分析】将指数式化为对数值,然后利用对数运算公式化简,由此求得的值.【详解】由得,所以,,故选A.【点睛】本小题主要考查指数式和对数式互化,考查对数运算,属于基础题.【此处有视频,请去附件查看】3.若函数满足,则的解析式是( )A. B.C. D. 或【答案】B【解析】【详解】试题分析:设,故选B.考点:换元法求解析式4.已知为偶函数,则在区间上为()A. 增函数B. 增函数C. 先增后减D. 先减后增【答案】C【解析】试题分析:因为为偶函数,所以,即,根据对应系数相等可得,,.函数的图像是开口向下对称轴为轴的抛物线,所以此函数在上单调递增,在上单调递减.故C正确.考点:1偶函数;2二次函数的单调性.【方法点睛】本题重点考查偶函数和二次函数的单调性,难度一般.本题可以根据偶函数的定义由对应系数相等求得的值,也可以根据偶函数图像关于轴对称求得的值,但此方法前须验证时不满足题意.二次函数的单调性由图像的开口方向和对称轴决定,根据这两点即可求得二次函数的单调性.5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p%为()A. 10%B. 12%C. 20%D. 25%【答案】D【解析】【分析】欲求税率,只须求出去年的总收入即可,而总收入由两部分构成:去年的利润,广告费超支.根据税率公式计算即得答案.【详解】由题意得,去年的利润为:(万元)广告费超支:(万元)税率为:故选:D.【点睛】根据题意列出利润,广告费超支和税率是解题关键,考查运算求解能力,解决实际问题的能力,属于基础题.6.已知,则为()A. 2B. 3C. 4D. 5【答案】A【解析】【分析】根据自变量范围代入对应解析式,解得结果.【详解】故选:A【点睛】本题考查分段函数求值,考查基本分析求解能力,属基础题.7.若,则等于()A. 0B. 2或0C. 2D. -2或0【答案】B【解析】【分析】根据对数的运算性质,可将原方程化为,通过换元法求解的值,即可得到答案.【详解】,令,则解得:或或故选:B.【点睛】解对数方程时,要将方程化为同底数对数形式,利用真数相等求解方程,这是解本题的关键.8.函数f(x)=log3x-8+2x的零点一定位于区间A. B. C. D.【答案】B【解析】试题分析:根据零点存在性定理,因为,所以函数零点在区间(3,4)内,故选择B考点:零点存在性定理9.已知,则方程实数根个数是()A. 2B. 3C. 4D. 与a无关【答案】A【解析】【分析】画出和的函数图像,根据图像即可得出交点个数.【详解】画出和的函数图像由图像可知两函数图像有两个交点,故方程有两个根.故选:A.【点睛】将求解实数根个数转化为求解和的函数交点个数,数形结合是解本题的关键.10.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)( )A. 在[-7,0]上是增函数,且最大值是6B. 在[-7,0]上是减函数,且最大值是6C. 在[-7,0]上是增函数,且最小值是6D. 在[-7,0]上是减函数,且最小值是6【答案】B【解析】【详解】∵函数是偶函数,而且在[0,7]上为增函数,∴函数在[-7,0]上是减函数.又∵函数在x=7和x=-7的左边是增函数,右边是减函数,且f(7)=f(-7),∴最大值为f(7)=f(-7)=6.故选B.11.已知y=f(x)与y=g(x)的图像如下图:则F(x)=f(x)·g(x)的图像可能是下图中的()A. B.C. D.【答案】A【解析】试题分析:在时,沿轴正方向f(x)先为负值后为正值,而g(x)恒为正值,所以F (x)=f(x)·g(x)也必须先为负值,后为正值,可能选项为A,D,同理在时,f (x)先为负值后为正值,而g(x)恒为负值,所以F(x)=f(x)·g(x)也必须先为正值,后为负值,可能选项为A;综上所述,正确选项应该为A.考点:函数的图象.【方法点睛】本题主要考查函数的图象,判断函数的大致图像是否正确,主要从以下几点取判断:1、函数的零点(多适用于某函数零点已知);2、函数正负值所对区间(多适用于两函数相乘);3、函数的单调性区间(适合于两函数求和或者求差).本题为f(x)·g(x)所以选用函数正负值所对区间这一方法.12.若函数f(x)=lg(10x+1)+ax是偶函数,是奇函数,则a+b的值是A. B. 1 C. D. -1【答案】A【解析】【分析】利用函数的奇偶性求得a,b的值,然后计算a+b的值即可.【详解】偶函数满足,即:,解得:,奇函数满足,则,解得:,则.本题选择A选项.【点睛】本题主要考查奇函数的性质,偶函数的性质等知识,意在考查学生的转化能力和计算求解能力.二、填空题(共4小题,每小题5分,共20分)13.若函数的定义域为[0,2],则函数的定义域是_______.【答案】【解析】【详解】由,得0≤x<1,即定义域是[0,1),故答案为.14.函数y=lnx的反函数是__________.【答案】【解析】分析】由函数解得,把与互换即可得出【详解】函数把与互换可得:原函数的反函数为:故答案为:【点睛】在求解反函数时,要先求出原函数的值域,因为原函数的值域是反函数的定义域,这是解本题关键.15.函数的递增区间是__________.【答案】【解析】【分析】令,当,是增函数;当,是减函数.对于在定义域上是减函数, 根据复合函数单调性同增异减,即可得出函数的递增区间.【详解】令当是增函数当是减函数对于在定义域上是减函数根据复合函数单调性同增异减在上是单调递增.故答案为:.【点睛】对于复合函数单调性的判断要掌握同增异减,对函数的内层和外层分别判断,即可得出单调性.16.函数与函数的图像有四个交点,则的取值范围是____________.【答案】【解析】试题分析:函数的图象如下图所示,结合图象可得:当时,函数与的图象有四个交点,所以实数的取值范围是.考点:方程根的存性及根的个数的判定.【方法点晴】本题主要考查了方程根存在性及根的个数的判定,着重考查了一元二次函数的图象与性质,函数与方程关系等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化思想和数形结合思想的应用,本题解答的关键在于作出函数的图象,借助数形结合法求解.属于中档试题.三、解答题(共6小题,共70分)17.(1)计算:(2)解方程【答案】(1) (2)【解析】【分析】(1)利用指数的运算法则即可得出答案.(2)将化简为,即可得出答案.【详解】(1)(2)由方程得,经检验,是原方程的解,故原方程的解为【点睛】本题考查了指数的运算和求解对数方程.解对数方程时,要将方程化为同底数对数形式,利用真数相等求解方程,这是解本题的关键,属于基础题.18.讨论函数(a>0)在的单调性并证明.【答案】答案见解析【解析】【分析】根据定义法证明函数单调性,即在函数的定义域内任取,且,可通过作差法比较和大小,即可得到单调性【详解】在函数的定义域内任取,且则故故在上是单调增函数.【点睛】本题考查了用定义法证明函数单调性.在用定义法证明函数单调时要注意在所给定义内要任取两个自变量,化简表达式, 时单调递增, 时单调递减.19.已知奇函数.(1)求实数的值;(2)做的图象(不必写过程);(3)若函数在区间上单调递增,求的取值范围.【答案】(1)2;(2)图象见解析;(3).【解析】【分析】(1)求出当x<0时,函数的解析式,即可求得m的值;(2)分段作出函数的图象,即可得到y=f(x)的图象;(3)根据图象,利用函数f(x)在区间[﹣1,a﹣2]上单调递增,建立不等式,即可求a的取值范围.【详解】(1)设x<0,则﹣x>0,∴f(﹣x)=﹣x2﹣2x∵函数是奇函数,∴f(x)=﹣f(﹣x)=x2+2x(x<0)∴m=2;(2)函数图象如图所示:(3)要使在区间上单调递增,结合图象可知,﹣1<a﹣2≤1,∴1<a≤3.所以实数a的取值范围是.【考点】利用奇函数的定义求解析式,从而确定m值;利用函数的单调性确定参数a的取值范围.【点睛】利用数形结合的方法是解决本题的关键.20.已知函数的定义域为集合,函数的值域为集合,且,求实数的取值范围.【答案】.【解析】【详解】试题分析:根据函数的定义域和指数函数的性质,得到集合,再利用,即可求解实数的取值范围.试题解析:由题意得由,得即,,,得考点:函数的定义域与值域;集合的运算.21.已知集合.(1)若是空集,求的取值范围;(2)若中只有一个元素,求的值,并把这个元素写出来.【答案】(1)(2)时,;时,【解析】【详解】试题分析:(1)有由是空集,可得方程无解,故,由此解得的取值范围;(2)若中只有一个元素,则或,求出的值,再把的值代入方程,解得的值,即为所求.试题解析:(1)要使为空集,方程应无实根,应满足解得.(2)当时,方程为一次方程,有一解;当,方程为一元二次方程,使集合只有一个元素的条件是,解得,.∴时,,元素为:;时,.元素为:22.若f(x)是定义在(0,+∞)上的增函数,且(1)求f(1)的值;(2)若f(6)=1,解不等式f(x+3)−f()<2.【答案】(1) (2)【解析】分析】(1)令,即可求得.(2)利用和对,结合单调性即可求出答案.【详解】(1)令得:故:(2)化简为:即又可得:是定义在(0,+∞)上的增函数则:解①得解②得解③:当得:得方程的解为:综上所述,原不等式的解集为 .【点睛】利用函数单调性解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉"",转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.。

2019-2020学年湖北省武汉市汉南区职教中心高一上学期期中考试

2019-2020学年湖北省武汉市汉南区职教中心高一上学期期中考试

湖北省武汉市汉南区职教中心2019-2020学年高一上学期期中考试一、单项选择题(每题3分,共36分.每题只有一项是正确的,选对得2分,错选、不选得0分)1.关于质点,下列说法正确的是()A.研究地球自转时,可以把地球看成质点B.测算火车从银川到北京的运行时间时,可以把火车看成质点C.研究直升飞机螺旋桨的运动时,可以把螺旋桨看成质点D.研究自行车车轮的转动时,可以把车轮看成质点2.如图所示,细绳竖直拉紧,小球和光滑斜面接触,并处于静止状态,关于小球受力情况的说法中,正确的是()A.小球受到重力和绳的拉力B.小球受到重力,绳的拉力和斜面的弹力C.小球受到重力和斜面的弹力D.小球只受重力的作用3.下列各物体的运动速度,指平均速度的是()A.某同学百米赛跑的速度 B.雨点落地时的速度C.子弹射出枪口时的速度 D.石子抛出后第2秒末的速度4.下列关于加速度的描述中,正确的是()A.当加速度与速度方向相同且又减小时,物体做减速运动B.速度方向为正,加速度方向一定为正C.速度变化越来越快,加速度越来越小D.加速度在数值上等于单位时间里速度的变化量5.汽车从A地出发经B地到达C地,A、B、C在一条直线上,AB=BC,A、B间路况较好,汽车行驶速度为v1,B、C间路况较差,汽车行驶速度为v2,则汽车从A到C的平均速度为()A.B.C.D.6.如图所示的υ﹣t图象中,表示匀变速直线运动规律的是()A.B.C.D.7.小华以一定速度去同学家送一本书,停留一会儿后,又以相同速率沿原路返回家里,则图中可以表示他的运动情况的图线是()A.B.C.D.8.在牛顿管实验中,当管内抽成真空时,小铁片与羽毛从管顶部同时自由落下.下列说法正确的是()A.小铁片和羽毛同时落到牛顿管底部B.小铁片比羽毛先落到牛顿管底部C.羽毛下落的加速度比小铁片下落的加速度小D.羽毛落到牛顿管底部的速度比小铁片的速度小9.伽利略对落体运动的研究,不仅确立了落体运动的规律,更重要的是开辟了一条物理学的研究之路.他的研究思路可概括为()A.提出问题﹣假设(猜想)﹣数学推理﹣实验验证﹣得出结论B.提出问题﹣假设(猜想)﹣实验验证﹣数学推理﹣得出结论﹣合理外推C.提出问题﹣假设(猜想)﹣数学推理﹣实验验证﹣合理外推﹣得出结论D.提出问题﹣假设(猜想)﹣实验验证﹣合理外推﹣得出结论10.关于自由落体运动,下列说法正确的是()A.物体从静止开始下落的运动叫自由落体运动B.物体在只有重力作用下的运动叫做自由落体运动C.在有空气的空间里,如果空气阻力与重力相比可以忽略不计,物体从静止开始下落的运动可以看做自由落体运动D.在地球上不同的地方,自由落体加速度的大小是不同的,它们相差很大11.一个小石子从离地某一高度处由静止自由落下,某摄影爱好者恰好拍到了它下落的一段轨迹AB.该爱好者用直尺量出轨迹的实际长度,如图所示.已知曝光时间为s,则小石子出发点离A点约为()A.6.5m B.10m C.20m D.45m12.运行的高速铁路客运列车,假设观察者站在列车第一节车厢前端一侧,列车由静止开始做匀加速直线运动,测得第一节车厢通过他用了5s,列车全部通过他共用25s,问这列车一共由几节车厢组成(车厢等长且不计车厢间距离)()A.25节B.20节C.16节D.5节二.多项选择题(本题6小题,每小题3分,共18分.在每小题给出的四个选项中,至少有两个选项符合题意.全对得3分,选不全得1分,有错选或不答的得0分)13.如图所示,为沿同一直线运动的物体甲、乙,其相对同一参考系的位置x随时间t变化的函数图像,由图可知( )A.甲、乙两物体从同一地点出发B.甲物体比乙物体早出发的时间为t1C.甲、乙两物体都做匀速直线运动D.甲、乙两物体向同方向运动14.如图所示,某物体沿两个半径为R的圆弧由A经B到C,下列结论正确的是()A.物体的位移等于4R,方向向东B.物体的位移等于2πRC.物体的路程等于4R,方向向东D.物体的路程等于2πR15.某物体沿一直线运动,其v﹣t图象如图所示,则下列说法正确的是()A.第2s内和第3s内速度方向相反B.第2s内和第3s内的加速度方向相反C.第3s到第4s加速度没有变D.第5s内速度方向与加速度方向相反16.如图是甲、乙两物体在同一直线上运动的s﹣t图象,以甲的出发点为原点,出发时间为计时起点,则()A. 甲、乙同时出发B.乙比甲先出发C.甲出发时,乙在甲前边S0处D.甲在途中停了一段时间,而乙没有停止17.关于加速度的概念,以下说法中正确的是()A.物体运动加速度的方向与初速度方向相同,物体的运动速度将增大B.物体运动加速度的大小表示速度变化的快慢C .加速度的正负表示了物体运动的方向D .做匀变速直线运动的物体速度增大的过程中,它的加速度一定为正值18.一质点在直线上运动,其位移表达式为x=10t ﹣t 2(m ),则( )A .该物体做匀变速直线运动B .质点加速度大小为1m/s 2C .质点加速度大小为2m/s 2D .质点初速度大小为10m/s三、实验及作图题(共18分)19.(6分)某同学用打点计时器测量做匀加速直线运动的物体的加速度,已知打点计时器所用的交流电源周期为T ,在纸带上打出的点中,选出零点,每隔4个点取1个计数点,因保存不当纸带被污染,如图所示,A 、B 、C 、D 是一次排列的四个计数点,仅能读出其中A 、B 、D 三个计数点到零点的距离分别为:A B D d d d 、、若无法再做实验,可由以上信息推知(1)打C 点时物体的速度大小表达式为C v =_______________。

2019-2020学年高一数学上学期期中试题(含解析)_31

2019-2020学年高一数学上学期期中试题(含解析)_31

2019-2020学年高一数学上学期期中试题(含解析)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上.1.已知实数集,集合,集合,则()A. B. C. D.【答案】C【解析】【分析】求函数的定义域求得集合,根据交集的概念和运算求得的值.【详解】由题意得,故.故选:C.【点睛】本小题主要考查函数定义域的求法,考查集合交集的概念和运算,属于基础题.2.在区间上增函数的是()A. B. C. D.【答案】A【解析】【详解】在区间上是增函数,没有增区间,与在上递减,在上递增,故选A3.不等式的解集为()A. B. C. D.【答案】A【解析】【分析】利用一元二次不等式的解法即可得出.【详解】∵∴解得:,即不等式的解集为故选:A【点睛】本题考查了一元二次不等式的解法,属于基础题,易错点是忘记把二次项系数化“+”.4.下列函数中,值域为的是()A. B. C. D.【答案】D【解析】【分析】求出每一个选项的函数的值域即得解.【详解】对于选项A,函数的值域为,所以该选项不符;对于选项B,函数的值域为R,所以该选项不符;对于选项C,函数的值域为,所以该选项不符;对于选项D, 函数的值域为[0,1],所以该选项符合.故选:D【点睛】本题主要考查函数值域的求法,意在考查学生对这些知识的理解掌握水平.5.下列各组函数中,表示同一个函数的是()A. 和B. 和C. 和D. 和【答案】D【解析】【分析】根据同一函数的要求,定义域相同,对应法则相同,分别对四个选项进行判断,得到答案.【详解】表示同一个函数,要求两个函数的定义域相同,对应法则相同,选项中,定义域为,定义域为,故不是同一函数,选项中,定义域为,定义域为,故不是同一函数,选项中,和对应法则不同,故不是同一函数,选项中,和定义域相同,都是,化简后,对应法则也相同,故是同一函数,故选项.【点睛】本题考查对两个函数是否是同一函数的判断,属于简单题.6.已知函数定义域为,则函数的定义域为A. B.C. D.【答案】C【解析】【分析】首先求得定义域,根据分式和复合函数定义域的要求可构造不等式求得结果.【详解】定义域为,即定义域为由题意得:,解得:或定义域为:本题正确选项:【点睛】本题考查函数定义域的求解问题,关键是能够通过复合函数定义域确定定义域,从而利用分式和复合函数定义域的要求构造不等式.7.已知定义在上的奇函数和偶函数,则()A. 是奇函数B. 是奇函数C. 是偶函数D. 是偶函数【答案】D【解析】【分析】逐个选项去判断是否是奇函数或者偶函数。

2019-2020学年湖北省武汉市汉南区职教中心高一上学期期中考试化学试题(解析版)

2019-2020学年湖北省武汉市汉南区职教中心高一上学期期中考试化学试题(解析版)

湖北省武汉市汉南区职教中心2019-2020学年高一上学期期中考试试题本卷可能用到的相对原子质量数据:H—1 C—12 N—14 O—16 S—32 Cl—35.5 Na—23 Al—27 Fe-56一、选择题(本题包括30小题,每小题2分,共60分,每小题只有一个选项符合题意)1.下列行为不是..健康文明的生活方式的是()A. 不偏食,注意营养均衡B. 每天坚持适度锻炼C. 沉迷网络聊天、游戏D. 不吸烟、不酗酒,远离毒品『答案』C『解析』【详解】A.营养均衡有利人体健康,故A不选;B.每天坚持适度锻炼是健康文明的生活方式,故B不选;C.沉迷网络聊天、游戏会破坏人的生物钟,使神经系统的兴奋性降低,影响人体健康,故C选;D.不吸烟、不酗酒,远离毒品是健康文明的生活方式,故D不选;故选C。

2.当光束通过下列分散系时,能观察到丁达尔效应的是()A. 盐酸B. Fe (OH)3胶体C. 氯化钠溶液D. CuSO4溶液『答案』B『解析』【详解】胶体能发生丁达尔效应,胶体粒子的微粒直径在1﹣100nm之间,分散质微粒直径小于1﹣100nm的是溶液,大于1﹣100nm的是浊液;盐酸、氯化钠溶液和硫酸铜溶液都是溶液,Fe (OH)3胶体属于胶体,『答案』选B。

3.下列实验操作或装置正确的是()A. 点燃酒精灯B. 蒸馏C. 过滤D. 稀释浓硫酸『答案』C『解析』A.酒精灯不能利用另一只酒精灯引燃,易失火,应利用火柴点燃,故A错误;B.冷水应下进上出,冷凝效果好,由图可知冷水方向不合理,故B错误;C.过滤遵循一贴二低三靠,图中装置及仪器、操作均合理,故C正确;D.浓硫酸的稀释方法:将浓硫酸慢慢倒入水中,用玻璃棒不断搅拌,故D错误;故选C。

4.Na2CO3俗名纯碱,下面是对纯碱采用不同分类法的分类,不正确的是()A. Na2CO3是碱B. Na2CO3是盐C. Na2CO3是钠盐D. Na2CO3是碳酸盐『答案』A『解析』【详解】A.Na2CO3俗名纯碱,但不是碱,是由钠离子和碳酸根离子构成的盐,故A错误;B.Na2CO3在水溶液中电离出金属阳离子和酸根阴离子,它是盐,故B正确;C. Na2CO3是由钠离子和碳酸根离子构成的钠盐,故C正确;D. Na2CO3是由钠离子和碳酸根离子构成的碳酸盐,故D正确;『答案』选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
湖北省武汉市汉南区职教中心
2019~2020学年高一年级上学期期中质量检测
数学试题
一.选择题。

(共12小题,每题5分)
1.已知集合A ={1,2,3},B ={2,3},则( )
A .A =
B B .A ∩B =∅
C .A B
D .B A
2. 设全集U =R ,M ={x |x <-2,或x >2},N ={x |1<x <3},则图中阴影部分所表示的集合
是( )
A .{x |-2≤x <1}
B .{x |-2≤x ≤2}
C .{x |1<x ≤2}
D .{x |x <2}
3.下列根式与分数指数幂的互化,正确的是 ( )
A .1
2()(0)x x =-≥
B 13(0)x x =≤
C .3
4
0)x x -=> D .1
30)x x -=≠
4.已知函数f (x )=1x 在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )
A .12
B .-12
C .1
D .-1
5.计算:log 225·log 522=( )
A .3
B .4
C .5
D .6 6.设f (x )是定义在R 上的奇函数,且当x ≤0时,f (x )=x 2-12x ,则f (1)=( )
A .-32
B .-12
C .32
D .12
7.下列函数中,既是偶函数,又在(0,+∞)上单调递减的函数是( )
A .y =x -2
B .y =x -1
C .y =x 2
D .y =x 13
8.设函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )
A.15 B .3 C.23 D.139
9.设甲、乙两地的距离为a (a >0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图象为( )
10.若f (x )满足f (-x )=f (x )在区间(-∞,-1]上是增函数,则( )
A .f ⎝ ⎛⎭⎪⎫-32<f (-1)<f (2)
B .f (-1)<f ⎝ ⎛⎭
⎪⎫-32<f (2) C .f (2)<f (-1)<f ⎝ ⎛⎭⎪⎫-32 D .f (2)<f ⎝ ⎛⎭
⎪⎫-32<f (-1) 11.在同一直角坐标系中,函数()()0a f x x x =≥,()log a g x x =-的的图象可能是
( )。

相关文档
最新文档