第二章基本定理
第二章§2.3.1平面向量基本定理

上 页 下 页
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 .零向量不能作为基底, 二 1.零向量不能作为基底,两个非零向量共线时不能作 章 为平面向量的一组基底.只有平面内两个不共线的向量 为平面向量的一组基底. 平 .平面内不共线的两个向量可以作为基底, 面 2.平面内不共线的两个向量可以作为基底,对于同一 个向量,用不同基底表示时,实数对并不一定相同. 向 个向量,用不同基底表示时,实数对并不一定相同. 量 3.证明三点共线,应结合题目条件,把e1与e2看作一组 .证明三点共线,应结合题目条件, 基底,选择适当的任两点确定向量, 基底,选择适当的任两点确定向量,依据向量共线的条 件判定向量共线,由这两个向量又有公共点, 件判定向量共线,由这两个向量又有公共点,可证三点 共线. 共线.
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 二 章 平 面 向 量
上 页
例1 如图所示,已知 ,e ,作向量 =e +2e , 如图所示,已知e1 2 作向量a= 1 2 b=e2+2e1,并作出向量 -b. 并作出向量a- = 分析】 【分析】 本题主要考察平面向量基本定理的 作图问题. 作图问题.
学习目标研读
课前自主探究
课堂互动讲练
第 二 章 平 面 向 量
§2.3 平面向量的基本定理及坐标表示
上 页 下 页
规律方法总结
随堂即时巩固
课时活页训练
学习目标研读
课前自主探究
课堂互动讲练
第 二 章 平 面 向 量
情境设疑
为了在直立的墙面上固定一幅画, 为了在直立的墙面上固定一幅画, 有时用一个钉,有时用多个钉, 有时用一个钉,有时用多个钉,你能否用 向量的有关知识来解释其中的道理? 向量的有关知识来解释其中的道理?
第二章 基本原理和定理

第2章基本原理和定理2.1亥姆霍兹定理亥姆霍兹定理:任一个矢量场由其散度、旋度以及边界条件所确定,都可以表示为一个标量函数的梯度与一个矢量函数的旋度之和。
定理指出,由于闭合面S 保卫的体积V 中任一点R 处的矢量场Fr 可分为用一标量函数的梯度小时的无旋场和用另一个适量函数的旋度表示的无散场两部分,即为F A Φ=-∇+∇⨯而式中的变量函数和适量函数分别于体积V 中矢量场的散度源和旋度源,以及闭合面S 上矢量场的法向分量和切向分量。
1()1()d d 44V S V Φππ''''∇∙∙''=-''--⎰⎰F r n F r S r r r r1()1()d d 44V S V ππ''''∇⨯⨯''=-''--⎰⎰F r n F r A S r r r r2.2唯一性定理惟一性定理:给定区域V 内的源(ρ、J )分布的和场的初始条件以及区域V 的边界 S 上场的边界条件,则区域V 内的场分布是惟一的。
场、源;范围 —— 时间间隔、空间区域; 条件 —— 初始条件、边界条件。
有惟一解的条件:(1)区域内源分布是确定的(有源或无源),与区域外的 源分布无关;(2)初始时刻区域内的场分布是确定的; (3)边界面上或是确定的。
重要意义:(1)指出了获得惟一解所需给定的条件;(2)为各种求解场分布的方法提供了理论依据。
2.3镜像原理镜像原理:等效源(镜像源)替代边界面的影响边值问题转换为无界空间问题;理论基础:惟一性定理2.4等效原理等效原理是基于唯一性定理建立的电磁场理论的另一个重要原理。
考察某一有界区域,如果该去云内的源分布不变,而在该区域之外有不同分布的源,只要在该区域的边界上同时满足同样的边界条件,根据唯一性定理,就可以在该规定区域内产生同样的场分布。
也就是说,在该区域外的这两种源的另一种源是另一种源的等效源。
第二章 2.3.1 平面向量基本定理

§2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一 平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.2.基底:不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 知识点二 两向量的夹角与垂直1.夹角:已知两个非零向量a 和b ,作OA →=a ,OB →=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角(如图所示).当θ=0°时,a 与b 同向;当θ=180°时,a 与b 反向.2.垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a ⊥b . 思考 如何正确理解两向量夹角概念答案 (1)由于零向量的方向是任意的,因此,零向量可以与任一向量平行,零向量也可以与任一向量垂直.(2)按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与向量AB →的夹角,∠BAD 才是向量CA →与向量AB →的夹角.1.平面内任意两个向量都可以作为平面内所有向量的一组基底.( × ) 提示 只有不共线的两个向量才可以作为基底. 2.零向量可以作为基向量.( × )提示 由于0和任意向量共线,故不可作为基向量. 3.平面向量基本定理中基底的选取是唯一的.( × )提示 基底的选取不是唯一的,不共线的两个向量都可作为基底.4.若e 1,e 2是同一平面内两个不共线向量,则λ1e 1+λ2e 2(λ1,λ2为实数)可以表示该平面内所有向量.( √ )题型一 对基底概念的理解例1 设e 1,e 2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是( ) A .e 1+e 2和e 1-e 2 B .3e 1-4e 2和6e 1-8e 2 C .e 1+2e 2和2e 1+e 2 D .e 1和e 1+e 2考点 平面向量基本定理 题点 基底的判定 答案 B解析 选项B 中,6e 1-8e 2=2(3e 1-4e 2),∴6e 1-8e 2与3e 1-4e 2共线,∴不能作为基底,选项A ,C ,D 中两向量均不共线,可以作为基底.故选B.反思感悟 考查两个向量是否能构成基底,主要看两向量是否非零且不共线.此外,一个平面的基底一旦确定,那么平面上任意一个向量都可以由这个基底唯一线性表示出来. 跟踪训练1 若e 1,e 2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( )A .e 1-e 2,e 2-e 1B .2e 1-e 2,e 1-12e 2C .2e 2-3e 1,6e 1-4e 2D .e 1+e 2,e 1+3e 2 考点 平面向量基本定理 题点 基底的判定 答案 D解析 选项A 中,两个向量为相反向量,即e 1-e 2=-(e 2-e 1),则e 1-e 2,e 2-e 1为共线向量;选项B 中,2e 1-e 2=2⎝⎛⎭⎫e 1-12e 2,也为共线向量;选项C 中,6e 1-4e 2=-2(2e 2-3e 1),为共线向量.根据不共线的向量可以作为基底,只有选项D 符合. 题型二 用基底表示向量例2 如图所示,在▱ABCD 中,E ,F 分别是BC ,DC 边上的中点,若AB →=a ,AD →=b ,试以a ,b 为基底表示DE →,BF →.考点 平面向量基本定理 题点 用基底表示向量解 ∵四边形ABCD 是平行四边形,E ,F 分别是BC ,DC 边上的中点, ∴AD →=BC →=2BE →,BA →=CD →=2CF →, ∴BE →=12AD →=12b ,CF →=12BA →=-12AB →=-12a .∴DE →=DA →+AB →+BE →=-AD →+AB →+BE →=-b +a +12b =a -12b ,BF →=BC →+CF →=AD →+CF →=b -12a .引申探究若本例中其他条件不变,设DE →=a ,BF →=b ,试以a ,b 为基底表示AB →,AD →. 解 取CF 的中点G ,连接EG .∵E ,G 分别为BC ,CF 的中点, ∴EG →=12BF →=12b ,∴DG →=DE →+EG →=a +12b .又∵DG →=34DC →=34AB →,∴AB →=43DG →=43⎝⎛⎭⎫a +12b =43a +23b .又∵AD →=BC →=BF →+FC →=BF →+12DC →=BF →+12AB →,∴AD →=BC →=b +12⎝⎛⎭⎫43a +23b =23a +43b . 反思感悟 将不共线的向量作为基底表示其他向量的方法有两种:一种是利用向量的线性运算及法则对所求向量不断转化,直至能用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.跟踪训练2 如图,在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=________.考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 43解析 设AB →=a ,AD →=b , 则AE →=12a +b ,AF →=a +12b ,又∵AC →=a +b ,∴AC →=23(AE →+AF →),即λ=μ=23,∴λ+μ=43.题型三 向量的夹角例3 已知|a |=|b |=2,且a 与b 的夹角为60°,设a +b 与a 的夹角为α,a -b 与a 的夹角是β,求α+β.考点 向量夹角的定义及夹角的范围 题点 求向量的夹角解 如图,作OA →=a ,OB →=b ,且∠AOB =60°,以OA ,OB 为邻边作▱OACB ,则OC →=a +b ,BA →=OA →-OB →=a -b ,BC →=OA →=a . 因为|a |=|b |=2,所以△OAB 为正三角形, 所以∠OAB =60°=∠ABC ,即a -b 与a 的夹角β=60°.因为|a |=|b |,所以平行四边形OACB 为菱形, 所以OC ⊥AB ,所以∠COA =90°-60°=30°, 即a +b 与a 的夹角α=30°, 所以α+β=90°.反思感悟 (1)求两个向量夹角的关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.(2)特别地,a 与b 的夹角为θ,λ1a 与λ2b (λ1,λ2是非零常数)的夹角为θ0,当λ1λ2<0时,θ0=180°-θ;当λ1λ2>0时,θ0=θ.跟踪训练3 在△ABC 中,∠C =90°,BC =12AB ,则AB →与BC →的夹角是( )A .30°B .60°C .120°D .150° 考点 向量夹角的定义及夹角的范围 题点 求向量的夹角 答案 C 解析 如图,作向量AD →=BC →,则∠BAD 是AB →与BC →的夹角,在△ABC 中,因为∠C =90°,BC =12AB ,所以∠ABC =60°,所以∠BAD =120°.平面向量基本定理的应用典例 如图,点A ,B ,C 是圆O 上三点,线段OC 与线段AB 交于圆内一点P .若OC →=mOA →+2mOB →,AP →=λAB →,则λ=________.答案 23解析 ∵OP →与OC →共线,∴存在实数μ,使OP →=μOC →=mμOA →+2mμOB →.∵AP →=OP →-OA →,∴AP →=mμOA →+2mμOB →-OA →=(mμ-1)OA →+2mμOB →=λAB →=λ(OB →-OA →)=-λOA →+λOB →. ∵OA →与OB →不共线,∴⎩⎪⎨⎪⎧mμ-1=-λ,2mμ=λ,解得λ=23.[素养评析] 1.利用平面向量基本定理解决问题时,要抓住用基底表示向量时系数λ1,λ2的唯一性.2.本题主要考查利用平面向量基本定理,建立方程运算求出未知向量,体现了数学运算的核心素养.1.给出下列三种说法:①一个平面内只有一组不共线的向量可作为表示该平面内所有向量的基底;②一个平面内有无数组不共线向量可作为表示该平面内所有向量的基底;③零向量不可作为基底中的向量. 其中,说法正确的为( )A .①②B .②③C .①③D .①②③ 考点 平面向量基本定理 题点 基底的含义与性质 答案 B2.如图所示,设O 是平行四边形ABCD 的两条对角线的交点,给出下列向量组:①AD →与AB →;②DA →与BC →;③CA →与DC →;④OD →与OB →. 其中可作为该平面内所有向量的基底的是( ) A .①② B .①③ C .②④ D .③④ 考点 平面向量基本定理 题点 基底的判定 答案 B解析 ②中DA →与BC →共线,④中OD →与OB →共线,①③中两向量不共线,故选B.3.已知向量e 1,e 2不共线,实数x ,y 满足(2x -3y )e 1+(3x -4y )e 2=6e 1+3e 2,则x =________,y =________.考点 平面向量基本定理的应用题点 利用平面向量基本定理求参数 答案 -15 -12解析 ∵向量e 1,e 2不共线,∴⎩⎪⎨⎪⎧ 2x -3y =6,3x -4y =3,解得⎩⎪⎨⎪⎧x =-15,y =-12.4.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC ,若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________. 考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 12解析 DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →) =-16AB →+23AC →,又∵AB →与AC →不共线,∴λ1=-16,λ2=23,λ1+λ2=-16+23=12.5.在△ABC 中,点D ,E ,F 依次是边AB 的四等分点,试以CB →=e 1,CA →=e 2为基底表示CF →.考点 平面向量基本定理 题点 用基底表示向量 解 AB →=CB →-CA →=e 1-e 2,因为D ,E ,F 依次是边AB 的四等分点, 所以AF →=34AB →=34(e 1-e 2),所以CF →=CA →+AF →=e 2+34(e 1-e 2)=34e 1+14e 2.1.对基底的理解 (1)基底的特征基底具备两个主要特征:①基底是两个不共线向量.②基底的选择是不唯一的.平面内两向量不共线是这两个向量可以作为这个平面内所有向量的一组基底的条件. (2)零向量与任意向量共线,故不能作为基底. 2.准确理解平面向量基本定理(1)平面向量基本定理的实质是向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的.(2)平面向量基本定理体现了转化与化归的数学思想,用向量解决几何问题时,我们可以选择适当的基底,将问题中涉及的向量向基底化归,使问题得以解决.一、选择题1.如图所示,矩形ABCD 中,BC →=5e 1,DC →=3e 2,则OC →等于( )A.12(5e 1+3e 2) B.12(5e 1-3e 2) C.12(3e 2-5e 1) D.12(5e 2-3e 1) 考点 平面向量基本定理 题点 用基底表示向量 答案 A解析 OC →=12AC →=12(BC →-BA →)=12(BC →+DC →)=12(5e 1+3e 2). 2.如图所示,用向量e 1,e 2表示向量a -b 为( )A .-4e 1-2e 2B .-2e 1-4e 2C .e 1-3e 2D .3e 1-e 2考点 平面向量基本定理 题点 用基底表示向量 答案 C3.若|a |=|b |=|a -b |=r (r >0),则a 与b 的夹角为( ) A .30° B .45° C .60° D .90° 考点 向量夹角的定义及夹角的范围 题点 求向量的夹角 答案 C4.已知A ,B ,D 三点共线,且对任一点C ,有CD →=43CA →+λCB →,则λ等于( )A.23B.13 C .-13 D .-23 答案 C解析 因为A ,B ,D 三点共线,所以存在实数t ,使AD →=tAB →,则CD →-CA →=t (CB →-CA →). 所以CD →=CA →+t (CB →-CA →)=(1-t )CA →+tCB →. 所以⎩⎪⎨⎪⎧1-t =43,t =λ,解得λ=-13.5.设点D 为△ABC 中边BC 上的中点,O 为AD 上靠近点A 的三等分点,则( ) A.BO →=-16AB →+12AC →B.BO →=16AB →-12AC →C.BO →=56AB →-16AC →D.BO →=-56AB →+16AC →考点 平面向量基本定理 题点 用基底表示向量 答案 D解析 依题意,得BO →=AO →-AB →=13AD →-AB →=13×12(AB →+AC →)-AB →=-56AB →+16AC →,故选D. 6.若OP →1=a ,OP →2=b ,P 1P →=λPP →2(λ≠-1),则OP →等于( )A .a +λbB .λa +(1-λ)bC .λa +bD.11+λa +λ1+λb 考点 平面向量基本定理 题点 用基底表示向量 答案 D解析 ∵P 1P —→=λPP 2—→,∴OP →-OP →1=λ(OP →2-OP →),∴(1+λ)OP →=OP →1+λOP →2, ∴OP →=11+λOP →1+λ1+λOP →2=11+λa +λ1+λb .7.设a ,b 为基底向量,已知向量AB →=a -k b ,CB →=2a +b ,CD →=3a -b ,若A ,B ,D 三点共线,则实数k 的值等于( ) A .2 B .-2 C .10D .-10考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数 答案 A解析 AD →=AB →+BC →+CD →=(a -k b )+(-2a -b )+(3a -b )=2a -(k +2)b ,∵A ,B ,D 三点共线,∴AB →=λAD →,即a -k b =λ[2a -(k +2)b ]=2λa -λ(k +2)b ,∵a ,b 为基底向量,∴⎩⎪⎨⎪⎧2λ=1,k =λ(k +2),解得λ=12,k =2.8.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足O P →=13⎝⎛⎭⎫12OA →+12OB →+2OC →,则点P 一定为( )A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .△ABC 的重心D .AB 边的中点 答案 B解析 ∵O 是△ABC 的重心,∴OA →+OB →+OC →=0,∴OP →=13⎝⎛⎭⎫-12OC →+2OC →=12OC →,∴点P 是线段OC 的中点,即AB 边中线的三等分点(非重心).故选B.9.已知a =e 1+e 2,b =2e 1-e 2,c =-2e 1+4e 2(e 1,e 2是同一平面内的两个不共线向量),则c =________.(用a ,b 表示) 考点 平面向量基本定理 题点 用基底表示向量 答案 2a -2b 解析 设c =λa +μb ,则-2e 1+4e 2=λ(e 1+e 2)+μ(2e 1-e 2) =(λ+2μ)e 1+(λ-μ)e 2, 因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧ -2=λ+2μ,4=λ-μ,解得⎩⎪⎨⎪⎧λ=2,μ=-2,故c =2a -2b .10.如图,在△MAB 中,C 是边AB 上的一点,且AC =5CB ,设MA →=a ,MB →=b ,则MC →=________.(用a ,b 表示)考点 平面向量基本定理 题点 用基底表示向量 答案 16a +56b解析 MC →=MA →+AC →=MA →+56AB →=MA →+56(MB →-MA →)=16MA →+56MB →=16a +56b .11.已知e 1,e 2不共线,a =e 1+2e 2,b =2e 1+λe 2,要使a ,b 能作为平面内的一组基底,则实数λ的取值范围为______________. 考点 平面向量基本定理 题点 基底的含义与性质 答案 (-∞,4)∪(4,+∞)解析 若能作为平面内的一组基底,则a 与b 不共线.a =e 1+2e 2,b =2e 1+λe 2,由a ≠k b ,即得λ≠4.12.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为________.考点 向量夹角的定义及夹角的范围 题点 求向量的夹角解析 由题意可画出图形,在△OAB 中,因为∠OAB =60°,|b |=2|a |, 所以∠ABO =30°,OA ⊥OB , 即向量a 与c 的夹角为90°. 三、解答题13.在梯形ABCD 中,AB →∥CD →,M ,N 分别是DA ,BC 的中点,且DC AB =k .设AD →=e 1,AB →=e 2,以e 1,e 2为基底表示向量DC →,BC →,MN →. 考点 平面向量基本定理 题点 用基底表示向量 解 方法一 如图所示,∵AB →=e 2,且DC AB =k ,∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD → =e 1+(k -1)e 2.又∵MN →+NB →+BA →+AM →=0, 且NB →=-12BC →,AM →=12AD →,∴MN →=-AM →-BA →-NB →=-12AD →+AB →+12BC →=k +12e 2.方法二 如图所示,过C 作CE ∥DA ,交AB 于点E ,交MN 于点F .同方法一可得DC →=k e 2.则BC →=BE →+EC →=-(AB →-DC →)+AD →=e 1+(k -1)e 2, MN →=MF →+FN →=DC →+12EB →=DC →+12(AB →-DC →)=k +12e 2. 方法三 如图所示,连接MB ,MC .同方法一可得DC →=k e 2, BC →=e 1+(k -1)e 2. 由MN →=12(MB →+MC →),得MN →=12(MA →+AB →+MD →+DC →)=12(AB →+DC →)=k +12e 2. 14.如图所示,已知△AOB 中,点C 是以A 为对称中心的点B 的对称点,OD →=2DB →,DC 与OA 交于E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值. 考点 平面向量基本定理 题点 用基底表示向量解 (1)由题意知A 是BC 的中点,且OD →=23OB →=23b .由平行四边形法则知OB →+OC →=2OA →,∴OC →=2OA →-OB →=2a -b ,DC →=OC →-OD →=(2a -b )-23b =2a -53b .(2)EC →∥DC →,又∵EC →=OC →-OE →=(2a -b )-λa =(2-λ)a -b ,DC →=2a -53b ,∴2-λ2=153,∴λ=45.15.如图,平面内有三个向量OA →,OB →,OC →.其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),求λ+μ的值.考点 平面向量基本定理的应用 题点 利用平面向量基本定理求参数解 如图,以OA ,OB 所在射线为邻边,OC 为对角线作平行四边形ODCE ,则OC →=OD →+OE →.在Rt △OCD 中,∵|OC →|=23, ∠COD =30°,∠OCD =90°, ∴|OD →|=4,|CD →|=2, 故OD →=4OA →,OE →=2OB →, 即λ=4,μ=2,∴λ+μ=6.。
第二章 2.3 2.3.1 平面向量基本定理

2.3.1平面向量基本定理1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围0°≤θ≤180°特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥bθ=180°a与b反向[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.用基底表示向量[典例]如图,在平行四边形ABCD中,设对角线AC=a,BD=b,试用基底a,b表示AB,BC.[活学活用]如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,BA=a,BC=b.试以a,b为基底表示EF,DF,CD.向量夹角的简单求解[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b 与a的夹角又是多少?[活学活用]如图,已知△ABC是等边三角形.(1)求向量AB与向量BC的夹角;(2)若E为BC的中点,求向量AE与EC的夹角.平面向量基本定理的应用[典例]NC,AM与BN相交于点P,求AP∶PM与BP∶PN.[一题多变]1.[变设问]在本例条件下,若CM=a,CN=b,试用a,b表示CP,2.[变条件]若本例中的点N 为AC 的中点,其它条件不变,求AP ∶PM 与BP ∶PN .层级一 学业水平达标1.已知平行四边形ABCD 中∠DAB =30°,则AD 与CD 的夹角为( ) A .30° B .60° C .120°D .150°2.设点O 是平行四边形ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB . A .①② B .①③ C .①④D .③④3.若AD 是△ABC 的中线,已知AB =a ,AC =b ,则以a ,b 为基底表示AD =( ) A .12(a -b )B .12(a +b )C .12(b -a )D .12b +a4.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =( ) A .12(e 1+e 2)B .12(e 1-e 2)C .12(2e 2-e 1)D .12(e 2-e 1)5.设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +43AC B .AD =13AB -43ACC .AD =43AB +13AC D .AD =43AB -13AC6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.7.已知e 1,e 2是两个不共线向量,a =k 2e 1+⎝⎛⎭⎫1-5k2e 2与b =2e 1+3e 2共线,则实数k =______.8.如下图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM =13BC ,CN =13CA ,AP =13AB ,若AB =a ,AC =b ,试用a ,b 将MN ,NP ,PM 表示出来.10.证明:三角形的三条中线共点.层级二 应试能力达标1.在△ABC 中,点D 在BC 边上,且BD =2DC ,设AB =a ,AC =b ,则AD 可用基底a ,b 表示为( )A .12(a +b )B .23a +13bC .13a +23bD .13(a +b )2.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =( ) A .43a +23bB .23a +43bC .23a -23bD .-23a +23b3.如果e 1,e 2是平面α内所有向量的一组基底,那么,下列命题中正确的是( ) A .若存在实数λ1,λ2,使得λ1e 1+λ2e 1=0,则λ1=λ2=0B .平面α内任一向量a 都可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈RC .λ1e 1+λ2e 2不一定在平面α内,λ1,λ2∈RD .对于平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对4.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C.x+2y-2=0 D.2x+y-2=05.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a +________b.6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式;(3)若4e1-3e2=λa+μb,求λ,μ的值.8.若点M是△ABC所在平面内一点,且满足:AM=34AB+14AC.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设BO=x BM+y BN,求x,y的值.。
第二章基本定理第二讲解的延拓

第⼆章基本定理第⼆讲解的延拓第⼆讲解的延拓(3学时)教学⽬的:讨论解的延拓定理。
教学要求:理解解的延拓定理,并⽤解的延拓定理研究⽅程的解教学重点:解的延拓定理条件及其证明教学难点:应⽤解的延拓定理讨论解的存在区间。
教学⽅法:讲练结合教学法、启发式相结合教学法。
教学⼿段:传统板书与多媒体课件辅助教学相结合。
教学过程:解的存在唯⼀性定理的优点是:在相当⼴泛的条件下,给定⽅程:),(y x f dxdy =有满⾜初值条件00)(y x y =的唯⼀解存在,但也有缺点,即它是局部的,它只能肯定这种解在0x x =附近的⼀个区间),min(,||0mb a h h x x =≤-上存在,有时所得的区间很⼩,因⽽相应的微分曲线也只是很短的⼀段,如初值问题 22(3.1)(0)0dy x y dx y ?=+ =?当定义域为R:11≤≤-x 时,解存在的唯⼀区间.21}21,1min{||==≤h x 当定义域为R:21≤≤-x 时,解的顾在唯⼀区间.41}41,1min{||==≤h x 这样随着),(y x f 的定义域的增⼤,解存在的唯⼀区间反⽽缩⼩,这显然是我们不想看到的,⽽且实际要求解存在下载向尽量⼤,这就促使我们引进解的延拓概念.扩⼤解存在不在此区间.1.局部利普希茨(Lipschitz )条件. 若函数),(y x f 在区域G 内连续且对G 内的每⼀点P,有以P 为中⼼完全含于G 内的闭矩形Rp 存在,在Rp 上),(y x f 在G 内关于y 满⾜Lipschitz 条件,(对不同的点,域Rp 的⼤⼩和常数L 尽可能不同),则称 ),(y x f 在G 内对y 满⾜局部Lipschitz 条件.2. 解的延拓定理. 如果⽅程(3.1)在奇函数),(y x f 在有界区域G 中连续,且在G 内关于y 满⾜局部Lipschitz 条件,那么⽅程(3.1)的通解过G 内任何⼀点(00,y x )的解)(x e y =可以延拓.直到点))(,,(x x ?任意接近G 的边界.以向X 增⼤的⼀⽅延拓来说,如果)(x y ?=它的延拓到区间m x x ≤≤0时.则当m x →时,))`(,(x x ?趋于区间G 的边界.上节我们给出了初值问题(2.2)解的存在唯⼀性定理.应该注意到,这个定理的结果是局部的,也就是说解的存在区间是“很⼩”的.通常⽅程(2.1)的右端函数f (x ,y )存在区域D 可能是很⼤的,这样,我们⾃然要讨论,此时初值问题(2.2)的解的存在区间是否可以扩⼤.2.3.1 延展解、不可延展解的定义定义2.1 设1()y x ?=是初值问题(2,2)在区间 1I R ?上的⼀个解,如果(2.2)有⼀个在区间 2I R ?上的解 2()y x ?=,且满⾜(1) 12,I I ?(2)当 1x I ∈时, 12()(),x x ??≡则称解 1()y x ?=,1x I ∈是可延展的,并称 2()x ?是 1()x ?在2I 上的⼀个延展解. 否则,如果不存在满⾜上述条件的解 2()x ?,则称 1x I ∈,1()x ?是初值问题(2.2)的⼀个不可延展解(亦称饱和解)。
常微分方程第二章

第二章 基本定理我们在第一章主要学习了初等积分法,掌握了几类常微分方程的解法.但是这些解法只适用于某些特殊的类型,很多其它的常微分方程不能用初等解法进行求解.1841年,法国数学家刘维尔(Liouville )证明了里卡蒂(Riccati )方程)0)(()()()(2≠++=x p x r y x q y x p dydx 除了某些特殊的类型外,一般不能用初等积分法求解.例如,很简单的里卡蒂方程22y x dxdy +=就不能用初等积分法求解.自然地,如果一个常微分方程不能用初等积分法求解,那么应该如何处理呢?是否存在解呢?如果存在解,它的解是否唯一呢?解的存在区间是什么呢?初值的微小误差对解有什么影响呢?这些问题在理论的研究和实际应用中,都有着重要的意义.本章将解决这些基本问题. 本章主要介绍解的存在唯一性定理、解的延展定理与比较定理、解对初值的连续依赖性定理以及解对初值的可微性定理,这些定理就回答了我们刚才的疑问,有效的处理解的存在性、唯一性、存在区间、初值对解的影响等问题,为我们使近似解法奠定理论基础,同时这些定理也是常微分方程理论的基础内容,对进一步的学习奠定基础.2.1 解的存在唯一性定理对于一般的常微分方程),(y x f dxdy = (2.1) 如果给出了初始条件00)(y x y =,我们就得到了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy (2.2) 这时,在什么样的条件下,柯西初值问题的解存在且唯一呢?解的存在区间是什么呢?我们有如下的解的存在唯一性定理.2.1.1 存在唯一性定理的叙述定理2.1(存在唯一性定理)如果方程(2.1)的右端函数),(y x f 在闭矩形区域b y y b y a x x a x R +≤≤-+≤≤-00002,:上满足如下条件:(1)在2R 上连续;(2)在2R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于2R 上的任何一对点),(y x 和),(x 有不等式:y y N y x f y x f -≤-),(),(则初值问题(2.2)在区间],[0000h x h x +-上存在唯一解00)(),(y x x y ==ϕϕ 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==. 在给出定理2.1的证明之前,我们先对定理2.1的条件和结论做些说明:1、在两个条件中,条件(2),即李普希兹条件比较难于验证,因为李普希兹常数N 难以确定.但是,我们可以将该条件加强,替换为:如果函数),(y x f 在闭矩形区域2R 关于y 的偏导数),(y x f y '存在且有界.这样,可以推出李普希兹条件成立.事实上,因为),(y x f y '有界,故设N y x f y ≤'),(,对2),(),,(R x y x ∈∀,由拉格朗日中值定理得:y y N y y x f y x f y x f y -≤-'=-),(),(),(ξ我们验证),(y x f y '在闭矩形区域2R 上有界也不容易,可以进一步将条件加强为:),(y x f y '在闭矩形区域2R 上连续.由闭区域上连续函数的性质知:),(y x f y '在闭矩形区域2R 上有界,所以李普希兹条件成立.因此,有如下的关系式:),(y x f y '在2R 上连续⇒),(y x f y '在2R 上存在且有界⇒李普希兹条件2、在定理2.1的结论中,解)(x y ϕ=的存在区间为],[0000h x h x +-,其中 ),(max ),,min(),(0y x f M Mb a h R y x ∈==.为什么解的存在区间不是],[00a x a x +-呢?这是因为我们研究问题的范围为闭矩形区域2R ,方程的解)(x y ϕ=不能超出2R 的范围,又因为),(max ),(y x f M Ry x ∈=,所以M y x f M ≤≤-),( 即 M dxdy M ≤≤- 由⎪⎩⎪⎨⎧=-=00)(y x y M dx dy 和⎪⎩⎪⎨⎧==00)(y x y M dx dy 得:001)()(y x x M x y +--=,002)()(y x x M x y +-= 因此)()()(21x y x y x y ≤=≤ϕ,即)(x y ϕ=夹在)(1x y 与)(2x y 之间.又,)(1x y 与)(2x y 在2R 上的存在区间为],[0000h x h x +-,故)(x y ϕ=的存在区间也是],[0000h x h x +-.2.1.2 存在性的证明首先,我们给出柯西初值问题(2.2)的等价转化,即求(2.2)的解)(x y ϕ=,等价于求解积分方程⎰+=xx d y f y y 0))(,(0ξξξ (2.3) 事实上,如果)(x y ϕ=是初值问题(2.2)的解,即有))(,()(x x f x ϕϕ='且00)(y x =ϕ从0x 到x 积分得:⎰+=xx d f y x 0))(,()(0ξξϕξϕ 即)(x y ϕ=是积分问题(2.3)的解.反过来,如果)(x y ϕ=是积分问题(2.3)的解,即有⎰+=xx d f y x 0))(,()(0ξξϕξϕ 则00)(y x =ϕ且))(,()(x x f x ϕϕ='即)(x y ϕ=是初值问题(2.2)的解.经过等价转化,我们将初值问题(2.2)的求解,转化为积分问题(2.3)的求解.下面用皮卡(Picard )逐次逼近来证明积分问题(2.3)的解的存在性,分为三个步骤:1、构造近似函数列{})(x n ϕ任取一个满足初值条件00)(y x y =的函数)(0x y ϕ=作为首项(初始项),并要求在2R 上的存在区间为:],[0000h x h x +-,简单起见,取00)(y x =ϕ,将它代入方程(2.3)的右端,所得到的函数用)(1x ϕ表示,并称为一次近似,即⎰+=xx d f y x 0))(,()(001ξξϕξϕ 再将)(1x ϕ代入方程(2.3)的右端就得到二次近似⎰+=xx d f y x 0))(,()(102ξξϕξϕ 序行此法,可以得到n 次近似⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ 为了保证上述的逐次逼近过程可以一直进行下去,必须有2))(,(R x x n ∈ϕ,即当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ 下面用数学归纳法证明b y x n ≤-0)(ϕ.显然,当],[0000h x h x x +-∈时,有b y y y x ≤=-=-0)(0000ϕ假设,当],[0000h x h x x +-∈时,有b y x n ≤--01)(ϕ,那么,对于)(x n ϕ有⎰-=-xx n n d f y x 0))(,()(10ξξϕξϕ 从而有b Mb M Mh x x M d f y x xx n n =≤≤-≤≤-⎰-00100))(,()(ξξϕξϕ 由数学归纳法知,当],[0000h x h x x +-∈时,有,2,1)(0=≤-n b y x n ϕ这样,我们就可以得到一个近似函数列{})(x n ϕ.2、证明近似函数列{})(x n ϕ在区间],[0000h x h x +-上一致收敛.由于无法得到{})(x n ϕ的通项公式,只知道首项和递推关系式,直接证明函数列{})(x n ϕ的收敛性比较困难,为此我们构造函数项级数+-++-+-)]()([)]()([)(1010x x x x x n n ϕϕϕϕϕ (2.4) 它的部分和是)()]()([)]()([)()(10101x x x x x x x S n n n n ϕϕϕϕϕϕ=-++-+=-+因此,证明{})(x n ϕ的收敛性转化为证明级数(2.4)的收敛性,下面我们证明级数(2.4)在区间],[0000h x h x +-上一致收敛.首先研究级数(2.4)的通项)(x n μ⎰=-xx d f x x 0))(,()()(001ξξϕξϕϕ 即⎰=-xx d y f y x 0),()(001ξξϕ 所以00010),()(x x M d y f y x x x -≤≤-⎰ξξϕ 因为⎰+=x x d f y x 0))(,()(001ξξϕξϕ,⎰+=x x d f y x 0))(,()(102ξξϕξϕ,所以 ⎰-≤-x x d f f x x 0))(,())(,()()(0112ξξϕξξϕξϕϕ由李普希兹条件,得 !2)()()()(200011200x x MN d x MN d N x x x x x x -=-≤-≤-⎰⎰ξξξξϕξϕϕϕ 下面用数学归纳法证明!)()(011n x x MN x x nn n n -≤---ϕϕ 显然,2,1=n 的时候,不等式成立(上面已经给出), 假设!)()(011n x x MN x x n n n n -≤---ϕϕ成立,那么对于1+n 的情形有 )!1(!)()())(,())(,()()(100111000+-=-≤-≤-≤-+--+⎰⎰⎰n x x MN d n x MN d N d f f x x n n x x n n xx n n x x n n n n ξξξξϕξϕξξϕξξϕξϕϕ由数学归纳法知,对一切自然数n ,均有!)()(011n x x MNx x nn n n -≤---ϕϕ 又00h x x ≤-,所以级数(2.4)的通项满足: !)(011n h MN v x n n n n -+=≤μ ( ,2,1=n ) 利用比式判别法,可知以n v 为通项的级数收敛,从而以)(x n μ为通项的级数(2.4)绝对收敛且一致收敛.又,每一个)(x n μ是连续的,所以级数(2.4)的和函数也是连续的,记为)(x ϕ,其存在区间也是],[0000h x h x +-.因此函数列{})(x n ϕ就收敛于)(x ϕ.3、证明)(lim )(x x n n ϕϕ∞→=是积分问题(2.3)的解,从而也是初值问题(2.2)的解.在⎰-+=x x n n d f y x 0))(,()(10ξξϕξϕ两端取极限,得到 ⎰-∞→∞→+=xx n n n n d f y x 0))(,(lim )(lim 10ξξϕξϕ 即⎰+=xx d f y x 0))(,()(0ξξϕξϕ 所以)(x ϕ是积分问题(2.3)的解,从而也是初值问题(2.2)的解.2.1.3 唯一性的证明下面我们证明解的唯一性.在证明唯一性之前,先介绍一个重要的不等式,即贝尔曼(Bellman )不等式.贝尔曼引理 设)(x y 为区间],[b a 上的非负连续函数,b x a ≤≤0.若存在,0≥δ 0≥k ,使得)(x y 满足不等式],[,)()(0b a x d y k x y xx ∈+≤⎰ττδ (2.5) 则有],[,)(0b a x e x y x x k ∈≤-δ证明 仅证明0x x ≥的情形,0x x ≤的情形类似.令)(x y 的原函数为⎰=xx d y x R 0)()(ττ,代入(2.5)得 δ≤-')()(x kR x R两边同时乘以积分因子)(0x x k e --,得)()(00)]()([x x k x x k e x kR x R e ----≤-'δ从0x 到x 积分得)()(00)(x x k x x k e e x kR -----≤δδ即)(0)(x x k e x kR -≤+δδ 由(2.5)知,)()(x kR x y +≤δ,所以],[,)(0b a x e x y x x k ∈≤-δ下面证明积分问题(2.3)的解的唯一性.假设积分问题(2.3)有两个解)(1x y 和)(2x y ,我们只需要证明:)(1x y )(2x y ≡,],[0000h x h x x +-∈事实上,因为⎰+=x x d y f y x y 0))(,()(101ξξξ,⎰+=xx d y f y x y 0))(,()(202ξξξ 所以有⎰-≤-xx d y f y f x y x y 0))(,())(,()()(2121ξξξξξ由李普希兹条件知⎰-≤-xx d y y N x y x y 0)()()()(2121ξξξ 令N k x y x y x y ==-=,0,)()()(21δ,由贝尔曼引理可知,0)(=x y ,即)(1x y )(2x y ≡. 这样,我们就完成了解的存在性与唯一性的证明.2.1.4 三点说明为了更好的理解和掌握解的存在唯一性定理,我们对该定理再做三点说明.1、在存在性的证明过程中,我们利用逐次逼近法构造了近似函数列{})(x n ϕ,其中首项为:00)(y x =ϕ,递推关系式为:⎰-+=xx n n d f y x 0))(,()(10ξξϕξϕ.该方法实际上给出了我们一种求初值问题(2.2)的近似解的方法,当用n 次近似解逼近精确解时,需要给出它的误差估计.事实上,有∑∑∞+=∞=+-≤-≤-101!)()()()(n k k k nk k k n k x x N N M x x x x ϕϕϕϕ 0)!1()(!)!1()(!10001010Nh n k k k n n k k k e n Nh N M k h N n Nh N M k h N N M +=+<≤+∞=+∞+=∑∑ 2、如果方程(2.1)是线性方程,即)()(x q y x p dxdy +-= 其中)(x p 和)(x q 在区间],[b a 上连续,这时,初值问题(2.2)在带型区域+∞<<-∞≤≤y b x a R ,:2满足定理2.1的条件.事实上,)()(),(x q y x p y x f +-=在2R 上连续,而且)(),(x p y x f y -='在2R 上也连续,所以),(y x f 关于变量y 满足李普希兹条件.这时,初值问题(2.2)的解存在且唯一,存在区间为],[b a .3、定理2.1中的李普希兹条件是保证解唯一的充分条件,那么这个条件是不是必要条件呢?回答是否定的,即李普希兹条件是解唯一的充分非必要条件.下面我们给出一个例子来说明李普希兹条件是解唯一的非必要条件,也就是说,即使李普希兹条件不成立,初值问题(2.2)的解也可能是唯一的.例1 试证方程0,ln ,0≠=⎩⎨⎧=y y y y dx dy 经过xOy 平面上任一点的解都是唯一的.证明 由00,ln ,0≠=⎩⎨⎧=y y y y dx dy 可得:0=y 或x Ce e y ±=. 任给xOy 平面上的一个点),(00y x ,只会对应0=y 或xCe e y ±=中的一个解,也就是说,过xOy 平面上任一点的解都是唯一的.但是,我们有0ln ln )0,(),(-==-y y y y x f y x f 因为+∞=→y y ln lim 0,所以找不到0>N ,使得 0)0,(),(-≤-y N x f y x f从而方程右端函数在0=y 的任何邻域上不满足李普希兹条件,但是初值问题(2.2)的解却是唯一的,这说明李普希兹条件是非必要条件.习 题 2.11.试判断方程y x dx dy tan =在区域 (1)π≤≤≤≤-y x R 0,11:1;(2)44,11:2ππ≤≤-≤≤-y x R上是否满足定理2.1的条件?2.讨论方程3123y dx dy =在怎样的区域中满足定理2.1的条件.并求通过)0,0(的一切解.3.试用逐次逼近法求方程2y x dxdy -=满足初值条件0)0(=y 的近似解: )(),(),(),(3210x x x x ϕϕϕϕ并在闭矩形区域11,11:2≤≤-≤≤-y x R 给出三次近似的误差估计.4.利用逐次逼近法求方程22x y dxdy -=适合初值条件1)0(=y 的近似解: )(),(),(210x x x ϕϕϕ并在闭矩形区域111,11:2≤-≤-≤≤-y x R 给出二次近似的误差估计.5.试证明定理2.1中的n 次近似解)(x n ϕ与精确解)(x ϕ有如下的误差估计式:10)!1()()(+-+≤-n n n x x n MN x x ϕϕ 6.在条形区域+∞<≤≤y b x a ,内,假设方程(2.1)的所有解都唯一,对其中任意两个解)(),(21x y x y ,如果有)()(0201x y x y <,则必有b x x x y x y ≤≤<021),()(.7.讨论方程323y dx dy = 解的唯一性.2.2 延展定理和比较定理由解的存在唯一性定理,我们知道,初值问题(2.2)的解在满足一定条件的情况下存在且唯一,但是解的存在区间不是],[00a x a x +-,而是],[0000h x h x +- 其中),(max ),,min(),(0y x f M Mb a h R y x ∈==.如果M 比较大的话,则解的存在区间就非常小,这对我们研究解的性质产生了很大的局限性,只能在很小的范围内有解,当x 超出这个范围时,解的情况就不清楚了.为了解决这个问题,我们有下面的延展定理.2.2.1 延展定理定理2.2(延展定理)如果方程(2.1)的右端函数在区域R R D ⨯⊂上连续,且关于变量y 满足局部的李普希兹条件,即对于D 内的任一闭矩形区域都满足李普希兹条件,则对任何一点D y x ∈),(00,初值问题(2.2)的解)(x y ϕ=可以向左右无限延展,直到))(,(x x ϕ任意接近区域D 的边界.在给出定理的证明之前,先对“))(,(x x ϕ任意接近区域D 的边界”进行说明.当区域D 有界时,积分曲线向左右延展可以任意接近;当区域D 无界时,积分曲线向左、右延展,或者任意接近区域D 的边界(边界存在的话),或者无限远离坐标原点.证明 首先证明区域D 有界的情形.设区域D 的边界为D D L -=(D 为D 的闭包).对于任意给定的正数ε,记L 的ε邻域为εU ,记L 的2ε邻域为2εU ,记L 的4ε邻域为4εU .则集合22εεU D D -=为闭集,且D D ⊂2ε,所以2εD 有界. 只要证明积分曲线可以到达2εD 的边界2εL ,由ε的任意性知,积分曲线就可以任意接近区域D 的边界L .事实上,以2εD 中的任意一点为中心,以4ε为半径的闭圆区域均包含在区域D 的内部.且在闭区域44εεU D D -=之内.从而,以2εD 中的任意一点为中心,以4221ε=a 为边长的正方形也在闭区域4εD 之内.记 ),(max 4),(1y x f M D y x ε∈= 则过2εD 的任意一点),(**y x 的积分曲线,必至少可在区间],[**h x h x +-上存在,其中)82,82min(),min(1111M M a a h εε==. 于是,过点),(00y x 的积分曲线)(x y ϕ=每向左或向右延展一次,其存在区间就伸长一个确定的正数h ,由于2εD 有界,)(x y ϕ=经过有限次延展后一定可以达到2εD的边界2εL .于是也就可以任意接近区域D 的边界L .其次考虑区域D 为无界的情形.这时,我们可以用闭圆区域,2,1},),{(222=≤+=n n y x y x S n与区域D 取交集,令n n S D D =,则 ∞==1n n D D .由于n D 为有界的区域,根据前面的证明,我们可知,过n D 内任一点的积分曲线能够任意接近n D 的边界.因此,过点),(00y x 的积分曲线)(x y ϕ=可以无限接近区域D 的边界.延展定理的证明,关键是第一步证明,也就是区域D 有界的时候,过点),(00y x 的积分曲线)(x y ϕ=向左向右延展的时候,一定要做等速延展,即延展步幅h 是不变的. 例1 试讨论方程2y dxdy=通过点)1,1(的解和通过点)1,3(-的解的存在区间. 解 该题目中研究问题的区域D 为整个坐标平面xOy .方程右端函数满足延展定理的条件.由2y dxdy=可以解得方程的通解为 xC y -=1代入1)1(=y 得:2=C .故通过点)1,1(的解为xy -=21 它可以向左无限延展,而当-→2x 时,+∞→y ,所以通过点)1,1(的解xy -=21的存在区间为)2,(-∞.代入1)3(-=y 得:2=C .故通过点)1,3(-的解为xy -=21它可以向右无限延展,而当+→2x 时,-∞→y ,所以通过点)1,3(-的解xy -=21的存在区间为),2(+∞.这个例子说明,尽管),(y x f 在整个坐标平面上满足延展定理的条件,解上的点))(,(x x ϕ也能无限接近区域D 的边界,但是延展的方向却不一定是无限向右和向左,可能是向上或向下,从而导致解的存在区间不是),(+∞-∞. 例2 试证明:对任意的0x 及满足条件100<<y 的0y ,方程221)1(y x y y dx dy ++-=的满足条件00)(y x y =的解)(x y y =在),(+∞-∞上存在.证明:令221)1(),(y x y y y x f ++-=,则222222)1(122),(y x x y y x y y x f y ++--++=' 显然),(),,(y x f y x f y '在xOy 平面上连续,满足解的存在唯一性条件及延展定理的条件,而1,0==y y 是),(y x f dxdy=的解, 因此,满足00)(y x y =,100<<y 的解存在,而且可以无限延展到xOy 平面的边界,且不能穿过1,0==y y ,故只能向左右无限延展,所以,)(x y y =在),(+∞-∞上存在.该例题说明,),(y x f 在整个坐标平面上满足延展定理的条件,当方程的解不能穿过1,0==y y 时,它就不能向上向下无限延展了,只能向左、向右延展,所以解的存在区间就是),(+∞-∞.在这里,1,0==y y 控制了解的延展方向,使它按照我们的要求进行延展,因此就有了下面的比较定理. 2.2.2 比较定理我们在使用延展定理的时候,通常会和比较定理配合使用,从而起到控制延展方向的作用.下面介绍一下比较定理.我们在考察方程(2.1)),(y x f dxdy=时,通常将右端函数),(y x f 进行放缩的处理,比如),(),(),(21y x F y x f y x F <<这时,我们可以同时考察),(1y x F dx dy =和),(2y x F dxdy = 我们有如下的比较定理:定理2.3 (第一比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F <<设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ<<Φϕ 021),()()(x x x x x <Φ>>Φϕ证明 仅证当0x x >时,)()(2x x Φ<ϕ,其它的情形相类似. 由比较定理的条件(1),初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解在0x 的某一邻域内存在且唯一,分别记为)(x y ϕ=和)(2x y Φ=,它们满足0020)()(y x x =Φ=ϕ令)()()(2x x x h ϕ-Φ=,则0)()()(0020=-Φ=x x x h ϕ且0))(,())(,()()()(0002020020>-Φ='-Φ'='x x f x x F x x x h ϕϕ所以函数)(x h 在0x 的某一右邻域内是严格单调增加的.如果在0x x >时,0)(>x h 不是总成立,则至少存在一点01x x >,使得0)(1=x h ,且当10x x x <<时,0)(>x h ,因此在点1x 的左导数0)0(1≤-'x h ,这与0))(,())(,()()()(1112121121>-Φ='-Φ'='x x f x x F x x x h ϕϕ矛盾.因此当0x x >时,0)(>x h 总成立,即)()(2x x Φ<ϕ.比较定理的应用,关键是),(1y x F 和),(2y x F 的选取,因为初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解)(x y ϕ=的存在区间的延展,受到)(1x y Φ=和)(2x y Φ=的控制,即)(x y ϕ=夹在)(1x y Φ=和)(2x y Φ=之间.因此,我们必须能确定出)(1x y Φ=和)(2x y Φ=的存在区间,这就是我们选取),(1y x F 和),(2y x F 的标准,即⎪⎩⎪⎨⎧==001)(),(y x y y x F dxdy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解)(1x y Φ=和)(2x y Φ=必须能够求得. 下面我们给出第二比较定理.定理2.4 (第二比较定理)设定义在某个区域D 上的函数),(y x f ,),(1y x F 和),(2y x F 满足条件:(1)在D 满足解的存在唯一性定理及延展定理的条件,即在D 上连续,在D 上关于变量y 满足李普希兹条件;(2)在D 上有不等式),(),(),(21y x F y x f y x F ≤≤设初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy ,⎪⎩⎪⎨⎧==001)(),(y x y y x F dx dy 和⎪⎩⎪⎨⎧==002)(),(y x y y x F dx dy的解分别为)(x y ϕ=,)(1x y Φ=和)(2x y Φ=,则在它们的共同存在区间上有下列不等式:021),()()(x x x x x >Φ≤≤Φϕ 021),()()(x x x x x <Φ≥≥Φϕ习 题 2.21.设方程为),()(22y x f a y dxdy-= 假设),(y x f 及),(y x f y '在xOy 平面上连续,试证明:对于任意的0x 及a y <0,方程满足00)(y x y =的解都在),(+∞-∞上存在.2.指出方程2)1(2xy e y dxdy -=的每一个解的最大存在区间,以及当x 趋于这个区间的右端点时解的极限.3.讨论方程xx dx dy 1cos 12-= 解的存在区间.4.设),(y x f 在整个平面上连续有界,对y 有连续偏导数,试证明方程),(y x f dxdy=的任一解)(x y ϕ=在区间+∞<<∞-x 上有定义. 5.讨论方程212-=y dx dy 的通过点)0,0(的解,以及通过点)3,2(ln -的解的存在区间.6.在方程)(y f dxdy=中,如果)(y f 在),(+∞-∞上连续可微,且 )0(0)(≠<y y yf ,求证方程满足00)(y x y =的解)(x y 在区间),[0+∞x 上存在,且有0)(lim =+∞→x y x .2.3 解对初值的连续依赖性定理和解对初值的可微性定理通过前两节的存在唯一性定理和延展定理,加上比较定理,我们知道了初值问题(2.2)在什么样的条件下,解是存在的,是唯一的,而且存在区间比较小的时候,通过延展定理和比较定理可以将解的存在区间变大,从而在实际问题中可以达到我们的要求.但是,在实际问题中,还有一个问题需要解决,那就是误差问题.我们的初始条件00)(y x y =如果产生了微小的偏差,这个偏差对我们的初值问题(2.2)的解)(x y ϕ=会有什么影响呢?下面我们来解决这个问题. 我们在研究初值问题(2.2)的时候,习惯上把0x 和0y 当作常数来看待,这样初值问题(2.2)的解)(x y ϕ=被看作x 的函数.实际上,如果0x ,0y 变化,初值问题(2.2)的解)(x y ϕ=也会发生变化.例如方程xydx dy = 经过点),(00y x 的解为x x y y 0=,可以看作00,,y x x 的函数.对于一般的情形,初值问题(2.2)的解也可以看作00,,y x x 的函数,记为),,(00y x x y ϕ=,代入00)(y x y = 得:0000),,(y y x x =ϕ.如果我们的初始条件00)(y x y =发生了微小的误差,变为了**0)(y x y =,初值问题(2.2)的解也变化不大的话,称解连续依赖于初值.下面我们给出连续依赖性的严格定义.定义2.1 设初值问题⎪⎩⎪⎨⎧==**0)(),(y x y y x f dxdy的解),,(*0*0y x x y ϕ=在区间],[b a 上存在,如果对于任意给定的正数ε,存在正数δ (δ的选取与,ε**0,y x 有关),使得对于满足δδ<-<-*00*00,y y x x (2.2)的解),,(00y x x y ϕ=都在],[b a 上存在,且有],,[,),,(),,(*0*000b a x y x x y x x ∈<-εϕϕ则称初值问题(2.2)的解),,(00y x x y ϕ=在点),(*0*0y x 连续依赖于初值,0x 0y .定理2.4 (解对初值的连续依赖性定理)设),(y x f 在区域D 内连续,且关于变量y 满足李普希兹条件.如果D y x ∈),(*0*0,初值问题(2.2)有解),,(*0*0y x x y ϕ=,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,则对任意的正数ε,存在0>δ,使对于满δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*000y x x y x x证明 对于任意给定的正数ε,取εδ<<10,使得闭区域}),,(,),{(1*0*0δϕ≤-≤≤=y x x y b x a y x U整个含在区域D 内,这是可以做到的,因为区域D 是开区域,且当b x a ≤≤时,D y x x x ∈)),,(,(*0*0ϕ,所以,只要1δ的选取足够小,以曲线),,(*0*0y x x y ϕ=为中线,宽度为12δ的带形开区域U 就整个包含在区域D 内, 选取δ满足)(110a b N e M--+<<δδ其中N 为李普希兹常数,),(max ),(y x f M Uy x ∈=,同时还要求δ的选取,必须保证闭正方形δδ≤-≤-*0*02,:y y x x R含于带形开区域U 内.由存在唯一性定理知,对于任一200),(R y x ∈,初值问题(2.2)在0x 的某邻域上存在唯一解),,(00y x x y ϕ=,而且),,(00y x x y ϕ=在0x 的该邻域上可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(000000⎰+=而),,(*0*0y x x y ϕ=可以表示为ττϕτϕd y x f y y x x xx )),,(,(),,(*0*0*0*0*0*⎰+=对上述两式做差得:ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx x x )),,(,()),,(,(),,(),,(*0*000*00*0*000*⎰⎰-+-=-ττϕτττϕτϕϕd y x f d y x f y y y x x y x x xx xx )),,(,()),,(,(),,(),,(*0*000*00*0*000*0⎰⎰-+-≤-ττϕτττϕττϕτd y x f d y x f y x f y y x x xx |)),,(,(||)),,(,()),,(,(|0000*0*0*00**0⎰⎰+-+-≤δττϕττϕτδM d y x f y x f xx +-+≤⎰|)),,(,()),,(,(|00*0*0*0ττϕτϕδd y x y x N M xx |),,(),,(|)1(00*0*0*0-++≤⎰由贝尔曼引理,得εδδδϕϕ<<+≤+≤---1)(*0*000)1()1(),,(),,(*a b N x x N e M e M y x x y x x因此,只要在),,(00y x x y ϕ=有定义的区间上,就有εϕϕ<-),,(),,(*0*000y x x y x x .下面我们证明:),,(00y x x y ϕ=在区间],[b a 上有定义.事实上,因为εϕϕ<-),,(),,(*0*000y x x y x x即解),,(00y x x y ϕ=夹在εϕ+=),,(*0*0y x x y 和εϕ-=),,(*0*0y x x y 之间,而且,初值问题(2.2)满足延展定理的条件,所以,解),,(00y x x y ϕ=可以向左向右无限延展,直到无限接近区域D 的边界,于是,它在延展的时候,必须由直线a x =和直线b x =穿出区域U ,从而),,(00y x x y ϕ=在区间],[b a 上有定义.解对初值的连续依赖性说明,初值),(00y x 无法准确得到,但是我们能得到测量数据),(*0*0y x ,只要误差比较小,即δδ<-<-*00*00,y y x x .我们就可以用),(*0*0y x 代替),(00y x 去计算,得到初值问题的解),,(*0*0y x x y ϕ=,这个解可以非常接近真实解),,(00y x x y ϕ=,即εϕϕ<-),,(),,(*0*000y x x y x x .同理,如果方程的右端函数),(y x f 不能准确得到,只能得到),(y x f 的近似函数),(~y x f ,即)),((,),(),(~D y x y x f y x f ∈<-δ我们就可以用),(~y x f 代替),(y x f 去计算,得到初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=,那么),,(00~y x x y ϕ=能否代替),,(00y x x y ϕ=呢?我们有下面的解的连续依赖性定理.定理2.5 (解对被积函数的连续依赖性定理)在区域D 上,),(y x f 和),(~y x f 都连续,而且关于变量y 满足李普希兹条件, 若初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 在b x a ≤≤上有解),,(00~y x x y ϕ=,则对任意给定的正数ε,存在0>δ,只要),(y x f 满足)),((,),(),(~D y x y x f y x f ∈<-δ则初值问题(2.2)的解),,(00y x x y ϕ=在b x a ≤≤上存在,且有εϕϕ<-),,(),,(00~00y x x y x x .证明 由解的存在唯一性定理知,初值问题⎪⎩⎪⎨⎧==00~)(),(y x y y x f dxdy 的解),,(00~y x x y ϕ=存在,设其存在区间为],[b a ,且有⎰+=xx d y x f y y x x 0))],,(,([),,(00~~000~ξξϕξϕ而初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dxdy的解),,(00y x x y ϕ=也存在,且可以表示为⎰+=xx d y x f y y x x 0))],,(,([),,(00000ξξϕξϕ则⎰⎰-=-xx xx d y x f d y x f y x x y x x 0))],,(,([))],,(,([),,(),,(0000~~0000~ξξϕξξξϕξϕϕ从而有⎰-≤-xx d y x f y x f y x x y x x 0|)),,(,()),,(,(|),,(),,(0000~~0000~ξξϕξξϕξϕϕ⎰-+-=xx d y x f y x f y x f y x f 0|)),,(,()),,(,()),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ ⎰-+-≤xx d y x f y x f y x f y x f 0|)),,(,()),,(,(||)),,(,()),,(,(|0000~00~00~~ξξϕξξϕξξϕξξϕξ⎰+-≤xx d y x y x N 0)|),,(),,((|0000~ξδξϕξϕ ⎰-+-≤xx d y x y x N a b 0|),,(),,(|)(0000~ξξϕξϕδ由贝尔曼引理,得)(0000~)(),,(),,(a b N e a b y x x y x x --≤-δϕϕ取)(a b N e ab ---<εδ,则εϕϕ<-),,(),,(0000~y x x y x x .且解),,(00y x x y ϕ=在b x a ≤≤上存在. 例1 考虑方程,ln ,0≠=⎩⎨⎧-=y y y y dx dy 解的情况.解 显然1,1,0-===y y y 是方程的解,当1,1,0-≠≠≠y y y 时,有y y dxdyln -= 这时解得上半平面的通解为x Ce e y -=,下半平面的通解为xCe e y --=.可以看到,对于Ox 轴上的初值)0,(0x ,在任意有限闭区间上解对初值连续依赖,但是,在),0[+∞上,无论),(00y x ,00≠y 如何接近)0,(0x ,只要x 充分大,过),(00y x 的积分曲线就不能与过)0,(0x 的积分曲线(即0=y )任意接近了.这个例子说明,解在有限闭区间上对初值连续依赖,不能推广到无限区间,即,在无限区间上解对初值的连续依赖定理就不成立了.我们有时不仅要求解对初值连续依赖,而且还要知道解),,(00y x x y ϕ=对初值00,y x 的偏导数00,y x ∂∂∂∂ϕϕ是否存在.下面给出解对初值的可微性定理. 定理2.6 (解对初值的可微性定理)如果函数),(y x f 以及),(y x f y '在区域D 内连续,则初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=在它有定义的区间上有连续偏导数00,y x ∂∂∂∂ϕϕ.并且有 ⎰-=∂∂'x x y d y x f e y x f x y x x 000)),,(,(00000),(),,(ττϕτϕ 及⎰=∂∂'xx y d y x f e y y x x 000)),,(,(000),,(ττϕτϕ 习 题 2.31.若函数),(y x f ,),(y x R 在区域D 内连续且满足李普希兹条件,设初值问题⎪⎩⎪⎨⎧=+=*0*0)(),(),(y x y y x R y x f dx dy 的解为),,(*0*0~y x x y ϕ=,存在区间为],[b a .对任意的正数ε,存在0>δ,使对于满足)),((,),(D y x y x R ∈<δ的),(y x R ,以及满足δδ<-<-*00*00,y y x x的任意),(00y x ,初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解),,(00y x x y ϕ=也在区间],[b a 上存在,且有εϕϕ<-),,(),,(*0*0~00y x x y x x 2.已知方程)sin(xy dxdy = 试求0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x x y x x y 和0000000),,(==⎥⎦⎤⎢⎣⎡∂∂y x y y x x y 3.设),,(00y x x ϕ是初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 的解,试证明0),(),,(),,(00000000=∂∂+∂∂y x f y y x x x y x x ϕϕ 2.4 欧拉折线法在第一章,我们介绍了方程的初等解法,即用微积分的知识求得常微分方程的函数解.但是绝大多数的方程不能用初等方法求解,在第二章的前三节中,我们给出了柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在什么样的条件下,解存在且唯一;在什么条件下,解的存在区间可以延展;在什么条件下连续依赖于初值;在什么条件下,解对初值是可微的.有了这些准备,我们就可以研究柯西初值问题的近似解.下面我们介绍求近似解的方法,欧拉折线法.假定函数),(y x f 在区域:+∞<<-∞≤≤y b x a ,上连续,且关于变量y 满足李普希兹条件,求柯西初值问题⎪⎩⎪⎨⎧==00)(),(y x y y x f dx dy 在区间],[0b x 上的近似解,我们采用的方法是:(1)等分区间],[0b x ,分点为n k kh x x k ,,1,0,0 =+=;小区间长度nx b h 0-=, (2)第一个小区间上用切线段逼近曲线:))(,(0000x x y x f y y -+=,(3)求出1x 所对应的纵坐标))(,(010001x x y x f y y -+=,(4)依次重复(2),(3)得到每个小区间上的线段,从而得到欧拉折线. 这样,我们就用欧拉折线作为柯西初值问题在区间],[0b x 近似解.欧拉折线法的前提是:柯西初值问题的解存在且唯一,而且解的存在区间是],[0b x .例1试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=+=1)1(22y y x dx dy 的解在4.1=x 时的近似值.解 令22),(y x y x f +=,2)1,1(=f ,这时12-=x y ,代入1.11=x 得:2.11=y ,65.2)2.1,1.1(=f ,这时2.1)1.1(65.2+-=x y , 代入2.12=x 得:465.12=y ,586225.3)465.1,2.1(=f ,这时465.1)2.1(586225.3+-=x y , 代入3.13=x 得:8236225.13=y ,0155990225.5)8236225.1,3.1(=f ,这时8236225.1)3.1(0155990225.5+-=x y ,代入4.14=x 得:53251824022.24=y 习 题 2.41. 试用欧拉折线法,取步长1.0=h ,求初值问题⎪⎩⎪⎨⎧=-=0)0(22y y x dx dy 的解在5.1=x 时的近似值.2.试用欧拉折线法,取步长1.0=h ,求初值问题 ⎪⎩⎪⎨⎧=+=2)1(22y y x dx dy 在区间]4.1,1[上的近似解.。
第2章第12讲 定积分与微积分基本定理

第12讲 定积分与微积分基本定理1.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n ),作和式∑ni =1f (ξi )Δx =∑ni =1b -an f (ξi ),当n →∞时,上 述和式无限接近某个□01常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛ab f (x )d x ,即⎠⎛ab f (x )d x =lim n →∞∑ni =1b -anf (ξi ).其中f (x )称为□02被积函数,a 称为积分□03下限,b 称为积分□04上限.2.定积分的几何意义性质1:⎠⎛a b kf (x )d x =□01k ⎠⎛ab f (x )d x (k 为常数). 性质2:⎠⎛a b [f (x )±g (x )]d x =□02⎠⎛a b f (x )d x ±⎠⎛ab g (x )d x . 性质3:⎠⎛a b f (x )d x =⎠⎛ac f (x )d x +□03⎠⎛c b f (x )d x . 4.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛a b f (x )d x=□01F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )b a ,即⎠⎛ab f (x )d x =F (x )b a =□02F (b )-F (a ). 5.定积分与曲边梯形面积的关系设阴影部分的面积为S . (1)S =⎠⎛a b f (x )d x ;(2)S =□01-⎠⎛ab f (x )d x ; (3)S =□02⎠⎛ac f (x )d x -⎠⎛cb f (x )d x ; (4)S =⎠⎛a b f (x )d x -⎠⎛a b g (x )d x =⎠⎛a b [f (x )-g (x )]d x . 6.定积分与函数奇偶性的关系 函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛a -a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛a -a f (x )d x =0.1.概念辨析(1)在区间[a ,b ]上连续的曲线y =f (x )和直线x =a ,x =b (a ≠b ),y =0所围成的曲边梯形的面积S =⎠⎛ab |f (x )|d x .( )(2)若⎠⎛a b f (x )d x <0,那么由y =f (x ),x =a ,x =b 以及x 轴所围成的图形一定在x轴下方.( )(3)微积分基本定理中的F (x )是唯一的.( )(4)曲线y =x 2与y =x 所围成图形的面积是⎠⎛01(x 2-x )d x .( )答案 (1)√ (2)× (3)× (4)× 2.小题热身(1)如图,指数函数的图象过点E (2,9),则图中阴影部分的面积等于( ) A.8ln 3 B .8 C.9ln 3D .9答案 A解析 设指数函数为y =a x (a >0且a ≠1),因为其过点E (2,9),所以a 2=9,解得a =3,所以图中阴影部分的面积S =⎠⎛023x d x ==8ln 3.(2)已知质点的速率v =10t ,则从t =0 到t =t 0质点所经过的路程是( ) A .10t 20 B .5t 2C.103t 20D.53t 20答案 B 解析答案 52解析的几何意义是函数y=|x|的图象与直线x=-1,x=2,y=0围成的图形(如图阴影所示)的面积,所以=12×1×1+12×2×2=52.(4)若=9,则常数t的值为________.答案 3解析解得t=3.题型一定积分的计算1.设f (x )=⎩⎨⎧x 2,x ∈[0,1],2-x ,x ∈(1,2],则等于( ) A.34 B.45 C.56 D .不存在答案 C 解析==13x 310+⎝ ⎛⎭⎪⎫2x -12x 221=13+⎝ ⎛⎭⎪⎫2×2-12×22-⎝ ⎛⎭⎪⎫2-12=13+4-2-2+12=56. 2. =________.答案 0解析 易证函数f (x )=3x 3+4sin x 为奇函数, 所以⎠⎛5-5(3x 3+4sin x)d x =0.3. =________. 答案 π2解析 由定积分的几何意义知,所求定积分是由x =0,x =2,y =-x 2+2x ,以及x轴围成的图象的面积,即圆(x-1)2+y2=1的面积的一半,∴=π2.求定积分的常用方法(1)微积分基本定理法其一般步骤为:①把被积函数变形为幂函数、正弦函数、余弦函数、指数函数、对数函数等基本初等函数的和、差、积或商.②把定积分用定积分性质变形为求被积函数为上述函数的定积分.③分别用求导公式找到一个相应的原函数.④利用微积分基本定理求出各个定积分的值.⑤计算原始定积分的值.(2)几何意义法将待求定积分转化为一个易求平面图形的面积,进而求值.如举例说明3.(3)基本性质法对绝对值函数、分段函数,可利用定积分的基本性质将积分区间分解为若干部分求解.(4)奇偶性法若函数f(x)为偶函数,且在[-a,a]上连续,则⎠⎛a -a f (x )d x =2⎠⎛0a f (x )d x ; 若f (x )为奇函数,且在[-a ,a ]上连续,则⎠⎛a -a f (x )d x =0.1. =( )A .7 B.223 C.113 D .4答案 C 解析==⎝ ⎛⎭⎪⎫4x -x 3310=4-13=113. 2. 的值为________.答案 2(e -1) 解析=2⎠⎛01e x d x =2·e x 10=2(e -1). 3.若f (x )=3+2x -x 2,则=________.答案 π 解析 令y =3+2x -x 2,则(x -1)2+y 2=4(y ≥0),所以函数f (x )的图象是以(1,0)为圆心,2为半径的圆在x轴上方(包括x轴)的部分,所以=14×π×22=π.题型二利用定积分求平面图形的面积角度1 求平面图形的面积1.(2019·南宁模拟)曲线y =4x 与直线y =5-x 所围成的平面图形的面积为( )A.152B.154 C.154-4ln 2 D.152-8ln 2答案 D解析 方程4x =5-x 的解为x =1或x =4,所以曲线y =4x 与直线y =5-x 所围成的平面图形的面积为(阴影部分)⎠⎛14⎝ ⎛⎭⎪⎫5-x -4x d x =⎝ ⎛⎭⎪⎫5x -12x 2-4ln x 41=15-152-4ln 4=152-8ln 2.角度2已知平面图形的面积求参数2.如图,已知点A(0,1),点P(x0,y0)(x0>0)在曲线y=x2上移动,过P点作PB垂直x轴于点B,若图中阴影部分的面积是四边形AOBP面积的13,则P点的坐标为________.答案(1,1)解析由题意,点P(x0,y0),则梯形AOBP的面积为12(1+y0)x0=12(1+x2)x0,且阴影部分的面积为又阴影部分的面积是梯形AOBP面积的13,∴1 3x 3=13×12(1+x2)x0,解得x0=0或x0=±1;取x0=1,则y0=1,∴P点的坐标为(1,1).角度3与其他知识的交汇命题3.(2019·山西八校联考)如图,矩形OABC中曲线的方程分别是y=sin x,y=cos x .A ⎝ ⎛⎭⎪⎫π2,0,C (0,1),在矩形OABC 内随机取一点,则此点取自阴影部分的概率为( )A.4(3-1)πB.4(2-1)πC .4(3-1)πD .4(2-1)π答案 B解析 由题可知图中阴影部分的面积故选C.2.如图,点M 在曲线y =x 上,若由曲线y =x 与直线OM 所围成的阴影部分的面积为16,则实数a 等于( )A.12B.13C .1D .2答案 C解析 由题意,M (a ,a ),直线OM 的方程为y =xa,故所求图形的面积为得a =1,故选C.3.若函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6(A >0,ω>0)的图象如图所示,则图中的阴影部分的面积为________.答案2-32解析 由图可知,A =1,T 2=2π3-⎝ ⎛⎭⎪⎫-π3=π,T =2π,∴ω=1, 则f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,∴图中的阴影部分的面积为=1-32=2-32.题型 三 定积分在物理中的应用1.一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln 5B .8+25ln 113C .4+25ln 5D .4+50ln 2答案 C解析 由v (t )=7-3t +251+t=0,可得t =4⎝ ⎛⎭⎪⎫t =-83舍去,因此汽车从刹车到停止一共行驶了4s ,此期间行驶的距离为2.一物体做变速直线运动,其 v -t 曲线如图所示,则该物体在12~6 s 间的运动路程为________ m.答案 494解析 由题图可知,v (t )=⎩⎪⎨⎪⎧2t (0≤t <1),2(1≤t ≤3),13t +1(3<t ≤6).由变速直线运动的路程公式,可得所以物体在12~6 s 间的运动路程是494 m.定积分在物理中的两个应用(1)求物体做变速直线运动的路程,如果变速直线运动物体的速度为v=v(t),那么从时刻t=a到t=b所经过的路程(2)变力做功,一物体在变力F(x)的作用下,沿着与F(x)相同方向从x=a移动到x=b时,力F(x)所做的功是W=1.物体A以v=3t2+1(m/s)的速度在一直线l上运动,物体B在直线l上,且在物体A的正前方5 m处,同时以v=10t(m/s)的速度与A同向运动,出发后,物体A追上物体B所用的时间t(s)为()A .3B .4C .5D .6答案 C解析 物体A 在t 秒内行驶的路程为物体B 在t 秒内行驶的路程为所以=(t 3+t -5t 2)t 0=t 3+t -5t 2=5,所以(t -5)·(t 2+1)=0,故t =5.2.一物体在力F (x )=⎩⎨⎧5,0≤x ≤2,3x +4,x >2(单位:N)的作用下沿与力F 相同的方向,从x =0处运动到x =4(单位:m)处,则力F (x )做的功为________J.答案 36解析 由题意知,力F (x )所做的功为 W ==5×2+⎝ ⎛⎭⎪⎫32x 2+4x 42=10+⎣⎢⎡⎦⎥⎤32×42+4×4-⎝ ⎛⎭⎪⎫32×22+4×2=36(J).组基础关1.由直线x=-π3,x=π3,y=0与曲线y=cos x所围成的封闭图形的面积为()A. 2B. 3C.2 D.2 3答案 B解析函数y=cos x是偶函数,= 3.2.从空中自由下落的一物体,在第一秒末恰经过电视塔顶,在第二秒末物体落地,已知自由落体的运动速度为v=gt(g为常数),则电视塔高为()A.12g B.gC.32g D.2g答案 C解析由题意知电视塔高为=2g-12g=32g.3.(2019·呼和浩特质检)若则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1答案 B 解析 因为所以,S 2<S 1<S 3.4.如图,阴影部分的面积是( )A .2 3B .5 3 C.323 D.353答案 C解析 联立⎩⎪⎨⎪⎧ y =2x ,y =3-x 2,解得⎩⎪⎨⎪⎧ x =1,y =2或⎩⎪⎨⎪⎧x =-3,y =-6,由图可知,阴影部分的面积可表示为=⎝ ⎛⎭⎪⎫3-13-1-⎣⎢⎡⎦⎥⎤3×(-3)-13×(-3)3-(-3)2 =323.5.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C 的方程为x 2-y =0)的点的个数的估计值为( )A .5000B .6667C .7500D .7854答案 B解析 图中阴影部分的面积为⎝ ⎛⎭⎪⎫x -13x 310=23,又正方形的面积为1,则10000个点落入阴影部分个数估计为10000×23≈6667,故选B.6.若=3+ln 2(a >1),则a 的值是( )A .2B .3C .4D .6答案 A解析 ∵(x 2)′=2x ,(ln x )′=1x ,∴⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x ==(a 2-1)+ln a ,由=3+ln 2(a>1),所以(a 2-1)+ln a =3+ln 2,所以a =2. 7.若定积分=π4,则m 等于( )A .-1B .0C .1D .2答案 A解析 根据定积分的几何意义知,定积分的值是函数y =-x 2-2x 的图象与x 轴及直线x =-2,x=m 所围成图形的面积,y =-x 2-2x 是圆心为(-1,0),半径为1的上半圆,其面积等于π2,而=π4,即在区间[-2,m ]上该函数图象应为14的圆,于是得m =-1.8.一物体在变力F (x )=5-x 2(力单位:N ,位移单位:m)作用下,沿与F (x )成30°方向做直线运动,则由x =1运动到x =2时,F (x )做的功为________J.答案433解析=433,所以F (x )做的功为433 J.9.如图所示,函数y =-x 2+2x +1与y =1相交形成一个闭合图形(图中的阴影部分),则该闭合图形的面积是_______.答案 43解析 由⎩⎪⎨⎪⎧y =-x 2+2x +1,y =1,解得x 1=0,x 2=2.==⎝ ⎛⎭⎪⎫-x 33+x 220=-83+4=43. 10.已知曲线y =x 2与直线y =kx (k >0)所围成的曲边图形的面积为43,则k =________.答案 2解析 令x 2=kx 得x =0或x =k ,则阴影部分的面积为解得k =2.组能力关1.已知函数y=f(x)的图象为如图所示的折线ABC,则等于()A.2 B.-2C.1 D.-1答案 D解析当0≤x≤1,f(x)=x-1,当-1≤x<0时,f(x)=-x-1,=⎝ ⎛⎭⎪⎫13x 3-x 10-⎝ ⎛⎭⎪⎫13x 3+x 2+x 0-1 =13-1+⎝ ⎛⎭⎪⎫-13+1-1=-1.2.已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图象如图所示,它与x 轴相切于原点,且x 轴与函数图象所围成区域(图中阴影部分)的面积为112,则a 的值为( )A .0B .1C .-1D .-2答案 C解析 由f (x )=-x 3+ax 2+bx ,得f ′(x )=-3x 2+2ax +b .∵x =0是原函数的一个极值点,∴f ′(0)=b =0,∴f (x )=-x 3+ax 2,⎠⎛a 0(x 3-ax 2)d x =⎝ ⎛⎭⎪⎫14x 4-13ax 30a =0-a 44+a 43=a 412=112,∴a =±1.函数f (x )与x 轴的交点横坐标一个为0,另一个为a ,根据图形可知a <0,得a =-1.3.函数的最大值是( )A. 3 B.2 C.2 2 D.2 3 答案 B解析由题意可知=-cos x-14(2cos 2x-1)+54=-12cos 2x-cos x+32=-12(cos x+1)2+2≤2.所以y的最大值是2.4.如图,由两条曲线y=-x2,4y=-x2及直线y=-1所围成的图形的面积为________.答案4 3解析令y=-1得到A(-2,-1),B(-1,-1),C(1,-1),D(2,-1).设围成的图形的面积为S,因为y轴两边的阴影部分关于y轴对称,所以组 素养关1.曲线y =-x 2-x 与x 轴所围成图形的面积被直线y =kx 分成面积相等的两部分,则k 的值为( )A .-14 B.342 C .-1-342 D.342-1 答案 D解析 曲线y =-x 2-x 与x 轴交于(-1,0)和原点,所以,曲线y =-x 2-x 与x 轴围成的平面区域的面积为联立⎩⎪⎨⎪⎧ y =-x 2-x ,y =kx ,解得⎩⎪⎨⎪⎧ x =-k -1,y =-k 2-k 或⎩⎪⎨⎪⎧x =0,y =0,即直线y =kx 与曲线y =-x 2-x交于点(-k -1,-k 2-k )和坐标原点,所以曲线y =-x 2-x 位于直线y =kx 上方区域的面积为=⎝ ⎛⎭⎪⎫-13x 3-12x 2-12kx 20-k -1=16(k +1)3=12×16=112,解得k =342-1,选D.2.如图所示,在区间[0,1]上给定曲线y =x 2,为使图中的阴影部分的面积S 1与S 2之和最小,区间[0,1]内的t 的值为________,最小值为________.答案 12 14解析 面积S 1等于边长为t 与t 2的矩形面积去掉曲线y =x 2与x 轴、直线x =t 所围成的面积,即S 1=t ·t 2-=23t 3.S 2的面积等于曲线y =x 2与x 轴,x =t ,x =1围成的面积去掉矩形面积,矩形边长分别为t 2,1-t ,即=23t 3-t 2+13.所以阴影部分面积S =S 1+S 2=43t 3-t 2+13(0≤t ≤1). 令S ′(t )=4t 2-2t =4t ⎝ ⎛⎭⎪⎫t -12=0时,得t =0或t =12.当t =0时,S =13;当t =12时,S =14;当t =1时,S =23.所以当t =12时,S 最小,且最小值为14.。
第二章 第十三节 定积分与微积分基本定理

的部分,
∴ 13 3+2x是-x圆2 d面x 积的
1, 4
∴
13
3+2x-x2 dx=1gg22=. 4
答案:π
【互动探究】在本例题(3)中条件不变,求 31 f(x)dx的值.
【解析】由本例题(3)的解答过程知,
3 1
f
x表d示x 以
(1,0)为圆心,2为半径的圆在x轴上方的部分的面积,故
|02
(4x
x2 2
22 3
3
x 2 ) |82
16 38 18. 33
方法二:S=
2[4
4-y
-
y2 2
]dy
=(4y
1 2
y2
1 6
y3
)
|24
=18.
答案:18
(3)由
y
x得3 ,
y x
所求xy 旋11,,转体的体积等于由
y x,xx 轴1所,围成的图形绕x轴旋转一周形成的旋转体
判断出 f x= 3+表2x-示x的2 几何意义,再利用定积分的
几何意义求解.
【规范解答】(1)
11
x2 sin x
dx
(1 3
x3
cos
x)|11
2. 3
答案:2
3
(2)
2 0
1 sin
2xdx
2 0
sin
x cos
x
dx
04
(cosx
sin
_________________.
(2)(2013·芜湖模拟)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线素场实例
2010-2011第一学期
经济和金融中的动态方法*
线素场
2010-2011第一学期
经济和金融中的动态方法*
线素场
2010-2011第一学期Fra bibliotek经济和金融中的动态方法*
线素场与方程解的关系
• 定理:曲线L为微分方程的积分曲线的充 要条件是:在L上任一点,L的切线方向 与微分方程所确定的线素场在该点的线 素方向重合;亦即L在每点均与线素场的 线素相切
quiv2e0r10(-x20,1y1,第D一x学,D期y)
经济和金融中的动态方法*
自治一阶微分方程
在一个微分方程中,果如其自变量没有显式在的方程函数中出现, 则此方程成为自治的如,果x为自变量,则自治一微阶分方程可以 记为F(y, y),或者写成标准形d式y f (y)
dx 临界点 如果存在一个实c数 使得f为0,那么我们称 c为方程的临界点, 也成为均衡点或稳定点 方程的常数解 y c称为均衡解
(1)在D上满足存在与唯一性定理条件;
(2)在D上有不等式f (x, y) ()F(x, y),
则方程dy f (x, y)的满足初始条件(x ) y 的解(x)和方程
dx
0
0
dy F(x, y)的满足初始条件(x ) y 的解(x)在他们共
dx
0
0
同存在的区间上,满足不等式
(x) ()(x),当x x 时 0
2010-2011第一学期
经济和金融中的动态方法*
数据
2010-2011第一学期
经济和金融中的动态方法*
数据
2010-2011第一学期
经济和金融中的动态方法*
线素场
dy 1 xy dx
[x,y]=meshgrid(-2:0.2:2)
Dx=0.1*ones(21)
I=ones(21)
Dy=(I-x.*y).*Dx
x(t h) x(t) hf (t, x)
2010-2011第一学期
经济和金融中的动态方法*
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
注:不满L足ipschi条 tz 件一般不能保Pi证 car序 d 列的收敛性
且关于y满足局部李普希兹, 条则 件对于 D
上任意一(点x , y ),方程的以 (x , y )为初值的
00
00
解(x)均可以向左右延展到 ,(x直,(x))任
意接近区D域的边界。
2010-2011第一学期
经济和金融中的动态方法*
比较定理的应用
定理:设函数f (x, y),F(x, y)定义在某个区域D上,且满足如下条件:
反例d:y f (x, y),y(0) 0,其中 dx
0,
x 0, y ;
f
(x,
y)
2x, 2x
y
/
x,
0 x 1, y 0; 0 x 1,0 y x2;
2x, 0 x 1, x2 y
2010-2011第一学期
经济和金融中的动态方法*
解的延展
如果方程的右端函 f (x数 , y)在区域D上连续,
2010-2011第一学期
经济和金融中的动态方法*
• 定义:关系式f (x , y)=k确定一条曲线 L (k).显然,微分方程的线素场在曲线 L (k)上各点的斜率都等于k,称这种曲 线 L (k)为线素场的等斜线(或等倾线)
2010-2011第一学期
经济和金融中的动态方法*
线素场的应用
2010-2011第一学期
(x) ()(x),当x x 时 0
2010-2011第一学期
经济和金融中的动态方法*
比较定理的应用
2010-2011第一学期
经济和金融中的动态方法*
比较定理的应用
2010-2011第一学期
经济和金融中的动态方法*
常微分方程的几何解释
线素场 设方程dy f (x, y)的右端函f数(x, y)在区域G内有定义,
自治一阶微分方程
• 临界点C的三种类型
– 如果从足够靠近临界点出发的解都随着x趋 于无穷大时趋于C,则称C点是渐进稳定的, 也称为吸引子
– 如果所有始于C附近的解都会随着x的增大而 远离C点,则称C点是不稳定的,也称为排 斥子
– 如果即表现出吸引子的性质也表现出排斥子 的性质,则称为是半稳定的。
2010-2011第一学期
第二章基本定理
解的存在唯一性定理
• 历史
–
– 十九世纪二十年代 柯西 – 1876年 李卜希兹 – 1893年 毕卡
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
经济和金融中的动态方法*
2010-2011第一学期
dx 即对G内任意一(点x, y),都存在确定f (值x, y),以点(x, y)为 中点,作一单位线使 段其 ,斜率恰k为 f (x, y),称为在点 (x, y)的线素。于是G在 内每一点都有一个, 线我 素们说, 方程在区G域上确定了一个线素场。
2010-2011第一学期
经济和金融中的动态方法*
经济和金融中的动态方法*
微分方程的近似解
考察初值问题xx(t0 )
f (t, x) x
0
泰勒级数方法:
假定f的各种偏导数存在,方此法的要点是关于 x的泰勒级数,
x(t h) x(t) hx(t) h2 x(t) h3 x(t) h4 x(4) (t)
2!
3!
4!
n 1时的泰勒级数方法称欧为拉方法,它具有形式
2010-2011第一学期
经济和金融中的动态方法*
自治一阶微分方程
考虑微分方程
dy y(a by ), a 0,b 0 dx
区间 f ( y)的符号 y(t)
( ,0)
负
递减
(0,a / b)
正
递减
(a / b, )
负
递减
箭头 指向下 指向上 指向下
2010-2011第一学期
经济和金融中的动态方法*
经济和金融中的动态方法*
线素场的应用
2010-2011第一学期
经济和金融中的动态方法*
线素场的应用
2010-2011第一学期
经济和金融中的动态方法*
线素场的应用
[x,y]=meshgrid(-1:0.1:1) Dx=0.02*ones(21) Dy=(x.^2+y.^2).*Dx quiver(x,y,Dx,Dy)