最新中考数学6种常考的压轴题类型_779
中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路中考数学压轴题通常是对学生多个知识点综合考察的题目,要求考生综合运用所学的数学知识进行解答。
下面是一些常见类型的中考数学压轴题及其解题思路。
1. 几何题几何题是中考数学中常见的题型之一。
几何题涉及图形的性质、计算图形的面积、周长和体积等等。
解决几何题的关键是要熟悉几何的基本定理和公式,并通过观察图形性质找到解题思路。
2. 基础运算题基础运算题是中考数学中的重点内容,包括四则运算、分数运算、百分数运算等等。
解决基础运算题的关键是熟练掌握运算规则和方法,有条理地进行计算。
3. 等式方程题等式方程题是中考数学中常见的题型之一。
解决等式方程题的关键是要根据题目给出的条件建立方程,然后通过运用方程的性质解题。
在解题过程中,要注意合理运用方程的基本性质和解方程的方法。
4. 函数题函数题是中考数学中的重要内容,要求考生熟练掌握函数的定义、性质和运算。
解决函数题的关键是要根据给定的函数关系或函数图像进行分析,确定函数的性质,并运用函数的定义和性质解答问题。
5. 统计与概率题统计与概率题是中考数学中常见的题型之一。
解决统计与概率题的关键是要对给定的数据进行统计分析,找到规律,并运用统计学和概率学的知识解答问题。
6. 证明题证明题是中考数学中的重点内容,要求考生运用数学的推理和证明方法,通过有条理的推理过程证明结论。
解决证明题的关键是要理解证明的目标和要求,清晰地表述证明过程,运用合适的证明方法解答问题。
解决中考数学压轴题的关键是要熟练掌握数学的基本知识和运算方法,同时要灵活运用数学知识,善于找到解题的思路和方法。
在解题过程中,要注重思维的逻辑性和严密性,慎重选择解题思路,合理运用数学知识解答问题。
通过对各个题型的系统练习和深入理解,可以提高解题能力,应对中考数学压轴题。
中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路中考数学压轴题是中考数学试卷中的难点题目,通常是在考察学生对数学知识的深层理解和运用能力。
在中考数学压轴题中,常见的类型包括填空题、选择题、解答题等,涉及的知识点也广泛,如代数、几何、概率统计等。
下面将分别介绍中考数学压轴题的常见类型与解题思路。
一、填空题中考数学压轴题中的填空题往往考察学生对知识点的深层理解和运用能力。
填空题通常涉及代数、几何、概率统计等多个知识点,要求学生根据题目所给信息进行逻辑推理和计算,最终得出正确答案。
解题思路:1.审题:仔细阅读题目,明确要求填入的数据或公式,搞清题意。
2.列出已知条件:把题目中所给的信息一一列出,明确已知条件。
3.推理和计算:根据已知条件进行推理和计算,利用相关的数学公式或方法解题。
4.结果验证:算出结果后,需对答案进行验证,确保填入的数值或公式正确无误。
二、选择题中考数学压轴题中的选择题通常考察学生对知识点的掌握程度和运用能力。
选择题类型多样,既有单项选择题,也有不定项选择题,要求学生在有限的时间内作出正确选择。
解题思路:1.通读选项:先通读全部选项,了解每个选项的意思和含义。
2.分析题目:根据题目的要求,分析所给信息并确定相关知识点。
3.排除干扰:排除明显错误或无关的选项,缩小答案范围。
4.明确答案:通过对选项的排除及相关知识点的应用,确定最终答案。
三、解答题解题思路:1.理清思路:首先要理清解题思路,明确题目要求和解题方法。
2.列出所需步骤:根据题目要求,列出解题所需的步骤和计算方法。
3.细致计算:根据题目所给信息,进行细致计算和逻辑推理,得出正确答案。
4.解题亮点:在解答过程中,可适当突出解题亮点,以突显解题思路和方法。
总结而言,中考数学压轴题的常见类型包括填空题、选择题和解答题。
在解题过程中,学生需要通过仔细审题、列出已知条件、推理和计算、结果验证等步骤来解决填空题;而在选择题中,要通过通读选项、分析题目、排除干扰、明确答案等步骤来进行解答,而解答题则需要通过理清思路、列出所需步骤、细致计算、解题亮点等步骤来解决问题。
数学常见的6种压轴题类型-初中

数学常见的6种压轴题类型-初中
对于中考数学,压轴题往往是是考生最怕的。
很多考生都以为它一定很难,不敢碰它。
其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。
常常有很多家长说,“孩子对于数学考试非常头疼,选择题和填空题都还勉强能做完,可对于大题就有点束手无策,特别是最后的压轴题,压根儿没碰过!”
其实压轴题难度也是有约定的:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
1线段、角的计算与证明
中考的解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2一元二次方程与函数
在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方。
最新中考数学压轴题十大题型(含详细答案)1百度文库

一、中考数学压轴题1.如图1,已知点B (0,9),点C 为x 轴上一动点,连接BC ,△ODC 和△EBC 都是等边三角形.(1)求证:DE =BO ;(2)如图2,当点D 恰好落在BC 上时.①求点E 的坐标;②在x 轴上是否存在点P ,使△PEC 为等腰三角形?若存在,写出点P 的坐标;若不存在,说明理由;③如图3,点M 是线段BC 上的动点(点B ,点C 除外),过点M 作MG ⊥BE 于点G ,MH ⊥CE 于点H ,当点M 运动时,MH +MG 的值是否发生变化?若不会变化,直接写出MH +MG 的值;若会变化,简要说明理由.2.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.3.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.4.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.6.“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x y =,那么称这个四位数为“和平数”. 例如:1423,14x =+,23y =+,因为x y =,所以1423是“和平数”.(1)直接写出:最小的“和平数”是________,最大的“和平数”是__________; (2)求同时满足下列条件的所有“和平数”:①个位上的数字是千位上的数字的两倍;②百位上的数字与十位上的数字之和是12的倍数;(3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.例如:1423于4132为“相关和平数”求证:任意的两个“相关和平数”之和是1111的倍数.7.如图,在平面直角坐标系中,Rt ABC ∆的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分BAC ∠交边BC 于点E ,经过点A D E 、、的圆的圆心F 恰好在y 轴上,⊙F 与y 里面相交于另一点G .(1)求证:BC 是⊙F 的切线 ;(2)若点A D 、的坐标分别为(0,1),(2,0)A D -,求⊙F 的半径及线段AC 的长; (3)试探究线段AG AD CD 、、三者之间满足的等量关系,并证明你的结论.8.综合与实践4A 纸是我们学习工作最常用的纸张之一, 2,我们定义:长宽之比是2的矩形纸片称为“标准纸”.操作判断:()1如图1所示,矩形纸片2()ABCD AD AB =是一张“标准纸”,将纸片折叠一次,使点B 与D 重合,再展开,折痕EF 交AD 边于点,E 交BC 边于点F ,若1,AB =求CF 的长,()2如图2,在()1的基础上,连接,BD 折痕EF 交BD 于点O ,连接,BE 判断四边形BFDE 的形状,并说明理由.探究发现:()3如图3所示,在(1)和(2)的基础上,展开纸片后,将纸片再折叠一次,使点A 与点C 重合,再展开,痕MN 交AD 边于点M ,BC 交边于点,N 交BD 也是点O .然后将四边形ENFM 剪下,探究纸片ENFM 是否为“标准纸”,说明理由.9.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BFx =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域; (3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.10.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.11.对于平面直角坐标系xOy 中的任意点()P x y ,,如果满足x y a += (x ≥0,a 为常数),那么我们称这样的点叫做“特征点”.(1)当2≤a ≤3时,①在点(1,2),(1,3),(2.5,0)A B C 中,满足此条件的特征点为__________________;②⊙W 的圆心为(,0)W m ,半径为1,如果⊙W 上始终存在满足条件的特征点,请画出示意图,并直接写出m 的取值范围;(2)已知函数()10Z x x x=+>,请利用特征点求出该函数的最小值.12.如图1,在平面直角坐标系中,抛物线239334y x x =--与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .(1)过点C 的直线5334y x =-交x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.13.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+32AB =45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.14.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 15.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若728CG AG =,求点P 的坐标.16.AB 是O 直径,,C D 分别是上下半圆上一点,且弧BC =弧BD ,连接,AC BC ,连接CD 交AB 于E ,(1)如图(1)求证:90AEC ∠=︒;(2)如图(2)F 是弧AD 一点,点,M N 分别是弧AC 和弧FD 的中点,连接FD ,连接MN 分别交AC ,FD 于,P Q 两点,求证:MPC NQD ∠=∠(3)如图(3)在(2)问条件下,MN 交AB 于G ,交BF 于L ,过点G 作GH MN ⊥交AF 于H ,连接BH ,若,6,BG HF AG ABH ==∆的面积等于8,求线段MN 的长度17.在Rt ABC ∆中,6AB =,90B ∠=︒,8BC =,点P 从A 出发沿AC 方向在运动速度为3个单位/秒,点Q 从C 出发向点B 运动,速度为1个单位/秒,P 、Q 同时出发,点Q 到点B 时两点同时停止运动.(1)点P 在线段AC 上运动,过P 作DP PQ ⊥交边AB 于D ,2t =时,求PD PQ 的值; (2)运动t 秒后,90BPQ ∠=︒,求此时t 的值;(3)t =________时,AQ QP =.18.如图,在⊙O 中,直径AB =10,tanA 3(1)求弦AC 的长;(2)D 是AB 延长线上一点,且AB =kBD ,连接CD ,若CD 与⊙O 相切,求k 的值; (3)若动点P 以3cm/s 的速度从A 点出发,沿AB 方向运动,同时动点Q 以32cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为t (0<t <103),连结PQ .当t 为何值时,△BPQ 为Rt △?19.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值;(2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?20.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).21.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,D E ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.22.如图,在等腰Rt △ABC 中,∠ACB=90°,AC=BC=8,点D 在△ABC 外,连接AD 、BD ,且∠ADB=90°,AB 、CD 相交于点E ,AB 、CD 的中点分别是点F 、G ,连接FG .(1)求AB 的长;(2)求证:2CD ;(3)若BD=6,求FG 的值.23.综合与探究:如图1,抛物线24832999y x x =-++与x 轴交于,A B 两点(点A 在点B 的左侧),顶点为D ,P 为对称轴右侧抛物线的一个动点,直线AD 与y 轴于点C ,过点P 作//PF AD ,交x 轴于点F .(1)求直线AD 的函数表达式及点C 的坐标;(2)如图2,当//PC x 轴时,将AOC ∆以每秒1个单位长度的速度沿x 轴的正方向平移,当点C 与点P 重合时停止平移.设平移t 秒时,在平移过程中AOC ∆与四边形AFPC 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; (3)如图3,过点P 作x 轴的平行线,交直线AD 于点E ,直线DF 与PE 交于点M ,设点P 的横坐标为m .①当3DM MF =时,求m 的值;②试探究点P 在运动过程中,是否存在值m ,使四边形AFPE 是菱形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.24.在ABC ∆中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称ABC ∆为n 倍角三角形.例如,在ABC ∆中,80A ∠=︒,75B ∠=︒,25C ∠=︒,可知3∠=∠B C ,所以ABC ∆为3倍角三角形.(1)在ABC ∆中,55A ∠=︒,25B ∠=︒,则ABC ∆为________倍角三角形;(2)若DEF ∆是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求DEF ∆的最小内角. (3)若MNP ∆是2倍角三角形,且90M N P ∠<∠<∠<︒,请直接写出MNP ∆的最小内角的取值范围.25.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.E解析:(1)见解析;(2)①E (39);②存在,点P 的坐标为(-3,0)或(93,0);③不变化,MH+MG=9【解析】【分析】(1)根据等边三角形的性质得到BC=CE,OC=CD,∠OCD=∠BCE=60°,求得∠OCB=∠DCE,根据全等三角形的性质即可得到结论;(2)①由点B(0,9),得到OB=9,根据全等三角形的性质得到∠CDE=∠BOC=90°,根CE=,过E作EF⊥x轴于F,角三角形即据等边三角形的性质得到∠DEC=30°,求得63可得到结论;②存在,如图,当63==时,当CE=PE,根据等腰三角形的性质即可得到结CE CP论;③不会变化,连接EM,根据三角形的面积公式即可得到结论.【详解】(1)∵△ODC和△EBC都是等边三角形∴OC=DC,BC=CE,∠OCD=∠BCE=60°∴∠BCE+∠BCD=∠OCD+∠BCD即∠ECD=∠BCO∴△DEC≌△OBC(SAS)∴DE=BO(2)①∵点B(0,9),∴OB=9,由(1)知△BCO≌△ECD,∴∠CDE=∠BOC=90°,∴DE⊥BC,∵△EBC是等边三角形,∴∠DEC=30°,∴∠OBC=∠DEC=30°,∴333OC OB==,63BC=,CE=,∴63过E作EF⊥x轴于F,∵∠DCO=∠BCE=60°,∴∠ECF=60°,∵63CE BC ==, ∴33CF =,392EF CE ==, ∵33CO = , ∴63OF =, ∴E (63,9); ②存在,如图,当63CE CP ==时, ∵33OC =,∴133OP =,293OP =, ∴1233030P P -(,),(9,); 当CE=PE , ∵∠ECP=60°, ∴△CPE 是等边三角形, ∴P 2,P 3重合,∴当△PEC 为等腰三角形时,点P 的坐标为(-33,0)或(93,0); ③不会变化,如图,连接EM ,∵111•••222BCESBC DE BE GM CE MH ==+ ∵BC=CE=BE , ∴GM+MH=DE=9,∴MH+MG 的值不会发生变化. 【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定,三角形面积的计算,熟练掌握等边三角形的性质是解题的关键.2.A解析:(1) A (12,0) B (72,0);(2) ①233y x =-+,②24316373y x x =-+. 【解析】 【分析】(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4∆∆=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得13=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标; (2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式. 【详解】解:(1)∵抛物线的解析式为24(0)=-+>y mx mx n m ,∴对称轴为直线422-=-=mx m, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,∴△AOE ∽△AGC , ∴=AO AEAG AC, ∵:3:4ABCBCES S=, ∴CA :CE =3:4 ,则31AE AC =, ∴13==AO AE AG AC , ∴1142==OA OG ,3342==AG OG ,则23==AB AG ,72=+=OB OA AB , ∴A (12,0), B (72,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,由旋转的性质得:△BCO ≌△ACQ , ∴BO =AQ =72,CO =CQ , ∴OQ =222271()()2322=-=-=AQ AO∵CP y ⊥轴, ∴132==OP OQ ∴点C 的坐标为(2,3)-,则3CG =由(1)得△AOE ∽△AGC ,13==OE AE CG AC , ∴3OE =E 的坐标为3, ①设CE 的解析式为y kx b =+,分别代入C (2,3)-,E 3(0,3得: 2333k b b ⎧+=⎪⎨=⎪⎩,解得:2333k b ⎧=⎪⎪⎨⎪=⎪⎩,∴CE的解析式为23333y x=-+;②将A(12,0),C(2,3)-分别代入24y mx mx n=-+得:1204483m m nm m n⎧-+=⎪⎨⎪-+=-⎩,解得:43739mn⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为24316373y x x=-+.【点睛】本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键.3.A解析:(1)详见解析;(2)详见解析;(3)15KGAK=【解析】【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG∠+∠=︒,进而得到90AGH∠=︒,即可证明AG HD⊥;(2)连接AC、AD、CF,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF∠=∠,进而得到HF HA=,再根据已知HC HF=,得到HC HA=;(3)在DH上截取DT HC=,过点C作CM HD⊥于点M,通过证明AHC≌ATD得到AH AT=,进而得到HG CH GD+=,再根据F为DG中点,得到GF DF=,通过勾股定理逆用,证明90HCF∠=︒,再通过解ACE△得1tan3CAB∠=,解△CDH得1tan2CDF∠=,求得OF、OH,逆用勾股定理证明90HOF∠=︒,易求1tan2KHG∠=,1tan3HAG∠=,最后求得KGAK的值.【详解】(1)证明:如图,设HAG∠为α,∵HAG BDC∠=∠,∴HAG BDC α∠=∠=, ∵CD AB ⊥,∴90BDC DBE ∠+∠=︒ ∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-, ∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒ ∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥, ∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=︒, ∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角,∴90HAB HDB β∠=∠=︒-, ∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-, ∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥ ∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =125k , ∴229=5MF CF CM k -=, ∴1tan 2CM CM CDF MD MF FD ∠===+,解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.4.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC1SMK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,QN OQ ===QN sin QHN QH∠===,进行分析计算即可求解. 【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭, 22BMC 1113S MK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值, 当b x 22a=-=-时, BMC S 最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N , 过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -,点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴,QHN OCA ∠∠∴=,1tan QHN2∠∴=,则sin QHN ∠= 将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩, 则直线AC 的表达式为:y 2x 2=-,则点()H 2,6--,在Rt QNH 中,QH m 6=+,QN OQ ===QN sin QHNQHm 6∠===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--.【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.5.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==. 45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+, 16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入, 07522a c a c -+=⎧⎪⎨+=⎪⎩ 解得5959a c ⎧=⎪⎪⎨⎪=⎪⎩∴直线DM 的解析式为5599y x =+. 【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标.6.(1)1001;9999;(2)2754和4848;(3)见解析【解析】【分析】(1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又由029a ≤≤得到a 的可能取值为1,2,3,4;根据百位上的数字与十位上的数字之和是12的倍数,可知m +n =12,得到122a m +=,由a 的可能取值可得m 的取值,即可求得符合条件的“和平数”;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c ,计算它们的和,根据“和平数”的定义可知a+b=c+d ,因式分解可得原式= 1111(a+b ),即可证明.【详解】解:(1)根据“和平数”的定义可得:最小的“和平数”1001,最大的“和平数”9999,故答案为1001;9999;(2)设这个“和平数”的千位数字是a ,百位数字是m ,十位数字是n ,其中a ,m ,n 均是正整数且19a ≤≤,09m ≤≤,09n ≤≤,则个位数字是2a ,又∵029a ≤≤,∴a 的可能取值为1,2,3,4;∵百位上的数字与十位上的数字之和是12的倍数,∴m+n =0或m+n =12,∵“和平数”中a+m =n+2a ,当m+n =0时,即m=n =0,则此时a =0,不符合题意,∴m+n =12,∴a+m =12−m +2a ,解得:122a m +=, ∵a 的可能取值为1,2,3,4;且m 为正整数,∴m 的可能取值为7,8;当a =2时,m =7,这个“和平数”是2754;当a =4时,m =8,这个“和平数”是4848;综上所述,满足条件的“和平数”是2754和4848;(3)设任意一个“和平数”千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,则它的“相关和平数”千位数字为b ,百位数字为a ,十位数字为d ,个位数字为c , ∴(100010010)(100010010)a b c d b a d c +++++++110011001111a b c d =+++1100()11()a b c d =+++由“和平数”的定义可知:a+b =c+d ,∴原式1100()11()a b a b =+++1111()a b =+,∵a ,b 为正整数,则1111()a b +能被1111整除,即(100010010)(100010010)a b c d b a d c +++++++能被1111整除,∴任意的两个“相关和平数”之和是1111的倍数.【点睛】本题考查新定义运算、因式分解的应用;能够读懂题意,根据数的特点,确定数的取值范围,进行正确的因式分解是解题关键.7.E解析:(1)详见解析;(2)52r =,55AC +=;(3)2AG AD CD =+,理由详见解析.【解析】【分析】(1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可求出半径的长,证FEB ∆∽AOD ∆,求出BF 的长,再证BFE ∆∽BAC ∆,即可求出AC 的长;(3)过点F 作FR AC ⊥于点R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)如图,连接EF ,∵AE 平分BAC ∠,FAE CAE ∴∠=∠,FA FE =,FAE FEA ∴∠=∠,FAE EAC ∴∠=∠,//FE AC ∴,90FEB C ∴∠=∠=︒,又E 为⊙F 上一点,BC ∴是⊙F 的切线;(2)如图,连接FD ,设⊙F 的半径为r ,∵点A D 、的坐标分别为(0,1),(2,0)A D -,1,2,1OA OD OF r ∴===-, 5AD ∴=, 在Rt FOD ∆中,由勾股定理得,222FD OFOD =+,222(1)2r r ∴=-+,解得52r =, 即⊙F 的半径为52, 90ODA OAD EBF OAD ∠+∠=∠+∠=︒,ODA EBF ∴∠=∠,90AOD FEB ∠=∠=︒,∴FEB ∆∽AOD ∆,EF BF OA DA ∴=,即2.515=, 552BF ∴=, 555BA +∴=, //EF AC ,∴BFE ∆∽BAC ∆,EF BF AC BA∴=,即55522555AC =+, 55AC +∴= (3)2AG AD CD =+.理由如下:如图,过点F 作FR AC ⊥于点R ,则∠FRC=90°,∵∠FEC=∠C=90°,∴四边形RCEF 为矩形,EF RC RD CD ∴==+,FR AD ⊥,AR RD ∴=,12EF RD CD AD CD ∴=+=+, 22AG EF AD CD ∴==+.【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.8.(1) CF ;(2) 四边形BFDE 是菱形,理由见解析;(3) 纸片ENFM 是“标准纸",理由见解析【解析】【分析】(1)1AB =,则AD =ABCD 是矩形,得到1,CD AB BC AD ==-=FB FD =,设CF x =,则FB FD x ==,在Rt DCF △中,222+=CD CF DF ,可得)2221x x +=即可求解. (2)当顶点B 与点D 重合时,折痕EF 垂直平分BD ,可得OB OD =,90BOF DOE ∠=∠=,在矩形ABCD 中,//AD BC ,得到OBF ODE ∠=∠,在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,,可得BOF DOE ≅,OE OF =,再根据OB OD =,可得四边形BFDE 是平行四边形,最后根据EF BD ⊥,即可求证平行四边形BFDE 是菱形.(3)由()2可知,OE OF =,同理可知,OM ON =,可得四边形ENFM 是平行四边形,根据90DOE DAB ∠=∠=︒,得到DOE DAB ,再根据AD =,可得2OE AB OD AD ===,进而得到2OE OD =,2EF BD =,同理可得,2MN AC =,根据四边形ABCD 是矩形,可得AC BD =,EF MN =,四边形ENFM 是矩形,90EMF ∠=,MF OD tan FEM ME OE ∠===MF =,即可求证纸片ENFM 是“标准纸".【详解】解:()11,AB =则AD AB ==四边形ABCD 是矩形1,CD AB BC AD ∴==-=由折叠得FB FD =设CF x =,则2FB FD x ==-在Rt DCF △中,222+=CD CF DF()22212x x +=- 24x = 答:CF 长为2 ()2四边形BFDE 是菱形.理由:当顶点B 与点D 重合时,折痕EF 垂直平分,BDOB OD ∴=,90BOF DOE ∠=∠=在矩形ABCD 中,//,AD BCOBF ODE ∴∠=∠在BOF 和DOE △中,,OBF ODE OB OD BOF DOE ∠=∠=∠=∠,BOF DOE ∴≅OE OF ∴=OB OD =∴四边形BFDE 是平行四边形EF BD ⊥平行四边形BFDE 是菱形.()3纸片ENFM 是“标准纸”理由如下:由()2可知,,OE OF =同理可知,,OM ON =∴四边形ENFM 是平行四边形90DOE DAB ∠=∠=︒DOE DAB ∴ 2AD =2OE AB OD AD ∴===OE ∴=EF BD ∴=同理可得,2MN AC =四边形ABCD 是矩形,AC BD ∴=,EF MN ∴=∴四边形ENFM 是矩形. 90EMF ∴∠=.MF OD tan FEM ME OE∴∠===MF ∴=.∴纸片ENFM 是“标准纸".【点睛】此题主要考查矩形的判定和性质、勾股定理、全等三角形的判定和性质、菱形的判定及三角函数,灵活运用判定和性质是解题关键.9.A解析:(1)详见解析;(2)y =(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====,根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+,根据平行线分线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x ,∴()222222248OF FN ON x x x =+=-+=-+∴248EF y x x =-+∵AM⊥AC,∴AE∥OB,∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴)244804x x y x -+≤<;(3)①当AE=EG时,△AEG是等腰三角形,则AE=OE,∵∠EAO=90°,∴这种情况不存在;②当AE=AG时,△AEG是等腰三角形,如图2,过A作AP⊥EG于P,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=,∵AE=AG,∴2421482x xxPE y-+==,()22248xAE yx-=-=,∴()22222224448448xx xxx xx---+=+,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS ),∴EQ AO ==∴2AE E Q ===∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.10.E解析:(1)EF =,见解析;(2)BK =;(3)①AGH 是等边三角形,见解析;②14 【解析】【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到AE =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BK FB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到1DH =,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1)EF =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,。
中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路
中考数学压轴题是考试中最难的题型,涉及的内容相对较为复杂,解题思路也较为繁琐。
以下是一些中考数学压轴题的常见类型和解题思路。
常见类型一:应用题
应用题是中考数学压轴题中最常见的类型之一。
这类题目通常涉及实际问题,需要运用数学知识进行分析和计算。
解题思路:
1. 仔细阅读题目,理解问题的背景和要求。
2. 分析问题,确定解题的核心思路和步骤。
3. 运用所学的数学知识和技巧,进行计算和推理。
4. 对结果进行合理性检验,确保解答的准确性和完整性。
解题思路:
1. 仔细观察图形,寻找图形的性质和特点。
2. 运用几何性质和定理,进行推理和证明。
3. 利用几何性质,绘制等边、等腰和直角三角形等特殊图形进行推理和计算。
4. 运用实际问题,将几何题转化为代数问题,从而更好地解决问题。
总结:
中考数学压轴题的常见类型包括应用题、几何题、代数题和概率题等。
解题时需要仔细阅读题目、分析问题、运用所学的数学知识和技巧进行计算和推理,并对结果进行合理性检验。
通过充分的准备和练习,掌握解题的方法和技巧,就能够更好地应对中考数学压轴题。
中考数学:六种常考的压轴题类型

中考数学:六种常考的压轴题类型关于中考数学,压轴题往往是是考生最怕的。
专门多考生都以为它一定专门难,不敢碰它。
事实上,对历年中考的压轴题作一番分析,就会发觉,事实上也不是专门难。
常常有专门多家长说,“小孩关于数学考试专门头疼,选择题和填空题都还将就能做完,可关于大题就有点束手无策,专门是最后的压轴题,压根儿没碰过!”事实上压轴题难度也是有约定的:历年中考,压轴题一样都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一样依旧属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
而从近几年的中考压轴题来看,大多不偏不怪,得分率稳固在0.5与0. 6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
今天乐思学教育就给大伙儿分析一下中考压轴题,期望对数学有困难的同学有关心。
1线段、角的运算与证明中考的解答题一样是分两到三部分的。
第一部分差不多上差不多上一些简单题或者中档题,目的在于考察基础。
第二部分往往确实是开始拉分的中难题了。
对这些题轻松把握的意义不仅仅在于获得分数,更重要的是关于整个做题过程中士气,军心的阻碍。
2一元二次方程与函数在这一类问题当中,尤以涉及的动态几何问题最为艰巨。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,然而对考生的运算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式显现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
然而在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
3多种函数交叉综合问题初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并可不能太难,专门少作为压轴题显现,一样差不多上作为一道中档次题目来考察考生关于一次函数以及反比例函数的把握。
中考数学压轴题的常见类型与解题思路

中考数学压轴题的常见类型与解题思路中考数学压轴题在考查学生掌握知识点的同时,也更加强调解题的能力和思维能力。
因此,学生在备考中要注重掌握解题思路和方法,下面是中考数学压轴题常见类型和解题思路。
一、函数题型函数题型是中考数学压轴题中常见的一种类型。
其中,常见的函数类型有:1.一次函数一次函数的数学表达式为 y=kx+b,其中,k,b为常数,x,y分别为自变量和因变量。
解题思路:① 分析已知条件,列出方程;② 解方程得出未知量;③ 进行数据检验,判断解的可行性。
① 判断二次函数的开口方向;③ 运用二次函数的性质求出未知量。
3.反比例函数二、几何题型中考数学压轴题中的几何题型,主要涵盖了线段、角、平面图形等内容。
其中常见的几何题型有:1.线段长度的问题线段长度的计算方法主要包括勾股定理、相似三角形等。
① 画图,确定已知和未知量;② 运用勾股定理、相似三角形或者其他方法计算出未知量。
2.平面图形的问题平面图形的问题主要包括面积、周长、对边、对角线等。
② 运用平面图形相关的公式计算出未知量。
3.角度问题角度问题主要包括计算角度、判断直角的方法等。
三、整式的问题整式的问题主要是运用多项式的性质来解题,常见的整式问题有:1.整式的因式分解① 分析多项式的类型,确定因式分解的方法;② 进行因式分解;③ 检验分解的正确性。
2.整式的求和① 使用数学归纳法或其他方法推导公式;② 将已知数据代入公式计算出未知量。
以上就是中考数学压轴题常见类型和解题思路,希望对大家备考有所帮助。
最新中考数学压轴题十大题型(含详细答案)百度文库

一、中考数学压轴题1.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围. 2.如图1,在平面直角坐标系中,抛物线239334y x x =--与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C .(1)过点C 的直线5334y x =-交x 轴于点H ,若点P 是第四象限内抛物线上的一个动点,且在对称轴的右侧,过点P 作//PQ y 轴交直线CH 于点Q ,作//PN x 轴交对称轴于点N ,以PQ PN 、为邻边作矩形PQMN ,当矩形PQMN 的周长最大时,在y 轴上有一动点K ,x 轴上有一动点T ,一动点G 从线段CP 的中点R 出发以每秒1个单位的速度沿R K T →→的路径运动到点T ,再沿线段TB 以每秒2个单位的速度运动到B 点处停止运动,求动点G 运动时间的最小值:(2)如图2, 将ABC ∆绕点B 顺时针旋转至A BC ''∆的位置, 点A C 、的对应点分别为A C ''、,且点C '恰好落在抛物线的对称轴上,连接AC '.点E 是y 轴上的一个动点,连接AE C E '、, 将AC E ∆'沿直线C E '翻折为A C E ∆'', 是否存在点E , 使得BAA ∆'为等腰三角形?若存在,请求出点E 的坐标;若不存在,请说明理由.3.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.4.已知抛物线217222y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.5.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.6.定义:如果一个三角形一条边上的高与这条边的比值是3:5,那么称这个三角形为“准黄金”三角形,这条边就叫做这个三角形的“金底”.(概念感知)(1)如图1,在ABC 中,12AC =,10BC =,30ACB ∠=︒,试判断ABC 是否是“准黄金”三角形,请说明理由.(问题探究)(2)如图2,ABC 是“准黄金”三角形,BC 是“金底”,把ABC 沿BC 翻折得到DBC △,连AB 接AD 交BC 的延长线于点E ,若点C 恰好是ABD △的重心,求AB BC 的值.(拓展提升) (3)如图3,12l l //,且直线1l 与2l 之间的距离为3,“准黄金”ABC 的“金底”BC 在直线2l 上,点A 在直线1l 上.105AB BC =,若ABC ∠是钝角,将ABC ∠绕点C 按顺时针方向旋转()090αα︒<<︒得到A B C '',线段A C '交1l 于点D .①当30α=︒时,则CD =_________;②如图4,当点B 落在直线1l 上时,求AD CD 的值.7.已知.在Rt △OAB 中,∠OAB=90°,∠BOA=30°,3O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内,将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处.(1)求经过点O ,C ,A 三点的抛物线的解析式.(2)若点M 是抛物线上一点,且位于线段OC 的上方,连接MO 、MC ,问:点M 位于何处时三角形MOC 的面积最大?并求出三角形MOC 的最大面积.(3)抛物线上是否存在一点P ,使∠OAP=∠BOC ?若存在,请求出此时点P 的坐标;若不存在,请说明理由.8.在梯形ABCD 中,//AD BC ,90B ∠=︒,45C ∠=︒,8AB =,14BC =,点E 、F 分别在边AB 、CD 上,//EF AD ,点P 与AD 在直线EF 的两侧,90EPF ∠=︒,PE PF =,射线EP 、FP 与边BC 分别相交于点M 、N ,设AE x =,MN y =.(1)求边AD 的长;(2)如图,当点P 在梯形ABCD 内部时,求关于x 的函数解析式,并写出定义域; (3)如果MN 的长为2,求梯形AEFD 的面积.9.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .(1)求外接圆⊙O 的半径;(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .①连接BN ,当BN ⊥DE 时,求AM 的值;②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.10.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,第一颗弹珠弹出后其速度1y (米/分钟)与时间x (分钟)前2分钟满足二次函数21y ax =,后3分钟满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分钟.(1)求第一颗弹珠的速度1y (米/分钟)与时间x (分钟)之间的函数关系式;(2)第一颗弹珠弹出1分钟后,弹出第二颗弹珠,第二颗弹珠的运行情况与第一颗相同,直接写出第二颗弹珠的速度2y (米/分钟)与弹出第一颗弹珠后的时间x (分钟)之间的函数关系式;(3)当两颗弹珠同时在轨道上时,第____分钟末两颗弹珠的速度相差最大,最大相差______;(4)判断当两颗弹珠同时在轨道上时,是否存在某时刻速度相同?请说明理由,并指出可以通过解哪个方程求出这一时刻.11.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若12,(33)2ADH a S ==+,求sin GAB ∠的值.12.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形. 13.综合与探究:如图1,在平面直角坐标系xOy 中,四边形OABC 是边长为4的菱形,60C ︒∠=(1)把菱形OABC 先向右平移4个单位后,再向下平移()03m m <<个单位,得到菱形''''O A B C ,在向下平移的过程中,易知菱形''''O A B C 与菱形OABC 重叠部分的四边形'AEC F 为平行四边形,如图2.试探究:当m 为何值时,平行四边形'AEC F 为菱形:(2)如图,在()1的条件下,连接''',AC B O G 、为CE 的中点J 为EB 的中点,H 为AC 上一动点,I 为''B O 上一动点,连接,,,GH HI IJ 求GH HI IJ ++的最小值,并直接写出此时,H I 点的坐标.14.(1)探究发现数学活动课上,小明说“若直线21y x =-向左平移3个单位,你能求平移后所得直线所对应函数表达式吗?”经过一番讨论,小组成员展示了他们的解答过程:在直线21y x =-上任取点()01A -,, 向左平移3个单位得到点()31,'--A 设向左平移3个单位后所得直线所对应的函数表达式为2y x n =+.因为2y x n =+过点()31,'--A , 所以61n -+=-,所以5n =,填空:所以平移后所得直线所对应函数表达式为(2)类比运用已知直线21y x =-,求它关于x 轴对称的直线所对应的函数表达式;(3)拓展运用将直线21y x =-绕原点顺时针旋转90°,请直接写出:旋转后所得直线所对应的函数表达式 .15.如图,矩形ABCD 中,AD >AB ,连接AC ,将线段AC 绕点A 顺时针旋转90∘得到线段AE ,平移线段AE 得到线段DF (点A 与点D 对应,点E 与点F 对应),连接BF ,分别交直线AD ,AC 于点G ,M ,连接EF .(1) 依题意补全图形;(2) 求证:EG ⊥AD ;(3) 连接EC ,交BF 于点N ,若AB =2,BC =4,设MB =a ,NF =b ,试比较()()11a b ++与9+6216.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)17.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG 绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DF=PG;②若AB=3,PC=1,求四边形PEFD的面积;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD 是怎样的特殊四边形,并证明你的猜想.18.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.19.如图①,△ABC是等腰直角三角形,在两腰AB、AC外侧作两个等边三角形ABD和ACE,AM和AN分别是等边三角形ABD和ACE的角平分线,连接CM、BN,CM与AB交于点P.(1)求证:CM=BN;(2)如图②,点F为角平分线AN上一点,且∠CPF=30°,求证:△APF∽△AMC;(3)在(2)的条件下,求PFBN的值.20.如图,四边形AOBC是正方形,点C的坐标是(82,0).(1)正方形AOBC的边长为,点A的坐标是;(2)将正方形AOBC绕点O顺时针旋转45︒,点A,B,C旋转后的对应点为A',B',C',求点A'的坐标及旋转后的正方形与原正方形的重叠部分的面积;(3)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t 秒,当它们相遇时同时停止运动,当OPQ△为等腰三角形时,求出t的值(直接写出结果即可).21.在一次数学课上,李老师让同学们独立完成课本第23页第七题选择题(2)如图 1,如果 AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF=()A.180° B.270° C.360° D.540°(1)请写出这道题的正确选项;(2)在同学们都正确解答这道题后,李老师对这道题进行了改编:如图2,AB∥EF,请直接写出∠BAD,∠ADE,∠DEF之间的数量关系.(3)善于思考的龙洋同学想:将图1平移至与图2重合(如图3所示),当AD,ED分别平分∠BAC,∠CEF时,∠ACE与∠ADE之间有怎样的数量关系?请你直接写出结果,不需要证明.(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE 和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.22.如图,直角梯形ABCD 中,1//,90,60,3,9,AD BC A C AD cm BC cm O ︒︒∠∠====的圆心1O 从点A 开始沿折线——A D C 以1/cm s 的速度向点C 运动,2O 的圆心2O 从点B 开始沿BA 边以3/cm s 的速度向点A 运动,1O 半径为22,cm O 的半径为4cm ,若12,O O 分别从点A 、点B 同时出发,运动的时间为ts(1)请求出2O 与腰CD 相切时t 的值; (2)在03s t s ≤<范围内,当t 为何值时,1O 与2O 外切?23.问题提出(1)如图1,已知三角形ABC ,请在BC 边上确定一点D ,使得AD 的值最小. 问题探究(2)如图2,在等腰ABC 中,AB AC =,点P 是AC 边上一动点,分别过点A ,点C 作线段BP 所在直线的垂线,垂足为点,DE ,若5,6AB BC ==,求线段BP 的取值范围,并求AD CE +的最大值.问题解决(3)如图3,正方形ABCD 是一块蔬菜种植基地,边长为3千米,四个顶点处都建有一个蔬菜采购点,根据运输需要,经过顶点A 处和BC 边的两个三等分点E F 、之间的某点P 建设一条向外运输的快速通道,其余三个采购点都修建垂直于快速通道的蔬菜输送轨道,分别为BB '、CC '、DD '.若你是此次项目设计的负责人,要使三条运输轨道的距离之和()BB CC DD '''++最小,你能不能按照要求进行规划,请通过计算说明.24.在菱形ABCD中,点P是对角线BD上一点,点M在CB的延长线上,且=,连接PA.PC PM()1如图①,求证:PA PM=;()2如图②,连接,AM PM与AB交于点,120PC AM;O ADC︒∠=求证 =()3连接AM,当90∠=时,PC与AM的数量关系是ADC︒25.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c的图象与x轴交于A(﹣3,0)、B(2,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点E(m,2)是直线AC上方的抛物线上一点,连接EA、EB、EC,EB与y轴交于D.①点F是x轴上一动点,连接EF,当以A、E、F为顶点的三角形与△BOD相似时,求出线段EF的长;②点G为y轴左侧抛物线上一点,过点G作直线CE的垂线,垂足为H,若∠GCH=∠EBA,请直接写出点H的坐标.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1)直线x=0;(2)B(0,1a);(3)2-≤a≤13-或13≤a2【解析】【分析】(1)根据抛物线的表达式直接得出对称轴即可;(2)根据题意得出点A的坐标,再利用关于x轴对称的点的坐标规律得出点B坐标;(3)分a>0和a<0两种情况分别讨论,画图图像,求出a的范围.【详解】解:(1)在抛物线21y axa=-中,2a-=,∴对称轴为直线x=0,即y轴;(2)∵抛物线与y轴交于点A,∴A(0,1a -),∵点A关于x轴的对称点为点B,∴B(0,1a);(3)当a>0时,点A(0,1a-)在y轴负半轴上,当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=或2-(舍),当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=或13-(舍),∴当13≤a≤2时,抛物线与线段PQ恰有一个公共点;当a<0时,点A(0,1a-)在y轴正半轴上,同理可知:当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=2-,当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=(舍)或13-,∴当2-a≤13-时,抛物线与线段PQ只有一个公共点;综上:若抛物线与线段PQ 恰有一个公共点,a 的取值范围是2-≤a ≤13-或13≤a 2. 【点睛】本题是一道二次函数的综合题目,主要考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,画出相应的函数图象,利用分类讨论的方法和数形结合的思想解答.2.A解析:(1)min 119342t R H '==;(2)(0,30,6)或(0,3(0,12). 【解析】 【分析】(1)根据题意设239(33)4P m m --,5(,33)4Q m m -,以及作R 关于y 轴对称3(3,33)2R '-,并过R '点作直线3:4xl y =的垂线交于H 点R H '即为所求,从而进行分析求解即可; (2)根据题意分四种情形即①当AA''=A''B 时;②当AA''=AB 时;③当AA''=A''B 时;④当A''B=AB 时分别画出图形并进行分析求解. 【详解】 解:(1)设239(,33)4P m m m m --,5(,33)4Q m m -, 23932()2(3)22PQMN C QP NP m ∴=+=+-矩形, 302-<,开口向下, ∴当33m =(33,33)P -,最少时间12t RK RK TB =++, 3(3,33)2R -,作R 关于y 轴对称3(3,33)2R '--,过R '点作直线3:4xl y =-的垂线交于H 点R H '即为所求, 令y=0,解得5312x =, 12()530H ∴,,t R K K T TH =+''+'', ∴过R ''作R H l ''⊥,22min 3119(33)(330)3242125t R H ∴==++'--=+. (2)①当AA''=A''B 时,如图2中,此时,A''在对称轴上 对称性可知∠AC′E=∠A''C′E 又∠HEC′=∠A''C′E ∴∠AC′E=∠HEC′∴333 ∴3, ∴E(0,3,②当AA''=AB 时,如图3中,设A″C′交y 轴于J .此时AA''=AB=BC'=A''C',∴四边形A''ABC'为菱形,由对称性可知,∠AC'E=∠A''C'E=30°,∴JE= 3JC′=3,2∴OE=OJ-JE=6∴E(0,6)③当AA''=A''B时,如图4中,设AC′交y轴于M.此时,A''在对称轴上∠MC'E=75°又∠AMO=∠EMC'=30°∴∠MEC'=75°∴ME=MC'∴MC'=3 3,∴OE=3+3 3,∴E(0,3+3).④当A''B=AB时,如图5中,此时AC'=A''C'=A''B=AB∴四边形AC'A''B为菱形由对称性可知,C'',E,B共线由抛物线2393344y x x =--与x 轴交于AB 、两点(点A 在点B 的左侧)可知, 令x=0,解得y=−3 3;令x=0,解得:x 1=− 3,x 2=4 3; ∴A (−3,0),B(43,0),OB=43, ∴OE= 3OB =12, ∴E (0,12).综上满足条件的点E 坐标为(0,3-3)或(0,6)或(0,3+3)或(0,12). 【点睛】本题考查二次函数综合题,解题的关键是学会构建二次函数解决最值问题,学会利用垂线段最短解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.A解析:(1)详见解析;(2)详见解析;(3)15KG AK = 【解析】 【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=︒,进而得到90AGH ∠=︒,即可证明AG HD ⊥;(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=︒,再通过解ACE △得1tan 3CAB ∠=,解△CDH 得1tan 2CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=︒,易求1tan 2KHG ∠=,1tan 3HAG ∠=,最后求得KGAK的值. 【详解】(1)证明:如图,设HAG ∠为α,∵HAG BDC ∠=∠, ∴HAG BDC α∠=∠=, ∵CD AB ⊥,∴90BDC DBE ∠+∠=︒ ∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-, ∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒ ∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥, ∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=︒, ∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=︒-, ∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-, ∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥ ∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =125k , ∴229=5MF CF CM k -=, ∴1tan 2CM CM CDF MD MF FD ∠===+, 解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键. 4.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或417k 或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形.【解析】 【分析】 (1)从2172022x mxm的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴32b xa来求m 的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点C 的坐标;(3)根据平行四边形的性质得到:215|1(3)|422MN k k kCD . 需要分类讨论:①当四边形CDMN 是平行四边形,2151(3)422MN k k k,通过解该方程可以求得k 的值;②当四边形CDNM 是平行四边形,2153(1)422NM k kk ,通过解该方程可以求得k 的值. 【详解】 解:(1)2217()4(2)(2)322m m m, ∵不论m 为何实数,总有2(2)0m -≥,2(2)30m ,∴无论m 为何实数,关于x 的一元二次方程2172022x mxm总有两个不相等的实数根,∴无论m 为何实数,抛物线217222y x mxm与x 轴总有两个不同的交点. (2)抛物线的对称轴为直线3x =,3122m ,即3m =,此时,抛物线的解析式为221513(3)2222y x xx ,∴顶点C 坐标为(3,2)-;(3)//,CD MN C D M N 、、、为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线的下方),如图所示,由已知215(3,2),(,1),(3)22D M k k N k k k,, (3,2)C ,4CD ∴=,2151(3)422MNk k kCD,①当四边形CDMN 是平行四边形,2151(3)422MNk k k,整理得,28150k k -+=,解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形,2153(1)422NMk kk ,整理得2810k k , 解得,12417417k k ,,综上,5k =或417k或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.5.A解析:(1)12;(2)5s 或373s ;(3)163s 或685s 或72s 【解析】【分析】(1)AD与BC之间的距离即AB的长,如下图,过点D作BC的垂线,交BC于点E,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD∥BC∴AB⊥BC,AB⊥AD∴AB的长即为AD与BC之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC中,DE=12同理,DE的长也是AD与BC之间的距离∴AD与BC之间的距离为12(2)∵AD∥BC∴只需QD=PC,则四边形QDCP是平行四边形QD=16-t,PC=21-2t或PC=2t-21∴16-t=21-2t或16-t=2t-21解得:t=5s或t=37 3s(3)情况一:QP=PD图形如下,过点P作AD的垂线,交AD于点F∵PQ=PD,PF⊥QD,∴QF=FD∵AF∥BP,AB∥FP,∠B=90°∴四边形ABPF 是矩形, ∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t ∵AF=BP ∴8+2t =2t 或8+2t=42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12 BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+- ∵PD=QD , ∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+-- 解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12 BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+-∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+-- 第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度.6.A解析:(1)ABC 是“准黄金”三角形,理由见解析;(2)AB BC =3)①5AD CD =. 【解析】 【分析】(1)过点A 作AD BC ⊥于点D ,先求出AD 的长度,然后得到61035AD BC ==,即可得到结论;(2)根据题意,由“金底”的定义得:3:5AE BC =,设3AE k =,5BC k =,由勾股定理求出AB 的长度,根据比值即可求出ABBC的值; (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,先求出AC 的长度,由相似三角形的性质,得到AF=2DF ,由解直角三角形,得到CF =,则(2AC x =+=DF的长度,然后得到CD 的长度;②由①可知,得到CE 和AC 的长度,分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,然后根据相似三角形的判定和性质,得到DF AFAE EC=,然后求出CD 和AD 的长度,即可得到答案. 【详解】解:(1)ABC 是“准黄金”三角形. 理由:如图,过点A 作AD BC ⊥于点D , ∵12AC =,30ACB ∠=︒,∴162AD AC ==. ∴:6:103:5AD BC ==.∴ABC 是“准黄金”三角形.(2)∵点A ,D 关于BC 对称, ∴BE AD ⊥,AE ED =.∵ABC 是“准黄金”三角形,BC 是“金底”, ∴:3:5AE BC =.不防设3AE k =,5BC k =, ∵点C 为ABD △的重心, ∴:2:1BC CE =. ∴52k CE =,152k BE =. ∴2215329(3)22k AB k k ⎛⎫=+= ⎪⎝⎭. ∴329329:5AB k k BC ==. (3)①作AE ⊥BC 于E ,DF ⊥AC 于F ,如图:由题意得AE=3, ∵35AE BC =, ∴BC=5, ∵10AB BC =, ∴10AB ,在Rt △ABE 中,由勾股定理得:22(10)31BE =-=,∴156EC =+=, ∴223635AC =+=∵∠AEC=∠DFA=90°,∠ACE=∠DAF , ∴△ACE ∽△DAF , ∴3126AE E D C F AF ===, 设DF x =,则2AF x =,∵∠ACD=30°, ∴3CF x =,∴(23)35AC x =+=, 解得:65315DF x ==- ∴2125615CD DF ==-.②如图,过点A 作AE BC ⊥于点E ,则3AE =. ∵ABC 是“准黄金”三角形,BC 是“金底”, ∴:3:5AE BC =. ∴5BC =. ∵105AB BC =, ∴10AB .∴221BE AB AE =-=.∴6CE BE BC =+=,2236935AC CE AE =+=+=. 分别过点B ',D 作B G BC '⊥,DF AC ⊥,垂足分别为点G ,F ,∴90B GC DFC '∠=∠=︒,3B G '=,5C B B C '==,则CG 4=. ∵GCB FCD α'∠=∠=, ∴AEC DFA ∽△△.∴::::3:4:5DF FC CD B G GC CB ''==. ∴设3DF k =,4FC k =,5CD k =. ∵12l l //,∴ACE CAD ∠=∠,且90AEC AFD ∠=∠=︒.∴AEC DFA ∽△△. ∴DF AFAE EC=.∴33k =,解得k =∴5CD k ==92AD ===.∴95AD CD ===. 【点睛】本题属于相似形综合题,主要考查了重心的性质,等腰直角三角形的性质,勾股定理,解直角三角形,旋转的性质以及勾股定理的综合运用,解决问题的关键是依据题意画出图形,根据数形结合的思想进行解答.7.C解析:(1)y=﹣x 2;(2)28⎛⎫ ⎪ ⎪⎝⎭3)存在,53)或(﹣3,﹣73)【解析】 【分析】(1)根据折叠的性质可得OC=OA ,∠BOC=∠BAO=30°,过点C 作CD ⊥OA 于D ,求出OD 、CD ,然后写出点C 的坐标,再利用待定系数法求二次函数解析式解答;(2)求出直线OC 的解析式,根据点M 到OC 的最大距离时,面积最大;平行于OC 的直线与抛物线只有一个交点,利用根的判别式求出m 的值,利用锐角三角函数的定义求解即可;(3)分两种情况求出直线AP 与y 轴的交点坐标,然后求出直线AP 的解析式,与抛物线解析式联立求解即可得到点P 的坐标. 【详解】解:(1)∵Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处, ∴BOC=∠BAO=30°, ∴∠AOC=30°+30°=60°, 过点C 作CD ⊥OA 于D ,则OD=1233 33, 所以,顶点C 33),设过点O ,C ,A 抛物线的解析式为为y=ax 2+bx ,则223)33(23)230a b a b ⎧=⎪⎨+=⎪⎩, 解得:123a b =-⎧⎪⎨=⎪⎩∴抛物线的解析式为y=﹣x 23; (2)∵C 33),∴直线OC 的解析式为:3y x =,设点M 到OC 的最大距离时,平行于OC 的直线解析式为3y x m =+,联立233y x my x x⎧=+⎪⎨=-+⎪⎩, 消掉未知数y 并整理得,230x x m +=, △=(3-2-4m=0,解得:m=34. ∴23304x x +=,∴3x =; ∴点M 到OC 的最大距离=34×sin30°=313428⨯=;∵OC==∴13288MOCS∆=⨯⨯=;此时,M⎝⎭,最大面积为8;(3)∵∠OAP=∠BOC=∠BOA =30°,∴23=,∴直线AP与y轴的交点坐标为(0,2)或(0,﹣2),当直线AP经过点(0)、(0,2)时,解析式为2y x=+,联立22y xy x⎧=-+⎪⎨=+⎪⎩,解得11xy⎧=⎪⎨=⎪⎩2253xy⎧=⎪⎪⎨⎪=⎪⎩.所以点P的坐标为(3,53),当直线AP经过点(0)、(0,﹣2)时,解析式为2y x=-,联立223y xy x⎧=-+⎪⎨=-⎪⎩解得11xy⎧=⎪⎨=⎪⎩22373xy⎧=-⎪⎪⎨⎪=-⎪⎩;所以点P的坐标为(73-).综上所述,存在一点P,5373),使∠OAP=∠BOA.【点睛】本题是二次函数综合题型,主要利用了折叠的性质,待定系数法求二次函数解析式,联立两函数解析式求交点的方法,(2)判断出点M到OC的距离最大是,平行于OC的直线与抛物线只有一个交点是解题的关键,(3)确定出直线AP的解析式是解题的关键.8.D解析:(1)6;(2)y=-3x+10(1≤x<103);(2)1769或32【解析】【分析】(1)如下图,利用等腰直角三角形DHC可得到HC的长度,从而得出HB的长,进而得出AD的长;(2)如下图,利用等腰直角三角形的性质,可得PQ、PR的长,然后利用EB=PQ+PR得去x、y的函数关系,最后根据图形特点得出取值范围;(3)存在2种情况,一种是点P在梯形内,一种是在梯形外,分别根y的值求出x的值,然后根据梯形面积求解即可.【详解】(1)如下图,过点D作BC的垂线,交BC于点H∵∠C=45°,DH⊥BC∴△DHC是等腰直角三角形∵四边形ABCD是梯形,∠B=90°∴四边形ABHD是矩形,∴DH=AB=8∴HC=8∴BH=BC-HC=6∴AD=6(2)如下图,过点P作EF的垂线,交EF于点Q,反向延长交BC于点R,DH与EF交于点G∵EF ∥AD,∴EF ∥BC ∴∠EFP=∠C=45° ∵EP ⊥PF∴△EPF 是等腰直角三角形同理,还可得△NPM 和△DGF 也是等腰直角三角形 ∵AE=x∴DG=x=GF,∴EF=AD+GF=6+x ∵PQ ⊥EF,∴PQ=QE=QF ∴PQ=()162x + 同理,PR=12y ∵AB=8,∴EB=8-x ∵EB=QR ∴8-x=()11622x y ++ 化简得:y=-3x+10 ∵y >0,∴x <103当点N 与点B 重合时,x 可取得最小值则BC=NM+MC=NM+EF=-3x+10+614x +=,解得x=1 ∴1≤x <103(3)情况一:点P 在梯形ABCD 内,即(2)中的图形 ∵MN=2,即y=2,代入(2)中的关系式可得:x=83=AE ∴188176662339ABCD S ⎛⎫=⨯++⨯= ⎪⎝⎭梯形 情况二:点P 在梯形ABCD 外,图形如下:与(2)相同,可得y=3x -10 则当y=2时,x=4,即AE=4 ∴()16644322ABCD S =⨯++⨯=梯形 【点睛】本题考查了等腰直角三角形、矩形的性质,难点在于第(2)问中确定x 的取值范围,需要一定的空间想象能力.9.A解析:(1)O 半径为254;(2)①458AM =;②详见解析;③当1251017x <<时,有2220ND DM -<成立. 【解析】 【分析】(1)如下图,在Rt △ABH 中,先求得AH 的值,设OA=r ,在Rt △OBH 中,利用勾股定理可求得r 的长;(2)①如下图,在Rt BCN ,可求得BN 的长,然后在矩形NBHD 中,求得AD 的值,最后利用cos ∠MAD 求得AM ;②如下图,同过证AMN NFC △∽△可得结论;③如下图,通过转换,先得出222ND DM -=22AM MB DM ⋅这个等式,然后利用3sin 5DM MAD AM ∠==,设AM=x ,可得到关于x 的方程,进而求出x 的取值范围. 【详解】解:(1)如图1,连接OB ,∵AH 过圆心O ,∴AH BC ⊥, ∵AB AC =,∴162BH CH BC ===, 在Rt ABH △中,221068AH =-=,设半径OA OB r ==,则8OH r =-,在Rt OBH 中,222(8)6r r -+=, 解得254r =,即O 半径为254. (2)①如图2,连接CN在平行四边形CDEB 中,DE BC ∥,∴ENB NBC ∠=∠. ∵BN DE ⊥,即90ENB ∠=︒,∴90NBC ∠=︒. ∴CN 是O 的直径.2522CN r ==. ∴在Rt BCN 中,2272BN CN BC =-=. ∵四边形CDEB 是平行四边形,NB ⊥BH ,DH ⊥BH ∴四边形NBHD 是矩形, ∴72DH BN ==,6ND BH ==,∴79822AD AH DH =-=-=. ∴在Rt ADM △中,4cos 5AD AH MAD AM AB ∠===,∴458AM =, ②如图3,连接AN ,CN ,∵DE BC ∥,∴DNC NCB ∠=∠. ∵NAB NCB ∠=∠,∴NAB DNC ∠=∠.由DE BC ∥,AB AC =可得AMD ABC ACB AFD ∠=∠=∠=∠, ∴AMN NFC ∠=∠,AMAF =.∴AMN NFC △∽△,MB CF =. ∴NM NM AMCF MB NF==,即NM NF AM MB ⋅=⋅. ③∵AH BC ⊥,DE BC ∥,∴AD MF ⊥,∵AM AF =,∴MD DF =,∴222222ND DM ND DM DM -=--2()()ND DM ND DM DM =-+- 2NM NF DM =⋅-22AM MB DM =⋅.∵AM x =,∴10BM x =-,由3sin 5DM MAD AM ∠==,得35DM x =, ∴22223342(10)10525ND DM x x x x x ⎛⎫-=--=-+ ⎪⎝⎭.(010)x <<该函数图象的示意图如图4易求得点P 坐标为125,017⎛⎫⎪⎝⎭∴当1251017x <<时,有2220ND DM -<成立. 【点睛】本题考查几何图形的综合,解题过程中用到了勾股定理、相似、三角函数和平行四边形、圆的性质,解题关键是将这些知识点综合起来分析题干.10.(1)212(02)16(25)x x y x x ⎧≤≤⎪=⎨≤≤⎪⎩;(2)220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;(3)第2分钟末两颗弹珠速度相差最大,最大相差6米/分钟;(4)存在,理由详见解析 【解析】 【分析】(1)将(1,2)代入21y ax =,得2a =,从而得到212y x =,再代入2x =求出18y =,即可得到反比例函数解析式,即可得解;(2)当01x ≤≤时,第二颗弹珠未弹出,故第二颗弹珠的解析式为20y =;再分别根据(1)中的结论,即可求出当13x <≤和36x <≤时第二颗弹珠的解析式;(3)由图可知看出,前2分钟,弹珠的速度逐渐增大,则第2分钟末两颗弹珠速度相差最大,分别求出第2分钟末时两颗弹珠的速度,再相减即可的解;(4)第2分钟末到第3分钟末,第一颗弹珠的速度由8米/分钟逐步下降到513米/分钟,第二颗弹珠的速度由2米/分逐步上升到8米/分,故在此期间必定存在一时刻,两颗弹珠的速度相同.可以根据速度相等时列方程求得时刻. 【详解】(1)当02x ≤≤时,将(1,2)代入21y ax =,得2a =,212y x ∴=,∵当2x =时,18y =, ∴当25x ≤≤时,116y x=, 1y ∴与x 的函数关系式为212(02)16(25)x x y x x⎧≤≤⎪=⎨≤≤⎪⎩;(2)当01x ≤≤时,第二颗弹珠未弹出, ∴第二颗弹珠的解析式为20y =;当13x <≤时,第二颗弹珠的解析式为222(1)y x =-;当36x <≤时,第二颗弹珠的解析式为2161y x =-; ∴2y 与x 的函数关系式为220(01)2(1)(13)16(36)1x y x x x x ⎧⎪≤≤⎪=-<≤⎨⎪⎪<≤-⎩;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其实压轴题难度也是有约定的:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;
第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,
第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
而从近几年的中考压轴题来看,大多不偏不怪,得分率稳定在0.5与0.6
之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
1、线段、角的计算与证明
解答题一般是分两到三部分的。
第一部分基本上都是一些简单题或者中档题,目的在于考察基础。
第二部分往往就是开始拉分的中难题了。
对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。
2、一元二次方程与函数
在这一类问题当中,尤以涉及的动态几何问题最为艰难。
几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。
相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。
中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。
一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。
但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。
3、多种函数交叉综合问题
初中数学所涉及的函数就一次函数,反比例函数以及二次函数。
这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道中档次题目来考察考生对于一次函数以及反比例函数的掌握。
所以在中考中面对这类问题,一定要做到避免失分。
4、列方程(组)解应用题
在中考中,有一类题目说难不难,说不难又难,有的时候三两下就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方程组解应用题。
方程可以说是初中数学当中最重要的部分,所以也是中考中必考内容。
从近年来的中考来看,结合时事热点考的比较多,所以还需要考生有一些生活经验。
实际考试中,这类题目几乎要么得全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多掌握各个题类,总结出一些定式,就可以从容应对了。
5、动态几何与函数问题
说来,几何综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。
而另一个则是侧重代数方面,几何性质只是一个引入点,更多的考察了考生的计算功夫。
但是这两种侧重也没有很严格的分野,很多题型都很类似。
其中通过图中已给几何图形构建函数是重点考察对象。
做这类题时一定要有“减少复杂性”“增大灵活性”的主体思想。
6、几何图形的归纳、猜想问题
中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。
对于这类归纳总结问题来说,思考的方法是最重要的。