matlab实现中值滤波去除脉冲噪声matlab小程序
MATLAB自适应滤波去噪

《MATLAB自适应滤波去噪》课程设计报告1.课程设计目的此次课程设计目的是为了让我们学会使用MATLAB进行计算机仿真,使用自适应滤波法设计一个语音去噪声电路。
培养我们的电路设计思路及其算法,明白理论与实践相结合的重要性,培养了我们的实际操作能力以及锻炼我们对实际问题的分析与解决的能力。
2.课程设计内容2.1 LMS自适应算法原理自适应过程一般采用典型LMS自适应算法,但当滤波器的输入信号为有色随机过程时,特别是当输入信号为高度相关时,这种算法收敛速度要下降许多,这主要是因为输入信号的自相关矩阵特征值的分散程度加剧将导致算法收敛性能的恶化和稳态误差的增大。
此时若采用变换域算法可以增加算法收敛速度。
变换域算法的基本思想是:先对输入信号进行一次正交变换以去除或衰减其相关性,然后将变换后的信号加到自适应滤波器以实现滤波处理,从而改善相关矩阵的条件数。
因为离散傅立叶变换DFT本身具有近似正交性,加之有FFT快速算法,故频域分块LMS FBLMS算法被广泛应用。
FBLMS算法本质上是以频域来实现时域分块LMS算法的,即将时域数据分组构成N个点的数据块,且在每块上滤波权系数保持不变。
其原理框图如图2所示。
FBLMS 算法在频域内可以用数字信号处理中的重叠保留法来实现,其计算量比时域法大为减少,也可以用重叠相加法来计算,但这种算法比重叠保留法需要较大的计算量。
块数据的任何重叠比例都是可行的,但以50%的重叠计算效率为最高。
对FBLMS算法和典型LMS算法的运算量做了比较,并从理论上讨论了两个算法中乘法部分的运算量。
本文从实际工程出发,详细分析了两个算法中乘法和加法的总运算量,其结果为:复杂度之比=FBLMS实数乘加次数/LMS实数乘加次数=(25Nlog2N+2N-4)/[2N(2N-1)]采用ADSP的C语言来实现FBLMS算法的程序如下:for(i=0;i<=30;i++){for(j=0;j<=n-1;j++){in[j]=input[i×N+j;]rfft(in,tin,nf,wfft,wst,n);rfft(w,tw,wf,wfft,wst,n);cvecvmlt(inf,wf,inw,n);ifft(inw,t,O,wfft,wst,n);for(j=0,j<=N-1;j++){y[i×N+j]=O[N+j].re;e[i×N+j]=re fere[i×N+j]-y[i×N+j];temp[N+j]=e[i×N+j;}rfft(temp,t,E,wfft,wst,n);for(j=0;j<=n-1;j++){inf_conj[j]=conjf(inf[j]);}cvecvmlt(E,inf_conj,Ein,n);ifft(Ein,t,Ein,wfft,wst,n);for(j=0;j<=N-1;j++){OO[j]=Ein[j].re;w[j]=w[j]+2*u*OO[j];}}在EZ-KIT测试板中,笔者用汇编语言和C语言程序分别测试了典型LMS算法的运行速度,并与FBLMS算法的C语言运行速度进行了比较,表2所列是其比较结果,从表2可以看出滤波器阶数为64时,即使是用C语言编写的FBLMS算法也比用汇编编写的LMS算法速度快20%以上,如果滤波器的阶数更大,则速度会提高更多。
Matlab中的信号降噪与滤波技术详解

Matlab中的信号降噪与滤波技术详解正文部分:在信号处理的领域中,信号的降噪和滤波是非常重要的步骤。
Matlab作为一种常用的工具,提供了丰富的信号处理函数和工具箱,可以帮助我们实现高效的信号降噪和滤波。
本文将详细介绍Matlab中的信号降噪和滤波技术。
一、信号降噪技术1.1 经典的降噪方法在信号降噪的过程中,最常用的方法之一是使用滑动平均法。
该方法通过计算信号在一定窗口内的平均值来消除噪声的影响。
在Matlab中,可以使用smooth函数来实现该方法。
使用该函数时,需要指定窗口的大小。
较大的窗口可以平滑信号,但会导致信号的平均值偏移。
而较小的窗口则可以更有效地去除高频噪声,但可能会保留一些低频噪声。
此外,还可以使用中值滤波法来降噪,该方法能够消除信号中的离群值。
在Matlab中,可以使用medfilt1函数实现中值滤波。
该函数需要指定一个窗口大小,并对信号进行中值滤波处理。
较大的窗口可以更好地降噪,但可能会导致信号的细节信息丢失。
1.2 基于小波变换的降噪方法除了经典的降噪方法外,基于小波变换的降噪方法也是一种常用的技术。
小波变换是一种多分辨率分析方法,可以将信号分解为不同尺度的子信号。
在降噪过程中,可以通过滤除高频子信号中的噪声来实现降噪效果。
在Matlab中,可以使用wdenoise函数来实现基于小波变换的降噪。
该函数需要指定小波族,降噪方法和阈值等参数。
1.3 基于自适应滤波的降噪方法自适应滤波是一种根据信号的统计特性进行滤波的方法,它可以根据信号的自相关矩阵来调整滤波器的参数。
在Matlab中,可以使用wiener2函数来实现自适应滤波。
该函数需要指定一个噪声估计器,通过估计信号和噪声的自相关函数来调整滤波器的参数。
二、信号滤波技术2.1 无限脉冲响应滤波器无限脉冲响应滤波器(IIR滤波器)是一种常用的滤波器,它可以对信号进行低通、高通、带通或带阻滤波。
在Matlab中,可以使用butter函数来设计和应用IIR滤波器。
在Matlab中进行噪声抑制和降噪处理的方法

在Matlab中进行噪声抑制和降噪处理的方法引言:噪声是信号处理中的一个常见问题,它可以由多种因素引起,如传感器本身的噪声、电磁干扰等。
噪声的存在会影响到信号的质量和准确性,因此在许多应用中,我们需要进行噪声抑制和降噪处理。
对于Matlab来说,它提供了多种方法和工具来实现这一目标。
本文将介绍在Matlab中进行噪声抑制和降噪处理的方法。
一、频域滤波方法在Matlab中,频域滤波方法是一种常见且有效的噪声抑制和降噪处理方法。
该方法的基本思想是将信号从时域转换到频域,在频域中对信号进行滤波,并将滤波后的信号再转换回时域。
Matlab提供了丰富的频域滤波函数和工具,如fft、ifft、fftshift等。
通过这些函数,我们可以实现低通滤波、高通滤波、带通滤波等各种滤波操作,从而有效抑制和降噪信号。
二、时域滤波方法时域滤波方法是另一种常用的噪声抑制和降噪处理方法。
该方法的基本思想是在时域中对信号进行滤波,直接对信号进行抽样和滤波处理。
与频域滤波不同的是,时域滤波方法更加直观和易于理解。
在Matlab中,我们可以使用filter函数和fir1函数实现时域滤波。
其中,filter函数可以对信号进行FIR滤波,而fir1函数可以设计并生成FIR滤波器。
三、小波变换方法小波变换是一种非常有用的信号处理方法,它可以将信号在时间和频率上进行局部分析。
在噪声抑制和降噪处理中,小波变换可以帮助我们将信号分解成不同的频率成分,并对噪声进行抑制。
在Matlab中,我们可以使用wavelet函数和wdenoise函数来实现小波变换。
通过这些函数,我们可以选择不同的小波基函数,并设置适当的阈值来实现噪声抑制和降噪处理。
四、自适应滤波方法自适应滤波是一种根据信号特性自动调整滤波器参数的滤波方法。
它可以自动识别和适应信号中的噪声,并对其进行抑制和降噪处理。
在Matlab中,自适应滤波可以通过nlms函数和rls函数来实现。
这些函数基于LMS算法和RLS算法,可以快速、准确地对信号进行自适应滤波。
中值滤波 matlab

中值滤波 matlab中值滤波是一种常用的图像处理方法,用于去除图像中的噪声。
在Matlab中,可以使用中值滤波函数medfilt2来实现这一操作。
噪声是指在图像获取、传输和处理过程中引入的不希望的干扰信号。
常见的图像噪声有高斯噪声、椒盐噪声等。
噪声的存在会影响图像的质量和清晰度,因此需要采取一些方法来去除噪声,以提高图像的可视化效果和后续处理的准确性。
中值滤波是一种非线性滤波方法,它的基本原理是用像素点邻域内的中值来代替该像素点的值。
中值滤波的优点在于能够有效地去除椒盐噪声等脉冲噪声,同时保持图像的边缘和细节信息。
相比于线性滤波方法如均值滤波,中值滤波能够更好地保留图像的细节。
在Matlab中,使用medfilt2函数可以方便地进行中值滤波操作。
该函数的基本语法如下:B = medfilt2(A,[M N])其中,A表示输入图像,[M N]表示滤波窗口的大小。
滤波窗口的大小决定了对图像进行滤波时所考虑的邻域大小。
通常情况下,滤波窗口的大小越大,滤波效果越好,但也会导致图像的模糊程度增加。
在进行中值滤波之前,首先需要加载图像并将其转换为灰度图像。
可以使用imread函数读取图像,并使用rgb2gray函数将图像转换为灰度图像。
代码示例如下:```MATLABA = imread('image.jpg'); % 读取图像I = rgb2gray(A); % 转换为灰度图像```然后,可以使用medfilt2函数对图像进行中值滤波。
代码示例如下:```MATLABB = medfilt2(I,[3 3]); % 对图像进行中值滤波,滤波窗口大小为3x3```可以使用imshow函数显示原始图像和经过中值滤波后的图像,以观察滤波效果。
代码示例如下:```MATLABsubplot(1,2,1); % 创建一个1x2的子图区域,显示原始图像imshow(I);title('原始图像');subplot(1,2,2); % 创建一个1x2的子图区域,显示滤波后的图像imshow(B);title('中值滤波后的图像');```通过上述代码,可以实现对图像的中值滤波操作,并显示滤波前后的图像。
利用中值滤波去除图像噪声的研究及MATLAB实现

文章编号:1001-3717(2006)01-0063-03利用中值滤波去除图像噪声的研究及MA TL AB实现3江景涛,姜学东,李福荣(莱阳农学院机电工程学院,山东青岛266109)摘要:根据扫描工程图像的特点,研究了图像中噪声产生的机理和消除方法;提出了利用中值滤波法消除图像噪声的实用方法。
使用软件工具MA TL AB快速地实现了图像的中值滤波。
结果表明,利用中值滤波法消除图像中的随机噪声是图像噪声处理的最佳方法。
关键词:图像处理;噪声;中值滤波;Matlab中图分类号:TP317.4文献标识码:AThe Study of R emoving Image Noise with Medium V alue Filterand Matlab R ealizationJ IAN G Jing2tao,J IAN G Xue2dong,L I Fu2rong(College of Mechanical and Electronic Engineering,LAC,Qingdao266109,China)Abstract:In t his paper,t he mechanism of p roducing image noise and met hod of removing it were st udied, according to t he p roperty of engineering drawing and image.A practical met hod of removing image noise wit h medium value filter was p ut forward.The medium value filter of image was realized wit h MA TL AB software system.As t he result s show t hat medium value filter is an optimum met hod in removing image noise.K ey w ords:image p rocessing;noise;medium value filter;Matlab 图纸以简洁的形式表达复杂的信息,它具有自然、直观、含义清晰等特点,被大量采用,特别是随着计算机辅助设计系统的出现,给设计和维护工程图纸提供了有效的手段。
中值滤波原理及MATLAB实现

中值滤波原理及MATLAB实现摘要:图像是一种重要的信息源,通过图像处理可以帮助人们了解信息的内涵。
本文将纯净的图像加入椒盐噪声,然后采用中值滤波的方法对其进行去噪。
中值滤波是一种常用的非线性信号处理技术,在图像处理中,它对滤除脉冲干扰噪声最为有效。
文章阐述了中值滤波的原理、算法以及在图像处理中的应用。
MATLAB 是一种高效的工程计算语言,在数据处理、图像处理、神经网络、小波分析等方面都有广泛的应用。
关键词:图像,中值滤波,去噪,MATLAB1.引言20世纪20年代,图像处理首次得到应用。
上个世纪60年代中期,随着计算机科学的发展和计算机的普及,图像处理得到广泛的应用。
60年代末期,图像处理技术不断完善,逐渐成为一个新兴的学科。
图像处理中输入的是质量低的图像,输出的是改善质量后的图像。
为了改善图像质量,从图像中提取有效信息,必须对图像进行去噪预处理。
根据噪声频谱分布的规律和统计特征以及图像的特点,出现了多种多样的去噪方法。
经典的去噪方法有:空域合成法,频域合成法和最优合成法等,与之适应的出现了许多应用方法,如均值滤波器,中值滤波器,低通滤波器,维纳滤波器,最小失真法等。
这些方法的广泛应用,促进数字信号处理的极大发展,显著提高了图像质量。
2.中值滤波在图像滤波中,常用的方法是线性滤波技术和非线性滤波技术,线性滤波以其完美的理论基础,数学处理简单、易于采用和硬件实现等优点,一直在图像滤波领域中占有重要的地位。
线性滤波对加性高斯噪声有较好的平滑作用,但对脉冲信号和其它形式的高频分量抑制效果较差,且模糊信号边缘。
非线性滤波是基于对输入信号序列的一种非线性投影关系,常把某一特定的噪声近似为零而保留信号的重要特征,一定程度上克服线性滤波器的不足,非线性滤波早期运用较多的是中值滤波器,其应用于多维信号处理时,对窄脉冲信号具有良好的抑制能力,但中值滤波器对中拖尾(如均匀分布噪声)和短拖尾分布噪声(如高斯噪声),滤波性能较差,且拖尾越短,其滤波能力越差。
中值滤波去除图像噪声的matlab程序

中值滤波去除图像噪声的matlab程序
中值滤波:基于排序理论的⼀种能有效抑制噪声的⾮线性信号处理技术。
⽅法:取含有基数(偶数会有半像素的差)个模板数据的滑动模板,对模板中的数据从⼩到⼤排序,取排在中间位置上的数据作为最终的处理结果。
matlab程序:
[height, width]=size(result2);
x1=double(result2);
x2=x1;
n=3;
for i=1:height-n+1
for j=1:height-n+1
c=x1(i:i+(n-1),j:j+(n-1));
e=c(1,:);
for u=2:n
e=[e,c(u,:)];
end
m=median(e);
x2(i+(n-1)/2,j+(n-1)/2)=m;
end
end
imshow(uint8(x2));
对椒盐噪声的处理结果:
对⾼斯噪声的处理结果:
由以上对两种造声滤波结果可以看出:
对于椒盐噪声,其只在画⾯中部分点随机出现,通过中值滤波,数组排序,其被污染的点排在边上,中间为未被污染的点,将未被污染的点替代噪声点,因此滤波效果很好,画⾯的清晰度也基本保持;⽽对于⾼斯噪声,由于⾼斯噪声以随机⼤⼩的幅值污染所有的点,⽆论怎样滤波,得到的还是被污染的值,因此滤波效果不是特别好。
如何在MATLAB中进行信号降噪与滤波处理

如何在MATLAB中进行信号降噪与滤波处理信号降噪与滤波是信号处理领域中的重要课题,其中MATLAB作为一种强大的工具被广泛应用。
本文将介绍如何在MATLAB中进行信号降噪与滤波处理,并探讨其中的常用方法和技巧。
一、信号降噪的意义信号降噪是指通过一系列处理方法,将受到噪声污染的信号恢复到原始信号的过程。
在实际应用中,信号通常受到各种噪声干扰,如背景噪声、器件噪声等。
降噪处理可以提升信号的质量,提高信息的提取能力,对于提高系统的性能具有重要意义。
二、MATLAB中的信号降噪方法在MATLAB中,有很多常用的信号降噪方法,如均值滤波、中值滤波、小波降噪等。
1. 均值滤波均值滤波是一种简单而有效的滤波方法。
它通过取周围像素的平均值来抑制噪声。
在MATLAB中,可以使用`imfilter`函数来实现均值滤波。
下面是一个示例代码:```matlabimg = imread('image.jpg'); % 读入图像noise_img = imnoise(img,'salt & pepper',0.02); % 生成椒盐噪声图像filter_img = imfilter(noise_img, ones(3,3)/9); % 进行均值滤波imshow(filter_img); % 显示结果图像```2. 中值滤波中值滤波是一种非线性滤波方法,它通过取周围像素的中值来抑制噪声。
与均值滤波相比,中值滤波能更好地保留图像的边缘和细节。
在MATLAB中,可以使用`medfilt2`函数来实现中值滤波。
下面是一个示例代码:```matlabimg = imread('image.jpg'); % 读入图像noise_img = imnoise(img,'salt & pepper',0.02); % 生成椒盐噪声图像filter_img = medfilt2(noise_img, [3,3]); % 进行中值滤波imshow(filter_img); % 显示结果图像```3. 小波降噪小波降噪是一种基于小波分析的信号降噪方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab实现中值滤波去除脉冲噪声matlab小程序(图像处理)2010-04-1612:58:44阅读8评论0字号:大中小
实验原理:中值滤波器是将领域内像素灰度的中值代替该像素的值,对处理脉冲噪声(椒盐噪声)非常有效。
为了对一幅图像上的某个点进行中值滤波处理,必须先将掩模内欲求的像素及其领域的像素值排序,确定出中值,主要功能是使拥有不同灰度的点看起来更接近于它的邻近值。
程序说明:函数名为mid(pic_name,s)的函数,其中参数pic_name为读入的图像,s为掩模矩阵的边长,由用户自行决定。
实验说明:随着掩模矩阵的变大,我们可以看到脉冲噪声去除得更加理想,但同时图像会变得更模糊,因为各点像素与其邻域更为接近,因此,进行中值滤波时选择一个适合的掩模矩阵十分重要。
另外,我们看到图像的边界处出现了黑色的斑点,这是由于我采用了0来直译边界,这种影响可用镜像反射方式对称地沿其边界扩展来减弱。
另附:其实本实验可以完全由matlab中的函数median或medfilt2简单实现,此处写出内部处理过程,主要是为了让大家理解中值滤波的具体处理过程。
程序源代码:
function mid(pic_name,s)
close all;
s=double(s);
X=imread(pic_name);
Y1=imnoise(X,'salt&pepper',0.2);%对读入的图像加脉冲噪声
figure;
imshow(uint8(Y1));
Y1=double(Y1);
[m,n]=size(X);
s2=round(s/2);
s3=round(s*s/2);%中值像素点的位置
Y2=zeros(s,1);
%边界填充,用零延拓
Z1=zeros(s2-1,n+(s2-1)*2);
Z2=zeros(m,s2-1);
Y3=[Z1;Z2,Y1,Z2;Z1];
%对延拓后的图像进行中值滤波
for k1=s2:m-s2+1
for k2=s2:n-s2+1
%取出以其中上个像素点为中心的领域矩阵Y2=Y3(k1-s2+1:k1+s2-1,k2-s2+1:k2+s2-1);
%对取出的矩阵进行排序
Y2=sort(Y2(1:s*s));
Y3(k1,k2)=Y2(s3);%取其中值end
end
%取出处理后图像的有效部分,舍去零填充的部分
Y1=Y3(s2:m-s2+1,s2:n-s2+1);
figure;
imshow(uint8(Y1));
clear all;。