模拟电子技术基础01-微变等效电路法
合集下载
模拟电子技术基础c1

2. PN 结外加反向电压时处于截止状态(反偏) 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用;
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
耗尽层
N
IS
内电场方向
外电场方向
V
R
半导体的导电机理不同于其它物质,所以它 具有不同于其它物质的特点。
例如:
当受外界热和光的作用时, 它的导电能力明显变化。
光敏器件
往纯净的半导体中掺入某些杂质, 会使它的导电能力明显改变。
二极管
二、本征半导体的晶体结构
完全纯净的、不含其他杂质且具有晶体结构的半导体
称为本征半导体
+4
+4
+4
将硅或锗材料提
电容效应包括两部分 势垒电容 扩散电容
1. 势垒电容Cb 是由 PN 结的空间电荷区变化形成的。
空间
空间
P 电荷区 N
P
电荷区
N
I+ V U R
(a) PN 结加正向电压
I
V UR
+
(b) PN 结加反向电压
空间电荷区的正负离子数目发生变化,如同电容的 放电和充电过程。
势垒电容的大小可用下式表示:
第一章 半导体器件
课外阅读教材:
1.谢自美 电子线路设计.实验.测试
华中理工大学出版社。
2.毕满清 电子技术实验与课程设计
机械工业出版社。
3.高伟涛 Pspice8.0电路设计实例精粹 国防工业出版社 。
4.李东生 Protel99SE电路设计技术入门 电子工业出版社。
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
耗尽层
N
IS
内电场方向
外电场方向
V
R
半导体的导电机理不同于其它物质,所以它 具有不同于其它物质的特点。
例如:
当受外界热和光的作用时, 它的导电能力明显变化。
光敏器件
往纯净的半导体中掺入某些杂质, 会使它的导电能力明显改变。
二极管
二、本征半导体的晶体结构
完全纯净的、不含其他杂质且具有晶体结构的半导体
称为本征半导体
+4
+4
+4
将硅或锗材料提
电容效应包括两部分 势垒电容 扩散电容
1. 势垒电容Cb 是由 PN 结的空间电荷区变化形成的。
空间
空间
P 电荷区 N
P
电荷区
N
I+ V U R
(a) PN 结加正向电压
I
V UR
+
(b) PN 结加反向电压
空间电荷区的正负离子数目发生变化,如同电容的 放电和充电过程。
势垒电容的大小可用下式表示:
第一章 半导体器件
课外阅读教材:
1.谢自美 电子线路设计.实验.测试
华中理工大学出版社。
2.毕满清 电子技术实验与课程设计
机械工业出版社。
3.高伟涛 Pspice8.0电路设计实例精粹 国防工业出版社 。
4.李东生 Protel99SE电路设计技术入门 电子工业出版社。
模拟电子技术基础(第四版)第1章

ID
理想二极管符号 UD
(V)
ID
开关模型等效电路
0.7V 0 0.7
0
UD
(V)
(a)理想模型 特性 )理想模型VA特性
(b)开关模型 特性 )开关模型VA特性
3、折线模型:正向导通时。相 、折线模型:正向导通时。 当于理想二极管串联一个等效 和一个电压源U 电阻rD和一个电压源 ON ,特 性曲线如图( 所示 所示。 性曲线如图(c)所示。
二极管的伏安特性仍可由 二极管的伏安特性仍可由
iD = IS (e
近似描述。 近似描述。
UD / UT
−1)
D E
导通电压
IS:反向饱和电流 UT:电压当量,室温下26mV
IR
反向 漏电
开启电压 Uon
开启电压 导通电压
硅二极管 0 .5 V 0 . 6 ~ 0 .8 V (取 0 .7 V )
锗二极管 0 .1 V 0 . 2 ~ 0 .3 V (取 0 .3 V )
发射区:发射载流子 发射区: 集电区: 集电区:收集载流子 基区: 基区:传送和控制载流子 为例) (以NPN为例) 为例
演示
载流子的传输过程
以上看出,三极管内有两种载流子 自由电子 自由电子和 以上看出,三极管内有两种载流子(自由电子和空 参与导电, 穴)参与导电,故称为双极型三极管-BJT (Bipolar 参与导电 故称为双极型三极管- Junction Transistor)。 。
二极管伏安特性与温度T的关系: 二极管伏安特性与温度T的关系:
的增加而增加 所以二极管的正向压降 增加, 的增加而降低 降低。 由于IS随T 的增加而增加,所以二极管的正向压降VF随T 的增加而降低。 一般线性减少2 2.5mV/C° 一般线性减少2~2.5mV/C° (利用该特性,可以把二极管作为温度传感器) 利用该特性,可以把二极管作为温度传感器)
模拟电子技术基本教程 - 华成英主编

三、PN结的形成及其单向导电性
物质因浓度差而产生的运动称为扩散运动。气 体、液体、固体均有之。
P区空穴 浓度远高 于N区。
N区自由电 子浓度远高
于P区。
扩散运动
扩散运动使靠近接触面P区的空穴浓度降低、靠近接触面 N区的自由电子浓度降低(相遇而复合) ,产生内电场。
PN 结的形成
由于扩散运动使P区与N区的交界面缺少多数载流子,形成 内电场,从而阻止扩散运动的进行。内电场使空穴从N区向P 区、自由电子从P区向N 区运动。
材料 硅Si 锗Ge
开启电压 0.5V 0.1V
导通电压 0.5~0.8V 0.1~0.3V
反向饱 开启 和电流 电压
反向饱和电流 1µA以下 几十µA
从二极管的伏安特性可以反映出:
1. 单向导电性
正向特性为 指数曲线
u
i IS(eUT 1)
u
若正向电压u
U T,则i
I
eUT
S
若反向电压u U价键
由于热运动,具有足够能量 的价电子挣脱共价键的束缚
而成为自由电子
自由电子的产生使共价键中 留有一个空位置,称为空穴
自由电子与空穴相碰同时消失,称为复合。 动态平衡
一定温度下,自由电子与空穴对的浓度一定;温度升高, 热运动加剧,挣脱共价键的电子增多,自由电子与空穴对 的浓度加大。
• 为什么半导体器件有最高工作频率?
3.2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管
一、二极管的组成
将PN结封装,引出两个电极,就构成了二极管。
小功率 二极管
大功率 二极管
稳压 二极管
模拟电子技术2.4(1)等效电路法.ppt

0.81V
Au
UOL Ui
UOL UOC
UOC Ui
Ao
UOL UOC
Ao
RL Ro RL
90
带负载后放大倍数下降。
例题2:
已知:VCC=12V,Rb=510K,RC=3K;晶体管的rbb`=150, β=80,UBEQ=0.7V,RL=3K,耦合电容对交流信号视为短路。
Rb
_+
Rs
c1
u+_s
Rc Rb rbe
带上负载后电压放大倍数减小。
输入电阻:
Ri
Ui Ii
Rb
rbe
计算输出电阻Ro有两种方法:
(1)将负载RL去掉,信号源短路,保留其内阻;在输 出端加正弦信号Uo,产生电流Io,Ro= Uo/ Io.
Ii Rb +
b Ib +
Ib=0
ui
ube
rbe βIb
_
_
e
Ic c Ic=0
RS +
ui Rb
ube
US_ _
_
rbe βIb
e
交流等效电路
+
RC RL uo
_
R i R b//rbe
RO RC
R i RS R b//rbe ×
R o R C // RL ×
输入电阻与信号源内阻无关,输出电阻与负载无关。
•
• Aus
Uo •
Us
• ••
•
• Aus
Uo • Us
Uo • Ui
Rs
+
u_s
+Vcc
Rc
+
Rs
RL
小信号模型分析法(微变等效电路法)

ic hoe vce
β = hfe
rce= 1/hoe
• ur很小,一般为10-3∼10-4 , 很小,一般为10 • rce很大,约为100kΩ。故 很大,约为100kΩ 100k 一般可忽略它们的影响, 一般可忽略它们的影响, 得到简化电路 BJT的 BJT的H参数模型为
上页
下页
返回
模拟电子技术基础
2
β 一般用测试仪测出; 一般用测试仪测出;
H参数的确定 H参数的确定
rbe 与Q点有关,可用图示 点有关,
仪测出。 仪测出。 也用公式估算 rbe rbe= rb + (1+ β ) re
rb为基区电阻,约为200Ω 为基区电阻,约为200 200Ω
VT (m ) V 26(m ) V re = = IEQ(m ) IEQ(m ) A A
上页
下页
返回
模拟电子技术基础
二
建立小信号模型的思路
当放大电路的输入信号电压很小时,就可以把三极管 当放大电路的输入信号电压很小时, 小范围内的特性曲线近似地用直线来代替, 小范围内的特性曲线近似地用直线来代替,从而可以把三 极管这个非线性器件所组成的电路当作线性电路来处理。 极管这个非线性器件所组成的电路当作线性电路来处理。
dvBE = ∂vBE ∂iB
VCE ⋅ di + B
ic ib + vbe – b e c + vce –
∂iC d iC = ∂iB
∂iC VCE ⋅ diB + ∂vCE
∂vBE ∂vCE
IB
⋅ dvCE
IB
⋅ dvCE
下页 返回
上页
模拟电子技术基础
vbe = hieib + hrevce ic = hfe ib + hoevce
模拟电路基础第二章微变等效电路

(Rs rbe R E )Uo rbe rce ] rce (Rs rbe
RE)
R o
Uo Io
rce
R
E (Rs rbe rce ) Rs rbe R E
通常, rce Rs rbe
R o
rce (1
R s
I b Au
Uo Ui
rbe
(1 )R E
Au
Uo Ui
Ib (rce // R C // R L ) Ib rbe (Ib Ib )R E
(rce // R C // R L ) rbe (1 )R E
求输出电阻Ro
Ii
B Ib
B’
Rs
RB
rce
e
二、晶体管共发H参数模型
iC
B
iB
uBE
E
将晶体管视为一二端
口网络,根据两个端
C 口的 电压和电流之间 的相互关系导出的模
型是网络模型,对H
uCE
参数模型,选择的自 变量为iB, 和uCE,因变量
为uBE和iC。
u BE f1 (iB , u CE )
iC f 2 (iB , u CE )
hie
Ic
hfeIb
1
h oe Uce
h ie rbb rbe rbe b Ib h fe g m rbe
h oe
1 rce
Ub
rbe
e
c
Ic
Ib
rce Uce
e
Ib b
c Ic
Ube
rbe
Ib
傅丰林 模拟电子线路基础 笫一部分

12
二、模拟电子线路基础课程的教学方法
课程存在的主要问题:内容多、概念多、技术 更新快、学时少、实践性和工程性强、难学难教的 特点。 ●内容多:第1章 半导体器件 第2章 放大器基础 第3章 放大器的频率特性 第4章 负反馈放大器 第5章 低频功率放大器 第6章 集成运算放大器原理及应用 第7章 直流稳压电源
3
一、模拟电子线路课程的重要性
且当模拟电路提供(并将继续提供)比同类功能数 字电路更好的性能和功耗时,为什么不愿意使用简 洁的模拟电路呢? 因此,模拟电路的明天存在,还没有消亡!在 电路需要更多地与现实环境互动的时候,它们怎么 可能是纯粹的数字?我们很难想像未来数字信号能 从天线发射出去、人耳能直接听数字信号。
23
二、模拟电子线路基础课程的教学方法
●要培养兴趣,“兴趣是最好的老师” ; ●要重视基本概念、基本原理、基本分析方法和基 本应用; ●学会工程近似分析方法,用工程观点分析问题; ●重视作业和实验; ●学会听课、适当笔记; ●学问学问,要学要问; ●重视小结归纳,读书由薄到厚,再由厚到薄; ●要知难而进,不要知难而退。 ●向学生推荐好的学习方法。
21
二、模拟电子线路基础课程的教学方法
3.教学方法 (1)教师必须“吃透”课程内容,不要“半瓶子 水晃荡”,这是关键。只有对这门课的相邻课程能充 分理解,讲课就游刃有余。 自己学过≠已经掌握 已经掌握≠彻底搞通;
自己明白≠讲得清楚;
讲得清楚≠学生理解; 教书是学问,又是艺术。
22
二、模拟电子线路基础课程的教学方法
13
二、模拟电子线路基础课程的教学方法
●概念多:半导体基础、多子、少子;扩散、漂移;
双极型、单极型晶体管工作原理;放大、截止、饱 和;甲类、乙类、甲乙类;偏流、偏压;静态、动 态;图解法、微变等效电路法;CE、CB、CC;CS、 CG、CD;有源负载;线性失真、非线性失真;负 反馈、正反馈;……
二、模拟电子线路基础课程的教学方法
课程存在的主要问题:内容多、概念多、技术 更新快、学时少、实践性和工程性强、难学难教的 特点。 ●内容多:第1章 半导体器件 第2章 放大器基础 第3章 放大器的频率特性 第4章 负反馈放大器 第5章 低频功率放大器 第6章 集成运算放大器原理及应用 第7章 直流稳压电源
3
一、模拟电子线路课程的重要性
且当模拟电路提供(并将继续提供)比同类功能数 字电路更好的性能和功耗时,为什么不愿意使用简 洁的模拟电路呢? 因此,模拟电路的明天存在,还没有消亡!在 电路需要更多地与现实环境互动的时候,它们怎么 可能是纯粹的数字?我们很难想像未来数字信号能 从天线发射出去、人耳能直接听数字信号。
23
二、模拟电子线路基础课程的教学方法
●要培养兴趣,“兴趣是最好的老师” ; ●要重视基本概念、基本原理、基本分析方法和基 本应用; ●学会工程近似分析方法,用工程观点分析问题; ●重视作业和实验; ●学会听课、适当笔记; ●学问学问,要学要问; ●重视小结归纳,读书由薄到厚,再由厚到薄; ●要知难而进,不要知难而退。 ●向学生推荐好的学习方法。
21
二、模拟电子线路基础课程的教学方法
3.教学方法 (1)教师必须“吃透”课程内容,不要“半瓶子 水晃荡”,这是关键。只有对这门课的相邻课程能充 分理解,讲课就游刃有余。 自己学过≠已经掌握 已经掌握≠彻底搞通;
自己明白≠讲得清楚;
讲得清楚≠学生理解; 教书是学问,又是艺术。
22
二、模拟电子线路基础课程的教学方法
13
二、模拟电子线路基础课程的教学方法
●概念多:半导体基础、多子、少子;扩散、漂移;
双极型、单极型晶体管工作原理;放大、截止、饱 和;甲类、乙类、甲乙类;偏流、偏压;静态、动 态;图解法、微变等效电路法;CE、CB、CC;CS、 CG、CD;有源负载;线性失真、非线性失真;负 反馈、正反馈;……
电子技术基础(模拟电子电路)精选全文完整版

Ω
1.86
kΩ
ri RB // rbe (1 β )RE Ii
8 .03 kΩ
+
ro RC 6 kΩ
Au
rbe
βRL (1 β
) RE
RS
E
+ S-
U i
B Ib
Ic C
IRB
β Ib rbe
RB
E RC RL
RE Ie
8.69
-
+ U o -
微变等效电路
射极输出器
RB C1 +
RB1 C1
RC
+C2
+
+
+
ui RB2 RE1
RL uo
–
RE2
+ CE
–
解: (1)由直流通路求静态工作点。
VB
RB2 RB1 RB2
UCC
20 12V 60 20
3V
IC
IE
VB
UBE RE
3 0.6 3
mA
0.8 mA
RB1 VB
RC IB
+UCC IC +
UCE
IB
IC β
0.8 μ A 50
2. 放大电路的微变等效电路
将交流通路中的晶 体管用晶体管微变等 效电路代替即可得放 大电路的微变等效电 路。
ii B ib
+
RS+ eS -
ui RB -
ic C
+
RC RL uO -
E
ii B ib
ic C
+
RS
ib
+ ui RB rbe