常用数学符号读法大全以及主要数学符号含义
常用数学符号读法大全以及主要数学符号含义

常用数学符号读法大全以及主要数学符号含义大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita 西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omi kron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米伽数学符号:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π.(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等.(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等.(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等.数学符号的意义符号意义∞无穷大π圆周率|x|绝对值∪并集∩交集≥大于等于≤小于等于≡恒等于或同余ln(x)以e为底的对数lg(x)以10为底的对数floor(x)上取整函数ceil(x)下取整函数x mod y求余数x - floor(x) 小数部分∫f(x)dx不定积分∫[a:b]f(x)dx a到b的定积分→等价于趋向于数学符号的应用P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm⊥n m与n互质a ∈A a属于集合A#A 集合A 中的元素个数“∑”数学里的连加符号,叫西格马,求和的意思要给出上下界限(比如k是自然数∑k(上界限至n,下界限从k=0开始) ∑k=0+1+2+……+n {大括号(bracket)是用来规定运算次序的符号。
常用数学符号大全(注音及注解)

数学符号及读法大全常用数学输入符号:≈≡≠=≤≥<>≮≯∷±+-×÷/∫∮∝∞∧∨∑∏∪∩∈∵∴//⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作e x a^x a的x次方;有理数x由反函数定义ln x exp x 的反函数a x同 a^xlogb a 以b为底a的对数; b logba = acos x 在自变量x处余弦函数的值tan x 其值等于 sin x/cos xcot x 余切函数的值或 cos x/sin xsec x 正割含数的值,其值等于 1/cos x csc x 余割函数的值,其值等于 1/sin x符号 含义asin x y ,正弦函数反函数在x 处的值,即 x = sin y acos x y ,余弦函数反函数在x 处的值,即 x = cos y atan x y ,正切函数反函数在x 处的值,即 x = tan y acot x y ,余切函数反函数在x 处的值,即 x = cot y asec x y ,正割函数反函数在x 处的值,即 x = sec y acsc x y ,余割函数反函数在x 处的值,即 x = csc yθ 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y ,当x 、y 、z 用于表示空间中的点时 i, j, k分别表示x 、y 、z 方向上的单位向量(a, b, c) 以a 、b 、c 为元素的向量 (a, b) 以a 、b 为元素的向量 (a, b) a 、b 向量的点积 a • b a 、b 向量的点积 (a •b) a 、b 向量的点积 |v| 向量v 的模 |x|数x 的绝对值Σ表示求和,通常是某项指数。
下边界值写在其下部,上边界值写在其上部。
数学符号及读法大全

数学符号及读法大全一、基本符号及读法1. 加号(+):读作“加”或“正”。
例如,2 + 3 读作“二加三”或“二正三”。
2. 减号():读作“减”或“负”。
例如,5 2 读作“五减二”或“五负二”。
3. 乘号(×):读作“乘”。
例如,4 × 6 读作“四乘六”。
4. 除号(÷):读作“除以”。
例如,8 ÷ 2 读作“八除以二”。
5. 等号(=):读作“等于”。
例如,3 + 4 = 7 读作“三加四等于七”。
6. 不等号(≠):读作“不等于”。
例如,5 ≠ 6 读作“五不等于六”。
7. 大于号(>):读作“大于”。
例如,7 > 5 读作“七大于五”。
8. 小于号(<):读作“小于”。
例如,3 < 8 读作“三小于八”。
9. 大于等于号(≥):读作“大于等于”。
例如,x ≥ 5 读作“x大于等于五”。
10. 小于等于号(≤):读作“小于等于”。
例如,y ≤ 10 读作“y小于等于十”。
二、指数与对数符号及读法1. 指数符号(^):读作“的幂”。
例如,2^3 读作“二的三次幂”。
2. 对数符号(log):读作“以为底的对数”。
例如,log₂8 读作“以二为底八的对数”。
三、集合符号及读法1. 属于符号(∈):读作“属于”。
例如,3 ∈ {1, 2, 3} 读作“三属于集合{一、二、三}”。
2. 不属于符号(∉):读作“不属于”。
例如,4 ∉ {1, 2, 3} 读作“四不属于集合{一、二、三}”。
3. 空集符号(∅):读作“空集”。
例如,∅表示一个不包含任何元素的集合。
四、几何符号及读法1. 直线符号(→):读作“直线”。
例如,AB → 表示直线AB。
2. 射线符号(⇀):读作“射线”。
例如,AC ⇀表示射线AC。
3. 线段符号(|):读作“线段”。
例如,BC | 表示线段BC。
4. 角符号(∠):读作“角”。
例如,∠ABC 表示角ABC。
各种数学符号的读法

各种数学符号的读法标题:数学符号的读法及其应用引言:数学符号是数学语言中的重要组成部分,它们通过简洁、准确的方式传递数学概念和关系。
正确理解和使用数学符号对于学习和应用数学至关重要。
本文将从数学符号的读法和应用两个方面展开,分别介绍其基本概念和常见用法。
正文内容:一、数学符号的读法1.1 希腊字母的读法1.1.1 α(alpha):表示角度、系数等。
1.1.2 β(beta):表示角度、系数等。
1.1.3 γ(gamma):表示角度、系数等。
1.1.4 δ(delta):表示变化量、微小量等。
1.1.5 θ(theta):表示角度、温度等。
1.1.6 λ(lambda):表示波长、特征值等。
1.1.7 π(pi):表示圆周率。
1.1.8 ω(omega):表示角速度、角频率等。
1.2 常见数学符号的读法1.2.1 +:加号、正号。
1.2.2 -:减号、负号。
1.2.3 ×:乘号。
1.2.4 ÷:除号。
1.2.5 =:等于号。
1.2.6 <:小于号。
1.2.7 >:大于号。
1.2.8 ∑:求和号。
1.2.9 ∫:积分号。
1.2.10 √:根号。
二、数学符号的应用2.1 代数中的符号应用2.1.1 代数表达式中的符号:表示未知数、系数、运算符等。
2.1.2 方程中的符号:表示等式关系、未知数等。
2.1.3 不等式中的符号:表示大小关系、范围等。
2.2 几何中的符号应用2.2.1 角度符号:表示角度大小、角度关系等。
2.2.2 图形符号:表示线段、直线、平行关系等。
2.2.3 集合符号:表示点集、线段集合等。
2.3 概率与统计中的符号应用2.3.1 概率符号:表示事件概率、条件概率等。
2.3.2 统计符号:表示样本均值、标准差等。
2.4 微积分中的符号应用2.4.1 极限符号:表示函数趋于某一值的过程。
2.4.2 微分符号:表示函数的导数、微分等。
2.4.3 积分符号:表示函数的定积分、面积等。
高一数学符号读法大全及意义

高一数学符号读法大全及意义1.加号(+):表示两个数的加法运算,如3+4=72.减号(-):表示两个数的减法运算,如5-2=33.乘号(×):表示两个数的乘法运算,如2×3=64.除号(÷):表示两个数的除法运算,如8÷4=25.等号(=):表示两个数或表达式相等,如2+3=56.不等号(≠):表示两个数或表达式不相等,如2+3≠67.大于号(>):表示左边的数大于右边的数,如5>38.小于号(<):表示左边的数小于右边的数,如2<49.大于等于号(≥):表示左边的数大于或等于右边的数,如4≥310.小于等于号(≤):表示左边的数小于或等于右边的数,如2≤511.大于等于号(≥):表示左边的数大于或等于右边的数,如4≥312.小于等于号(≤):表示左边的数小于或等于右边的数,如2≤513.真子集号(⊂):表示一个集合是另一个集合的真子集,如A⊂B,表示集合A是集合B的真子集。
14.子集号(⊆):表示一个集合是另一个集合的子集或本身,如A⊆B,表示集合A是集合B的子集或本身。
15.不包含于号(∉):表示一个元素不属于一些集合,如3∉{1,2,4},表示数3不属于集合{1,2,4}。
16.属于于号(∈):表示一个元素属于一些集合,如2∈{1,2,4},表示数2属于集合{1,2,4}。
17.交集号(∩):表示两个集合的交集,如A∩B,表示集合A和集合B的交集。
18.并集号(∪):表示两个集合的并集,如A∪B,表示集合A和集合B的并集。
19.差集号(-):表示两个集合的差集,如A-B,表示集合A减去集合B的差集。
20.补集号('):表示一个集合的补集,如A',表示集合A的补集。
21.集合元素个数号(,A,):表示集合A的元素个数。
23. 四舍五入符号 (round():表示对一个数进行四舍五入取整,如round(3.6) = 424.绝对值符号(,x,):表示一个数的绝对值,如10,=10。
高中数学符号读法大全及意义

高中数学符号读法大全及意义一、基本数学符号1. +:加号,表示加法运算。
2. -:减号,表示减法运算。
3. ×:乘号,表示乘法运算。
4. ÷:除号,表示除法运算。
5. =:等于号,表示相等关系。
6. ≠:不等号,表示不相等关系。
7. <:小于号,表示小于关系。
8. >:大于号,表示大于关系。
9. ≤:小于等于号,表示小于等于关系。
10. ≥:大于等于号,表示大于等于关系。
二、集合符号1. ∈:属于,表示一个元素属于某个集合。
2. ∉:不属于,表示一个元素不属于某个集合。
3. ∪:并集,表示所有在某一个以上的集合中出现的元素的新集合。
4. ∩:交集,表示属于所有给定集合的元素的新集合。
5. ⊆:包含关系(子集),表示一个集合包含于另一个集合。
6. ⊇:包含关系(超集),表示一个集合包含另一个集合。
7. ∅:空集,表示没有任何元素的集合。
三、数学函数符号1. f(x):函数符号,表示自变量为x时,函数的值。
2. g(x):函数符号,表示自变量为x时,函数的值。
3. h(x):函数符号,表示自变量为x时,函数的值。
4. lim:极限符号,表示函数在逼近某个数值时的极限。
5. sin:正弦函数符号,表示角度的正弦值。
6. cos:余弦函数符号,表示角度的余弦值。
7. tan:正切函数符号,表示角度的正切值。
8. log:对数函数符号,表示以某个底数为底的对数函数。
四、微积分符号1. dy/dx:导数符号,表示某个函数在某点的导数。
2. ∫:积分符号,表示函数在某个区间上的积分值。
3. dx:微分符号,表示微分变量。
4. Δx:增量符号,表示微分变量的增量。
五、几何图形符号1. ∆ABC:三角形符号,表示三条边分别为AB、BC和CA的三角形。
2. △DEF:三角形符号,表示三条边分别为DE、EF和FD的三角形。
3. ∠:角符号,表示两条射线之间的角度。
4. ⊥:垂直符号,表示两条直线垂直。
数学符号读法大全及意义

数学符号读法大全及意义高校数学符号意义探究站在职场角度来看,数学在高校学生中非常重要,因为其直接体现了一个人抽象思维能力、解决问题的思路以及独立分析能力的高低,也是高校招聘时非常看重的一项内容。
然而,数学学习中会遇到大量各类符号,在此我们就一一分析常见的数学符号及其读取方式、意义大致相同,以供参考。
大写英文字母:在任何的数学概念中,大写英文字母通常代表某种变量,比如A,B,C,X,Y等,可以根据其具体的意义来确定读法。
小写字母及其组合:同样,在数学学习中,很多小写字母或者小写字母的组合也具有代表某种变量的作用,亦可根据具体意义来读取。
运算符号:数学的运算都是通过一种特定的符号来表达的,比如加号(+),减号(-),乘号(*),除号(/)等,读法很简单,视情况而定。
竖线:这是一个专业的数学符号,用来分隔两个或多个数字、变量或等式,读法为“或”、“构成”或“包含”等。
等号:最常见的数学符号之一,读作“等于”,用来表示两个或多个等式间的等价关系,又称示性等式。
大括号:常用来表示一个范围,读法为“如其中”或者“介于”。
顶点符号:它呈半圆形状,表示某个概念的顶点,可以容纳数字和变量,读法为“当”或者“为”。
波浪线:一般在函数等式右侧使用,表示函数的变化范围,常用来表示所有可能的值,读法为“涵盖”或“至”。
小括号:小括号最常被用来表达函数的参数,即将函数的相关内容一同对其,比如圆形面积计算时,可以用“S(r)”来表示半径r的圆形面积S,读法为“与”。
乘方符号:这是一个由“**”组成的表达,表示乘方,即前面数字的幂,读法为“的”或者“乘方为”。
上标符号:由中文逗号“,”与下划线组成的一个符号,表示对指定的变量的限制。
(完整版)数学符号及读法大全,推荐文档

数学符号及读法大全常用数学输入符号:≈≡≠=≤≥<>≮≯∷ ± +-× ÷ /∫∮∝∞∧∨∑∏∪∩∈∵∴⊥‖∠⌒≌∽√()【】{}ⅠⅡ⊕⊙∥αβγδεζηθΔ大写小写英文注音国际音标注音中文注音Ααalpha alfa阿耳法Ββbeta beta贝塔Γγgamma gamma伽马Δδdeta delta德耳塔Εεepsilon epsilon艾普西隆Ζζzeta zeta截塔Ηηeta eta艾塔Θθthetaθita西塔Ιιiota iota约塔Κκkappa kappa卡帕∧λlambda lambda兰姆达Μμmu miu缪Ννnu niu纽Ξξxi ksi可塞Οοomicron omikron奥密可戎∏πpi pai派Ρρrho rou柔∑σsigma sigma西格马Ττtau tau套Υυupsilon jupsilon衣普西隆Φφphi fai斐Χχchi khai喜Ψψpsi psai普西Ωωomega omiga欧米符号含义i-1的平方根f(x)函数f在自变量x处的值sin(x)在自变量x处的正弦函数值exp(x)在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax同a^xlogba以b为底a的对数;blogba = acos x在自变量x处余弦函数的值tan x其值等于sin x/cos xcot x余切函数的值或cos x/sin xsec x正割含数的值,其值等于1/cos xcsc x余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin yacos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan yacot x y,余切函数反函数在x处的值,即x = cot yasec x y,正割函数反函数在x处的值,即x = sec y acsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k分别表示x、y、z方向上的单位向量(a, b, c)以a、b、c为元素的向量(a, b)以a、b为元素的向量(a, b)a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v|向量v的模|x|数x的绝对值Σ表示求和,通常是某项指数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大写小写英文注音国际音标注音中文音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Δ δ deta delta 德耳塔
Ε ε epsilon epsilon 艾普西
Ζ ζ zeta zeta 截塔
Η η eta eta 艾塔
Θ θ theta θita 西塔
Ι ι iota iota 约塔
Κ κ kappa kappa 卡帕
∧λ lambda lambda 兰姆达
Μ μ mu miu 缪
Ν ν nu niu 纽
Ξ ξ xi ksi 可塞
Ο ο omicron o mikron 奥密可戎
∏ π pi pai 派
Ρ ρ rho rou 柔
∑ σ sigma sigma 西格马
Τ τ tau tau 套
Υ υ upsilon jupsilon 衣普西隆
Φ φ phi fai 斐
Χ χ chi khai 喜
Ψ ψ psi psai 普西
Ω ω omega omiga 欧米伽
数学符号:
(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是反比例符号,“∈”是属于符号,“C”或“C下面加一横”是“包含”符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n),阶乘(!)等。
数学符号的意义
符号意义
∞无穷大
π圆周率
|x|绝对值
∪并集
∩交集
≥大于等于
≤小于等于
≡恒等于或同余
ln(x)以e为底的对数
lg(x)以10为底的对数
floor(x)上取整函数
ceil(x)下取整函数
x mod y求余数
x - floor(x) 小数部分
∫f(x)dx不定积分
∫[a:b]f(x)dx a到b的定积分
数学符号的应用
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数。