电荷守恒定律、库仑定律练习题

合集下载

电荷及其守恒定律库仑定律练习题及答案

电荷及其守恒定律库仑定律练习题及答案

【基础练习】一、选择题:1、用丝绸摩擦过的玻璃棒和用毛皮摩擦过的橡胶棒,都能吸引轻小物体,这是因为:( )A 、被摩擦过的玻璃棒和橡胶棒一定带上了电荷B 、被摩擦过的玻璃棒和橡胶棒一定带上了同种电荷C 、被吸引的轻小物体一定是带电体D 、被吸引的轻小物体一定不是带电体2、带电微粒所带的电荷量的值不可能的是下列的:( )A 、×10-19CB 、-×10-19C C 、-×10-19CD 、4×10-17C3、如图所示,当带正电的球C 移近不带电的枕形金属导体时,枕形导体上的电荷移动情况是:( )A 、 枕形金属导体上的正电荷向B 端移动,负电荷不移动B 、枕形金属导体上的带负电的电子向A 端移动,正电荷不移动C 、枕形金属导体上的正、负电荷同时分别向B 端和A 端移动D 、枕形金属导体上的正、负电荷同时分别向A 端和B 端移动4、两个金属小球带有等量同种电荷q (可视为点电荷),当这两个球相距为5r 时,它们之间相互作用的静电力的大小为:( )A 、 2225r q k F =B 、225r q k F =C 、2225rq k F = D 、条件不足,无法判断 5、关于库仑定律的公式221r Q Q k F =,下列说法中正确的是:( ) A 、 当真空中的两个点电荷间的距离r →∞时,它们之间的静电力F →0B 、 当真空中的两个点电荷间的距离r →0时,它们之间的静电力F →∞C 、 当两个点电荷之间的距离r →∞时,库仑定律的公式就不适用了D 、当两个点电荷之间的距离r →0时,电荷不能看成是点电荷,库仑定律的公式就不适用了6、要使真空中的两个点电荷间的库仑力增大到原来的4倍,下列方法中可行的是:( )A 、 每个点电荷的带电量都增大到原来的2倍,电荷间 的距离不变B 、 保持点电荷的带电量不变,使两个电荷间的距离增大到原来的2 倍C 、 使一个点电荷的电荷量加倍,另一个点电荷的电荷量保持不变,同时将两个点电荷间的距离减小为原来的1/2D 、保持点电荷的电荷量不变,将两个点电荷的距离减小到原来的1/2二、填空题:7、大量事实说明:电荷既不能 ,也不能 ,只能从 转移到 ,或者从 转移到 。

电荷守恒 库仑定律专题练习

电荷守恒  库仑定律专题练习

电荷守恒定律、库仑定律专题练习1.下列关于点电荷的说法中,正确的是: ( )A .只有体积很小的带电体才能看作点电荷.B .体积很大的带电体一定不是点电荷.C .当两个带电体的形状对它相互作用力的影响可忽略时,这两个带电体可看作点电荷.D .任何带电球体,都可看作电荷全部集中于球心的点电荷. 2.两个点电荷相距r 时相互作用力为F ,则: ( )A .电量不变距离加倍时,作用力变为F/4.B .其中一个电荷的电量和两电荷间距都减半时,作用力不变.C .每个电荷的电量和两电荷间距减半时,作用力为4F .D .每个电荷的电量和两电荷间距都增加相同倍数时,作用力不变. 3.真空中有AB 两个点电荷,相距10厘米,B 的带电量是A 的5倍。

如果A 电荷受到的静电力是F ,那么B 电荷受到的静电力应是: ( )A .F ;B . 5F ;C .25F ;D .F/54.两个大小相同、带电量也相同的金属球A 和B ,分别固定在两处,相互作用的引力为F .现用另一个不带电的同样大小的C 球先与A 球接触,再与B 球接触,然后移去C 球,则后来A 、B 两球间的作用力变为 ( ) A .F/8; B .F/4; C .3F/8; D .F 。

5.相距为L 的点电荷A ,B 带电量分别为+4Q 和-Q .今引入第三个点电荷C ,使三个点电荷都处于平衡状态,则C 的电量和放置的位置是: ( )A .-Q ,在A 左侧距A 为L 处B .-2Q ,在A 左侧距A 为L/2处C .+4Q ,在B 右侧距B 为L 处D .+2Q ,在B 右侧距B 为3L/2处 6.两个相同的金属小球(可看作点电荷),带电量之比为1:7,在真空中相距为r ,两者相互接触后再放回原来的位置上, 则它们间的库仑力可能是原来的 ( )A .4/7B .3/7C .9/7D .16/77.在光滑绝缘水平面上固定介质小球a ,用弹簧把它和另一介质小球b 连接起来,如图所示,让a 、b 均匀地带上同种电荷,此时弹簧伸长量为x0;若使a 、b 的电量都减半,则弹簧的伸长量x ( )A .x=x 0/2;B .x=x 0/4;C .x<x 0/4;D .x>x 0/4;8.如图所示三个点电荷q 1、q 2、q 3固定在一直线上,q 2与q 3的距离为q 1与q 2距离的2倍,每个电荷所受静电力的合力均为零.由此可以判定,三个电荷的电量之比q 1:q 2:q 3为( )A 、-9∶4∶-36B 、9∶4∶36C 、-3∶2∶-6D 、3∶2∶69.如图所示,两根细丝线悬挂两个质量相同的小球A 、B .当A 、B 不带电时,静止后上、下两根丝线上的拉力大小分别为T A 、T B .使A 、B 带等量同种电荷时,静止后上、下两根丝线上的拉力大小分别为T A /、T B /.下列结论正确的是 A.T A /=T A ,T B / >T B B.T A /=T A ,T B / <T B C.T A /<T A ,T B / >T B D.T A / >T A ,T B / <T B10 .如图所示,两个带电小球A 、B 分别用细丝线悬吊在同一点O ,静止后两小球在同一水平线上,丝线与竖直方向的夹角分别为α、β (α>β),关于两小球的质量m 1 、m 2和带电量q 1 、q 2,下列说法中正确的是 A.一定有m 1<m 2, q 1<q 2 B.可能有m 1<m 2, q 1>q 2 C.可能有m 1=m 2, q 1=q 2 D.可能有m 1>m 2, q 1=q 211.(2011济南模拟)如图所示,竖直绝缘墙壁上的Q 处有一固定的质点A ,在Q 正上方的P 点用丝线悬挂另一质点B ,A 、B 两质点因为带电而相互排斥,致使悬线与竖直方向成θ角。

·库仑定律电荷守恒定律

·库仑定律电荷守恒定律

8·1 库仑定律 电荷守恒定律一、选择题1. 如图所示的实验装置为库仑扭秤.细银丝的下端悬挂一根绝缘棒,棒的一端是一个带电的金属小球A ,另一端有一个不带电的球B ,B 与A 所受的重力平衡,当把另一个带电的金属球C 插入容器并使它靠近A 时,A 和C 之间的作用力使悬丝扭转,通过悬丝扭转的角度可以比较力的大小,便可找到力F 与距离r 和电荷量q 的关系.这一实验中用到了下列哪些方法( ) A .微小量放大法 B .极限法 C .控制变量法D .逐差法2.如图所示,a 、b 、c 、d 为四个带电小球,两球之间的作用分别为a 吸d ,b 斥c ,c 斥a ,d 吸b ,则( ) A .仅有两个小球带同种电荷 B .仅有三个小球带同种电荷C .c ,d 小球带同种电荷D .c ,d 小球带异种电荷3.如图所示,有三个点电荷A 、B 、C 位于一个等边三角形的三个顶点上,已知A 、B 都带正电荷,A 所受B 、C 两个电荷的静电力的合力如图中F A 所示,那么可以判定点电荷C 所带电荷的电性为( ) A .一定是正电 B .一定是负电C .可能是正电,也可能是负电D .无法判断4.如图所示,半径相同的两个金属球A 、B 带有相等的电荷量,相隔一定距离,两球之间相互吸引力的大小是F .今让第三个半径相同的不带电的金属小球先后与A 、B 两球接触后移开.这时,A 、B 两球之间的相互作用力的大小是( ) A.F 8B .F 4 C.3F 8 D .3F 45.如图所示,电荷量为Q 1、Q 2的两个正点电荷分别置于A 点和B 点,两点相距L .在以AB 为直径的光滑绝缘半圆上,穿着一个带电小球+q (可视为点电荷),在P 点平衡。

不计小球的重力,那么,PA 与AB 的夹角α与Q 1、Q 2的关系应满足( )A .tan 3α=Q 2Q 1B .tan 2α=Q 2Q 1C .tan 3α=Q 1Q 2D .tan 2α=Q 1Q 26. 水平面上A 、B 、C 三点固定着三个电荷量为Q 的正点电荷,将另一质量为m 的带正电的小球(可视为点电荷)放置在O 点,OABC 恰构成一棱长为L 的正四面体,如图所示.已知静电力常量为k ,重力加速度为g ,为使小球能静止在O 点,小球所带的电荷量为( )A.mgL 23kQ B .23mgL 29kQ C.6mgL 26kQ D .2mgL 26kQ7.光滑绝缘的水平桌面上,固定着带电荷量为+Q 、-Q 的小球P 1、P 2,带电荷量为+q 、-q 的小球M 、N 用绝缘细杆相连,下列图中的放置方法能使M 、N 静止的是(图中细杆的中点均与P 1、P 2连线的中点重合)( )8.如图所示,把一带正电的小球a 放在光滑绝缘面上,欲使球a 能静止在斜面上,需在MN 间放一带电小球b ,则b 应 ( )A .带负电,放在A 点B .带正电,放在B 点C .带负电,放在C 点D .带正电,放在C 点9.如图所示,光滑水平桌面上有A 、B 两个带电小球(可以看成点电荷),A 球带电荷量为+3q ,B 球带电荷量为-q ,由静止同时释放后A 球加速度的大小为B 球的3倍.现在A 、B 中点固定一个带正电的C 球(也可看成点电荷),再由静止同时释放A 、B 两球,结果两球加速度大小相等.则C 球带电荷量为( )A.3q 4 B .3q 8 C.3q 20 D .9q 2010. 如图甲所示,Q 1、Q 2为两个被固定的点电荷,其中Q 1为正点电荷,在它们连线的延长线上有a 、b 两点.现有一检验电荷q (电性未知)以一定的初速度沿直线从b 点开始经a点向远处运动(检验电荷只受电场力作用),q运动的速度图象如图乙所示.则()A.Q2必定是负电荷B.Q2的电荷量必定大于Q1的电荷量C.从b点经a点向远处运动的过程中检验电荷q所受的电场力一直减小D.可以确定检验电荷的带电性质11.如图所示,点电荷+4Q与+Q分别固定在A、B两点,C、D两点将AB连线三等分,现使一个带负电的粒子从C点开始以某一初速度向右运动,不计粒子的重力,则该粒子在CD之间运动的速度大小v与时间t的关系图象可能是下图中的()12.如图示,竖直墙面与水平地面均光滑且绝缘。

库仑定律--练习题

库仑定律--练习题

库仑定律--练习题1.两个分别带有电荷量-Q和+3Q的相同⾦属⼩球(均可视为点电荷),固定在相距为r的两处,它们间库仑⼒的⼤⼩为F.两⼩球相互接触后将其固定距离变为r2,则两球间库仑⼒的⼤⼩为()A. 112F B.34F C.43F D.12F2.两个可⾃由移动的点电荷分别放在A、B两处,如图所⽰.A处电荷带正电荷量Q1,B处电荷带负电荷量Q2,且Q2=4Q1,另取⼀个可以⾃由移动的点电荷Q3,放在AB直线上,欲使整个系统处于平衡状态,则()A.Q3为负电荷,且放于A左⽅B.Q3为负电荷,且放于B右⽅C.Q3为正电荷,且放于A、B之间D.Q3为正电荷,且放于B右⽅3.三个相同的⾦属⼩球1、2、3分别置于绝缘⽀架上,各球之间的距离远⼤于⼩球的直径.球1的带电荷量为q,球2的带电荷量为nq,球3不带电且离球1和球2很远,此时球1、2之间作⽤⼒的⼤⼩为F.现使球3先与球2接触,再与球1接触,然后将球3移⾄远处,此时球1、2之间作⽤⼒的⼤⼩仍为F,⽅向不变.由此可知()A.n=3B.n=4C.n=5D.n=64.如图所⽰,可视为点电荷的⼩球A、B分别带负电和正电,B球固定,其正下⽅的A球静⽌在绝缘斜⾯上,则A球受⼒个数可能为()A.2个⼒ B.3个⼒ C.4个⼒ D. 5个⼒5.两个质量分别是m1、m2的⼩球,各⽤丝线悬挂在同⼀点,当两球分别带同种电荷,且电荷量分别为q1、q2时,两丝线张开⼀定的⾓度θ1、θ2,如图所⽰,此时两个⼩球处于同⼀⽔平⾯上,则下列说法正确的是()A.若m1>m2,则θ1>θ2B.若m1=m2,则θ1=θ2C.若m1θ2D.若q1=q2,则θ1=θ26.如图所⽰,在粗糙绝缘的⽔平⾯上有⼀物体A 带正电,另⼀带正电的点电荷B沿着以A为圆⼼的圆弧由P到Q缓慢地从A的上⽅经过,若此过程中A始终保持静⽌,A、B两物体可视为质点且只考虑它们之间的库仑⼒作⽤.则下列说法正确的是()A.物体A受到地⾯的⽀持⼒先增⼤后减⼩B.物体A受到地⾯的⽀持⼒保持不变C.物体A受到地⾯的摩擦⼒先减⼩后增⼤D.库仑⼒对点电荷B先做正功后做负功7. 如图所⽰,⽔平地⾯上固定⼀个光滑绝缘斜⾯,斜⾯与⽔平⾯的夹⾓为θ.⼀根轻质绝缘细线的⼀端固定在斜⾯顶端,另⼀端系有⼀个带电⼩球A,细线与斜⾯平⾏.⼩球A的质量为m,电量为q.⼩球A的右侧固定放置带等量同种电荷的⼩球B,两球⼼的⾼度相同,间距为d.静电⼒常量为k,重⼒加速度为g,两带电⼩球可视为点电荷.⼩球A静⽌在斜⾯上,则()A.⼩球A与B之间库仑⼒的⼤⼩为kq2d2B.当qd=mg sin θk时,细线上的拉⼒为0 C.当qd=k时,细线上的拉⼒为0 D.当qd=mgk tan θ时,斜⾯对⼩球A的⽀持⼒为08. 如图所⽰,电荷量为Q1、Q2的两个正点电荷分别置于A点和B点,两点相距L.在以L为直径的光滑绝缘半圆环上,穿着⼀个带电⼩球+q(可视为点电荷),在P点平衡,P A与AB的夹⾓为α,不计⼩球的重⼒,则()A.tan3α=Q2Q1 B.tan α=Q2Q1C.O点场强为零 D.Q1<Q29. 如图所⽰,将两个摆长均为l的单摆悬于O点,摆球质量均为m,带电荷量均为q(q>0).将另⼀个带电荷量也为q(q>0)的⼩球从O点正下⽅较远处缓慢移向O点,当三个带电⼩球分别处在等边三⾓形abc的三个顶点上时,两摆线的夹⾓恰好为120°,则此时摆线上的拉⼒⼤⼩等于()A.3mg B.mg C.23·kq2l2 D.3·kq2l2 10.如图所⽰,⽤两根等长的细线各悬⼀个⼩球,并挂于同⼀点,已知两球质量相同,当它们带上同种点电荷时,相距r1,⽽平衡,若使它们的电荷量都减少⼀半,待它们重新平衡后,两球间的距离将()A.⼤于r1/2C. ⼩于r1/2D.不能确定11.如图所⽰,把⼀个带正电的⼩球a放在绝缘光滑斜⾯上,欲使⼩球a能静⽌在斜⾯上,需在MN间放⼀带电⼩球b则b球应()A.带负电,放在A点B.带正电,放在B点C.带负电,放在C点D.带正电,放在C点12.如图所⽰,⽤长为l的轻绝缘线将质量为m1、带电量为q1的⼩球悬于O点,同时在O点的正下⽅l处将带电量为q2的另⼀个⼩球固定.由于静电⼒作⽤,两球相距为x,现欲使x加倍,可采取的⽅法是()A.使q1加倍B.使q2变为原来的8倍C.使m1变为原来的1/4D.使m1变为原来的1/813.如图所⽰,半径为R的绝缘球壳上均匀地带有电荷量为+Q的电荷,另⼀个电荷量为+q的点电荷放在球⼼O上,由于对称性,点电荷受⼒为零,现在球壳上挖去半径为r(r远⼩于R)的⼀个⼩圆孔,求此时置于球⼼的点电荷所受的⼒(静电⼒常量为k)14.(15分)如图所⽰,正电荷q1固定于半径为R 的半圆光滑绝缘轨道的圆⼼处,将另⼀带正电、电荷量为q2、质量为m的⼩球,从轨道的A处⽆初速度释放,求:(1)⼩球运动到B点时的速度⼤⼩;(2)⼩球在B点时对轨道的压⼒.14. 如图所⽰,B是系在绝缘细线两端、带有等量同种电荷的⼩球,其中m A=0. 1 kg,细线总长为20 cm,现将绝缘细线通过O点的光滑定滑轮,将两球悬挂起来,两球平衡时,OA的线长等于OB的线长,A球依于光滑绝缘竖直墙上,B球悬线OB偏离竖直⽅向60°,(g取10m/s2)求:15.在光滑绝缘的⽔平⾯上沿⼀直线依次放着三个质量相同、相邻距离为的⼩球A、B、C,A球带电+2q,球带电-q,如图所⽰,现⽤⽔平⼒F拉C球,使三球在运动中保持距离变.求:(l)地球带何种电荷,电荷量为多少?(2)⼒F的⼤⼩.1.两个分别带有电荷量-Q和+3Q的相同⾦属⼩球(均可视为点电荷),固定在相距为r的两处,它们间库仑⼒的⼤⼩为F.两⼩球相互接触后将其固定距离变为r2,则两球间库仑⼒的⼤⼩为( C ) A.112F B.34F C.43F D.12F解析:由库仑定律知,F=kQ·3Qr2=3kQ2r2,两⼩球接触后电荷量先中和再平分,使得两⼩球带电荷量均为Q,此时的库仑⼒F′=kQ2(r2)2=4kQ2r2=43F.2.两个可⾃由移动的点电荷分别放在A 、B 两处,如图所⽰.A 处电荷带正电荷量Q 1,B 处电荷带负电荷量Q 2,且Q 2=4Q 1,另取⼀个可以⾃由移动的点电荷Q 3,放在AB 直线上,欲使整个系统处于平衡状态,则( A )A .Q 3为负电荷,且放于A 左⽅B .Q 3为负电荷,且放于B 右⽅C .Q 3为正电荷,且放于A 、B 之间D .Q 3为正电荷,且放于B 右⽅解析:因为每个电荷都受到其余两个电荷的库仑⼒作⽤,且已知Q 1和Q 2是异种电荷,对Q 3的作⽤⼒⼀为引⼒,⼀为斥⼒,所以Q 3要平衡就不能放在A 、B 之间.根据库仑定律知,由于B 处的电荷Q 2电荷量较⼤,Q 3应放在离Q 2较远⽽离Q 1较近的地⽅才有可能处于平衡,故应放在Q 1的左侧.要使Q 1和Q 2也处于平衡状态,Q 3必须带负电,故应选A. 答案:A3.三个相同的⾦属⼩球1、2、3分别置于绝缘⽀架上,各球之间的距离远⼤于⼩球的直径.球1的带电荷量为q ,球2的带电荷量为nq ,球3不带电且离球1和球2很远,此时球1、2之间作⽤⼒的⼤⼩为F .现使球3先与球2接触,再与球1接触,然后将球3移⾄远处,此时球1、2之间作⽤⼒的⼤⼩仍为F ,⽅向不变.由此可知( D )A.n =3B.n =4C.n =5D.n =6解析:根据库仑定律知原来1、2两球的作⽤⼒为F =k q ·nq r 2,后来球3与球2接触后q 2′=q 3=n 2q ,球3与球1接触后,q 1′=q 3′=2+n 4q ,此时球1、2间的作⽤⼒为F =k q 1′·q 2′r 2,由题意整理得n =n 2·2+n 4,解得n =6.答案:D 4.如图所⽰,可视为点电荷的⼩球A 、B 分别带负电和正电,B 球固定,其正下⽅的A 球静⽌在绝缘斜⾯上,则A球受⼒个数可能为( AC ) A .可能受到2个⼒作⽤ B .可能受到3个⼒作⽤ C .可能受到4个⼒作⽤ D .可能受到5个⼒作⽤解析:以A 为研究对象,根据其受⼒平衡可得,如果没有摩擦,则A 对斜⾯⼀定⽆弹⼒,只受重⼒和库仑引⼒两个⼒作⽤⽽平衡;如果受摩擦⼒,则⼀定受弹⼒,所以此时A 受4个⼒作⽤⽽平衡,A 、C 正确.答案:AC5.两个质量分别是m 1、m 2的⼩球,各⽤丝线悬挂在同⼀点,当两球分别带同种电荷,且电荷量分别为q 1、q 2时,两丝线张开⼀定的⾓度θ1、θ2,如图所⽰,此时两个⼩球处于同⼀⽔平⾯上,则下列说法正确的是( BC )A.若m 1>m 2,则θ1>θ2B.若m 1=m 2,则θ1=θ2C.若m 1θ2D.若q 1=q 2,则θ1=θ2 解析:以m 1为研究对象,对m 1受⼒分析如图所⽰由共点⼒平衡得 F T sin θ1=F 库① F T cos θ1=m 1g ②由①②得tan θ1=F 库m 1g ,同理tan θ2=F 库m 2g ,因为不论q 1、q 2⼤⼩如何,两带电⼩球所受库仑⼒属于作⽤⼒与反作⽤⼒,永远相等,故从tan θ=F 库mg知,m ⼤,则tan θ⼩,θ亦⼩θ<π2,m 相等,θ亦相等,故B 、C 正确.答案:BC6.如图所⽰,在粗糙绝缘的⽔平⾯上有⼀物体A 带正电,另⼀带正电的点电荷B 沿着以A 为圆⼼的圆弧由P 到Q 缓慢地从A 的上⽅经过,若此过程中A 始终保持静⽌,A 、B 两物体可视为质点且只考虑它们之间的库仑⼒作⽤.则下列说法正确的是( AC )A.物体A 受到地⾯的⽀持⼒先增⼤后减⼩B.物体A 受到地⾯的⽀持⼒保持不变C.物体A 受到地⾯的摩擦⼒先减⼩后增⼤D.库仑⼒对点电荷B 先做正功后做负功解析:分析物体A 的受⼒如图所⽰,由平衡条件可得:F f =F cos θ,F N =F sin θ+mg ,随θ由⼩于90°增⼤到⼤于90°的过程中,F f 先减⼩后反向增⼤,F N 先增⼤后减⼩,A 、C 正确,B 错误;因A 对B 的库仑⼒与B 运动的速度⽅向始终垂直,故库仑⼒不做功,D 错误.答案:AC7. 如图所⽰,⽔平地⾯上固定⼀个光滑绝缘斜⾯,斜⾯与⽔平⾯的夹⾓为θ.⼀根轻质绝缘细线的⼀端固定在斜⾯顶端,另⼀端系有⼀个带电⼩球A ,细线与斜⾯平⾏.⼩球A的质量为m ,电量为q .⼩球A 的右侧固定放置带等量同种电荷的⼩球B ,两球⼼的⾼度相同,间距为d .静电⼒常量为k ,重⼒加速度为g ,两带电⼩球可视为点电荷.⼩球A 静⽌在斜⾯上,则( AC )A .⼩球A 与B 之间库仑⼒的⼤⼩为kq 2d2B .当q d =mg sin θk 时,细线上的拉⼒为0C .当q d =mg tan θk 时,细线上的拉⼒为0D .当q d =mg k tan θ时,斜⾯对⼩球A 的⽀持⼒为0 解析:选AC.根据库仑定律可得两⼩球之间的库仑⼒⼤⼩为F =kq 2d 2,选项A 正确;当细线上的拉⼒为0时,⼩球A 受到库仑⼒、斜⾯⽀持⼒、重⼒,由平衡条件得kq 2d 2=mg tan θ,解得qd=mg tan θk ,选项B 错误,C 正确;由受⼒分析可知,斜⾯对⼩球的⽀持⼒不可能为0,选项D 错误.8. 如图所⽰,电荷量为Q 1、Q 2的两个正点电荷分别置于A 点和B 点,两点相距L .在以L 为直径的光滑绝缘半圆环上,穿着⼀个带电⼩球+q (可视为点电荷),在P点平衡,P A 与AB 的夹⾓为α,不计⼩球的重⼒,则( A )A.tan 3α=Q 2Q 1B.tan α=Q 2Q 1C.O 点场强为零 D .Q 1<Q 2 解析:选 A.对⼩球受⼒分析如图所⽰,则F 1=k Q 1qP A2,F 2=k Q 2q PB 2,tan α=F 2F 1=PB P A,整理得tan 3α=Q 2Q 1,选项A 正确.9. 如图所⽰,将两个摆长均为l 的单摆悬于O 点,摆球质量均为m ,带电荷量均为q (q >0).将另⼀个带电荷量也为q (q >0)的⼩球从O 点正下⽅较远处缓慢移向O 点,当三个带电⼩球分别处在等边三⾓形abc 的三个顶点上时,两摆线的夹⾓恰好为120°,则此时摆线上的拉⼒⼤⼩等于( B )A.3mg B .mg C.23·kq 2l 2 D.3·kq 2l2解析:选B.如图为a 处带电⼩球的受⼒⽰意图,其中F 为摆线对⼩球的拉⼒,F 1和F 2分别为b 处带电⼩球和移动的带电⼩球对它的库仑⼒.根据题意分析可得F 1=F 2=k q 2(3l )2,根据共点⼒的平衡知识可得F cos 30°=k q 2(3l )2+k q 2(3l )2cos60°,mg =F sin 30°+k q 2(3l )2sin 60°,联⽴以上两式解得F =3kq 23l 2或F =mg ,故选项中只有B 正确.10.如图所⽰,⽤两根等长的细线各悬⼀个⼩球,并挂于同⼀点,已知两球质量相同,当它们带上同种点电荷时,相距r 1,⽽平衡,若使它们的电荷量都减少⼀半,待它们重新平衡后,两球间的距离将( A ) A .⼤于r 1/2 B .等于r 1/2 C . ⼩于r 1/2 D .不能确定11.如图所⽰,把⼀个带正电的⼩球a 放在绝缘光滑斜⾯上,欲使⼩球a 能静⽌在斜⾯上,需在MN 间放⼀带电⼩球b 则b 球应( C )A.带负电,放在A 点 B .带正电,放在B 点 C .带负电,放在C 点 D.带正电,放在C 点 12.如图所⽰,⽤长为l 的轻绝缘线将质量为m 1、带电量为q 1的⼩球悬于O 点,同时在O 点的正下⽅l 处将带电量为q 2的另⼀个⼩球固定.由于静电⼒作⽤,两球相距为x ,现欲使x 加倍,可采取的⽅法是( BD )A.使q 1加倍B.使q 2变为原来的8倍C.使m 1变为原来的1/4D.使m 1变为原来的1/8 13.如图所⽰,半径为R 的绝缘球壳上均匀地带有电荷量为+Q 的电荷,另⼀个电荷量为+q 的点电荷放在球⼼O 上,由于对称性,点电荷受⼒为零,现在球壳上挖去半径为r (r 远⼩于R )的⼀个⼩圆孔,求此时置于球⼼的点电荷所受的⼒(静电⼒常量为k )解:B 处这⼀⼩块圆⾯上的电荷量为:222244B r r q Q Q R Rππ== 由于半径r R ,可以把它看成点电荷.根据库仑定律,它对中⼼+q 的作⽤⼒⼤⼩为:22222244B r qQ q q kqQr R F k k R R R=== ⽅向由球⼼指向⼩孔中⼼14.(15分)如图所⽰,正电荷q 1固定于半径为R 的半圆光滑绝缘轨道的圆⼼处,将另⼀带正电、电荷量为q 2、质量为m 的⼩球,从轨道的A 处⽆初速度释放,求:(1)⼩球运动到B 点时的速度⼤⼩; (2)⼩球在B 点时对轨道的压⼒.解析:(1)带电⼩球q 2在半圆光滑绝缘轨道上运动时,库仑⼒不做功,故机械能守恒,则mgR =12m v 2B 解得:v B =2gR .(2)⼩球到达B 点时,受到重⼒mg 、库仑⼒F 和⽀持⼒F N ,由圆周运动和⽜顿第⼆定律得F N -mg -k q 1q 2R 2=m v 2BR解得F N =3mg +k q 1q 2R2根据⽜顿第三定律,⼩球在B 点时对轨道的压⼒为F N ′=F N =3mg +k q 1q 2R2⽅向竖直向下.答案:(1)2gR (2)3mg +k q 1q 2R2,⽅向竖直向下14. 如图所⽰,B 是系在绝缘细线两端、带有等量同种电荷的⼩球,其中m A =0. 1 kg,细线总长为20 cm ,现将绝缘细线通过O 点的光滑定滑轮,将两球悬挂起来,两球平衡时,OA 的线长等于OB 的线长,A 球依于光滑绝缘竖直墙上,B 球悬线OB 偏离竖直⽅向60°,(g 取10m/s 2)求:(1)B 球的质量;(2)墙所受A 球的压⼒.解析:对A 进⾏受⼒分析如图所⽰,由平衡条件得:F T -m A g -F sin30°=0…① F cos30°-F N =0 …②对B 受⼒分析如图所⽰,由平衡得F T =F ③ 2F sin30°= m B g …④由①②③④得: m B =0.2 kg ,F N =1.732 N根据⽜顿第三定律可知,墙受到A 球的压⼒为 1.732 N答案:(l )0.2 kg (2)1.732 N15. 在光滑绝缘的⽔平⾯上沿⼀直线依次放着三个质量相同、相邻距离为的⼩球A 、B 、C ,A 球带电+2q ,球带电-q ,如图所⽰,现⽤⽔平⼒F 拉C 球,使三球在运动中保持距离变.求:(l )地球带何种电荷,电荷量为多少?(2)⼒F 的⼤⼩.解析:(1)如图所⽰,C 球必带正电荷,设为+QF 1=222kq L , F 2=2kqQ L对A 球有:222kq L -22(2)kqQma L = 对B 球有:2kqQ L-222kq ma L =则:2q -2QQ =-2q 解得:83Q q =(2)整体分析有:F =3ma ,即ma =3F 对C 球有:222(2)3kqQ kqQ FF ma L L +-== 22132kqQ F L =则:223kq F L =。

电荷守恒 库仑定律知识点及习题

电荷守恒   库仑定律知识点及习题

电荷及其守恒定律 库仑定律一.电荷基本概念1.自然界中存在两种电荷,即 正 电荷和 负 电荷.2.物体的带电方式:(1)摩擦起电:两个不同的物体相互摩擦,失去电子的带 正 电,获得电子的带 负 电.(2)感应起电:导体接近(不接触)带电体,使导体靠近带电体一端带上与带电体相 反 的电荷,而另一端带上与带电体相 同 的电荷.3.电荷守恒定律:电荷既不能 创生 ,也不会 消灭 ,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分;在转移的过程中,电荷量的总量保持不变.4.电子和质子带有等量的异种电荷,电荷量e =191060.1-⨯C .实验指出,所有带电体的电荷量都是电荷量e 的 整数倍 .所以,电荷量e 称为 元电荷 .电荷量e 的数值最早是由美国物理学家 密立根 测得的。

二.起电的三种方式1.摩擦起电 :用摩擦的方法使两个不同的物体带电的现象。

实质:电荷的转移 毛皮与橡胶棒摩擦后,毛皮带正电,这是因为( A )A .毛皮上的一些电子转移到橡胶棒上了B .毛皮上的一些正电荷转移到了橡胶棒上了C .橡胶棒上的一些电子转移到了毛皮上了D .橡胶棒上的一些正电荷转移到毛皮上了2. 接触带电( 实质:电荷的转移)电中和现象及电荷均分原理:(1)电中和现象(带等量异种电荷的两个物体接触时,彼此恢复成不带电的状态叫电中和)(2)电荷均分原理(电荷在两个相同金属球之间均匀分配)两个完全相同的金属球,一个带+6×10-8C 的电量,另一个带-2×10-8C 的电量。

把两球接触后再分开,两球分别带电多少?(2×10-8C )3. 感应起电(1)静电感应(当一个带电体靠近导体时,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷, 这种现象叫做静电感应)(2)感应起电的实质和规律(实质:电荷的转移。

第六章 学案26电荷及其守恒定律库仑定律(学) (1)

第六章 学案26电荷及其守恒定律库仑定律(学) (1)

学案30 带电粒子在电场中的运动(一)一、概念规律题组1.下列粒子从静止状态经过电压为U 的电场加速后,速度最大的是( )A .质子(11H)B .氘核(21H)C .α粒子(42He) D .钠离子(Na +) 1.A [据qU =12mv 2可得v =2qU m ,对四种粒子分析,质子的qm最大,故选项A 正确.] 2.两平行金属板间为匀强电场,不同的带电粒子都以垂直于电场线的方向飞入该匀强电场(不计重力),要使这些粒子经过匀强电场后有相同大小的偏转角,则它们应具备的条件是( )A .有相同的动能和相同的比荷B .有相同的动量(质量与速度的乘积)和相同的比荷C .有相同的速度和相同的比荷D .只要有相同的比荷就可以 2.C [由偏转角tan θ=qlU/mv 20d 可知在确定的偏转电场中l ,d 确定,则偏转角与q/m 和v 0有关.]3.某示波器在XX ′、YY ′不加偏转电压时光斑位于屏幕中心,现给其加如图所示偏转电压,则在光屏上将会看到下列哪个图形(圆为荧光屏,虚线为光屏坐标)( )3.D [加图示偏转电压后,光斑将在x 轴方向向一侧匀速运动,然后回到O 点重复这一运动;y 轴方向,偏转电压恒定,所以光斑在y 轴方向位移恒定.D 正确.]4.两平行金属板相距为d ,电势差为U ,电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图所示,OA =h ,此电子具有的初动能是( )A.edh UB .edUhC.eUdhD.eUh d4.D二、思想方法题组5.如图所示,一电子枪发射出的电子(初速度很小,可视为零)进入加速电场加速后,垂直射入偏转电场,射出后偏转位移为y ,要使偏转位移增大,下列哪些措施是可行的( )A .增大偏转电压UB .减小加速电压U 0C .增大极板间距离D .将发射电子改成发射负离子5.AB [电子在加速电场中加速时:U 0e =12mv 2而进入偏转电场时,它的偏转位移(在竖直方向上的位移)y =12at 2=12·Ue dm ·l 2v 2=Ul 24dU 0.由上式可知:偏转电压U 增大,y 增大;加速电压U 0减小,y 增大;d 减小,y 增大,而y 与q 、m 无关.]6.如图所示,有三个质量相等,分别带正电、带负电和不带电的小球,从平行板电场的中点以相同的初速度垂直于电场方向进入电场,它们分别落在A 、B 、C 三点,可以判断( )A .落在A 点的小球带正电,落在B 点的小球不带电B .三个小球在电场中运动的时间相等C .三个小球到达极板时的动能关系为E kA >E kB >E kCD .三个小球在电场中运动时的加速度关系为a A >a B >a C6.A [从图中落点可知,C 到达下极板时间最短,A 到达下极板时间最长,即t C <t B <t A ,由y =12at 2可知,a C >a B >a A ,根据牛顿第二定律,F 合C >F 合B >F 合A ;结合题中三者带电性质,可知,C 带负电,B 不带电,A 带正电,三电荷运动至下极板过程中,根据动能定理得W C >W B >W A ,故ΔE kC >ΔE kB >ΔE kA ,而初动能相同,所以到达下极板时,E kC >E kB >E kA .综上,A 正确,B 、C 、D 错.]思维提升1.用运动学公式和牛顿定律处理带电粒子在电场中的直线运动时,只适用于匀强电场;而动能定理可适用于匀强电场,也可用于非匀强电场,因而一般用公式qU =12mv 2分析带电粒子在电场中的加速问题.2.据W =qU 知,电场力对带电粒子做的功,只与初、末位置间的电势差有关,而与电场强度、两点间的距离无关.3.带电粒子在电场中运动时,是否考虑重力应具体分析.一般情况下,微观粒子(电子、质子)不计重力,宏观颗粒(油滴、小球)应考虑重力.4.带电粒子在电场中的偏转是类平抛运动,平抛运动的规律在这里仍然适用,特别是两个推论应熟记.一、带电粒子在电场中的直线运动1.带电粒子在电场中的运动,综合了静电场和力学的知识,分析方法和力学的分析方法基本相同:先分析受力情况,再分析运动状态和运动过程(平衡、加速、减速;直线还是曲线),然后选用恰当的规律解题.解决这类问题的基本方法是:(1)采用运动和力的观点:牛顿第二定律和运动学知识求解.(2)用能量转化的观点:动能定理和功能关系求解.2.对带电粒子进行受力分析时应注意的问题(1)要掌握电场力的特点.电场力的大小和方向不仅跟场强的大小和方向有关,还跟带电粒子的电性和电荷量有关.在匀强电场中,同一带电粒子所受电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受电场力的大小和方向都可能不同.(2)是否考虑重力要依据情况而定.基本粒子:如电子、质子、α粒子、离子等除有说明或明确的暗示外,一般不考虑重力(但不能忽略质量).带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确暗示外,一般都不能忽略重力. 【例1】 (2011·北京·24)静电场方向平行于x 轴,其电势φ随x 的分布可简化为如图所示的折线,图中φ0和d 为已知量.一个带负电的粒子在电场中以x =0为中心、沿x 轴方向做周期性运动,已知该粒子质量为m 、电荷量为-q ,其动能与电势能之和为-A(0<A<qφ0).忽略重力.求:(1)粒子所受电场力的大小; (2)粒子的运动区间; (3)粒子的运动周期.例1 (1)qφ0d(2)-d ⎝⎛⎭⎫1-A qφ0≤x ≤d ⎝⎛⎭⎫1-A qφ0(3)4d qφ02m (qφ0-A ) 解析 (1)由题图可知,0与d(或-d)两点间的电势差为φ0, 电场强度的大小E =φ0d,粒子所受电场力的大小F =qE =qφ0d.(2)设粒子在[-x 0,x 0]区间内运动,速率为v ,由题意得 12mv 2-qφ=-A ① 由题图可知φ=φ0⎝⎛⎭⎫1-|x|d ② 由①②得12mv 2=qφ0⎝⎛⎭⎫1-|x|d -A ③ 因动能非负,有qφ0⎝⎛⎭⎫1-|x|d -A ≥0, 得|x|≤d ⎝⎛⎭⎫1-Aqφ0, 0<A<qφ0, 故x 0=d ⎝⎛⎭⎫1-Aqφ0④ 粒子的运动区间满足-d ⎝⎛⎭⎫1-A qφ0≤x ≤d ⎝⎛⎭⎫1-Aqφ0. (3)考虑粒子从-x 0处开始运动的四分之一周期,根据牛顿第二定律,粒子的加速度 a =F m =qE m =qφ0md⑤ 由匀加速直线运动规律得t =2x 0a. 将④⑤代入,得t =2md 2qφ0⎝⎛⎭⎫1-A qφ0. 粒子的运动周期T =4t =4dqφ02m (qφ0-A ).[规范思维] 带电物体在匀强电场中受恒定的电场力,做匀变速直线运动,可用牛顿定律和运动学公式求解,若是非匀强电场,加速度不恒定,只能用动能定理或功能关系分析求解.二、带电粒子在电场中的偏转在图中,设带电粒子质量为m ,带电荷量为q ,以速度v 0垂直于电场线方向射入匀强偏转电场,偏转电压为U ,若粒子飞离偏转电场时的偏距为y ,偏转角为θ,则tan θ=v y v x =a y t v 0=qUl mdv 20,y =12a y t 2=qUl 22mdv 20带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于极板中线的中点.所以侧移距离也可表示为y =l2tan θ,所以粒子好像从极板中央沿直线飞出去一样.若不同的带电粒子是从静止经同一加速电压U 0加速后进入偏转电场的,则qU 0=12mv 20,即y =Ul 24dU 0,tan θ=y x =Ul 2dU 0.由以上讨论可知,粒子的偏转角和偏距与粒子的q 、m 无关,仅决定于加速电场和偏转电场,即不同的带电粒子从静止经过同一电场加速后进入同一偏转电场,它们在电场中的偏转角度和偏转距离总是相同的.【例2】 如图所示,甲图是用来使带正电的离子加速和偏转的装置.乙图为该装置中加速与偏转电场的等效模拟.以y 轴为界,左侧为沿x 轴正向的匀强电场,场强为E.右侧为沿y 轴负方向的匀强电场.已知OA ⊥AB ,OA =AB ,且OB 间的电势差为U 0.若在x 轴的C 点无初速度地释放一个电荷量为q 、质量为m 的正离子(不计重力),且正离子刚好通过B 点.求:(1)C 、O 间的距离d ;(2)粒子通过B 点的速度大小.例2 (1)U 04E(2)5qU 02m解析 (1)设正离子到达O 点的速度为v 0(其方向沿x 轴的正方向)则正离子由C 点到O 点由动能定理得:qEd =12mv 20-0①而正离子从O 点到B 点做类平抛运动,则: OA =12·qU 0OA ·m t 2②AB =v 0t ③ 而OA =AB ④ 由①②③④得d =U 04E.(2)设正离子到B 点时速度的大小为v B ,正离子从C 到B 过程中由动能定理得:qEd +qU 0=12mv 2B -0解得v B =5qU 02m. [规范思维] 偏转问题的分析处理方法(1)类似于平抛运动的分析处理,应用运动的合成和分解的知识.(2)从力学的观点和能量的观点着手.按力学问题的分析方法加以分析,分析带电粒子在运动过程中其他形式的能和动能之间的转化过程时,可应用动能定理,也可以用能量守恒定律.三、带电粒子在电场中运动的综合问题 【例3】 (2011·洛阳模拟)如图所示,两平行金属板A 、B 长L =8 cm ,两板间距离d =8 cm ,A 板比B板电势高300 V .一带正电的粒子电荷量q =10-10 C ,质量m =10-20 kg ,沿电场中心线RO 垂直电场线飞入电场,初速度v 0=2×106 m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在O 点的点电荷Q 形成的电场区域,(设界面PS 右边点电荷的电场分布不受界面的影响).已知两界面MN 、PS 相距为12 cm ,D 是中心线RO 与界面PS 的交点,O 点在中心线上,距离界面PS 为9 cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏bc 上.(静电力常量k =9.0×109 N·m 2/C 2)(1)求粒子穿过界面MN 时偏离中心线RO 的距离多远?到达PS 界面时离D 点多远?(2)在图上粗略画出粒子运动的轨迹. 例3 (1)3 cm 12 cm (2)轨迹图见解析解析 (1)粒子穿过界面MN 时偏离中心线RO 的距离(侧向位移) y =12at 2=qU 2md (L v 0)2 =10-10×3002×10-20×0.08×(0.082×106)2 m =0.03 m =3 cm带电粒子在离开电场后将做匀速直线运动,其轨迹与PS 线交于E ,设E 到中心线的距离为Y.则Y =12×10-2v 0v y +y=0.122×106×10-10×30010-20×0.08×0.082×106m +0.03 m =0.12 m =12 cm(2)第一段是抛物线,第二段是直线,第三段是曲线,轨迹如图所示. [规范思维] 解答此类问题应从以下两方面入手.(1)对复杂过程要善于分阶段分析,联系力学中的物理模型,从受力情况、运动情况、能量转化等角度去研究.(2)经常把电场与牛顿定律、动能定理、功能关系、运动学知识、电路知识等综合起来,把力学中处理问题的方法迁移到电场中去.【基础演练】1.(海南高考)一平行板电容器中存在匀强电场,电场沿竖直方向.两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a 和b ,从电容器边缘的P 点(如图9所示)以相同的水平速度射入两平行板之间.测得a 和b 与电容器极板的撞击点到入射点之间的水平距离之比为1∶2.若不计重力,则a 和b 的比荷之比是( )A .1∶2B .1∶8C .2∶1D .4∶1 1.D 2.(2011·安徽·18)图10(a)为示波管的原理图.如果在电极YY ′之间所加的电压按图(b)所示的规律变化,在电极XX ′之间所加的电压按图(c)所示的规律变化,则在荧光屏上会看到的图形是( )(b) (c)2.B3.(2011·广东·21)图为静电除尘器除尘机理的示意图.尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘目的.下列表述正确的是( )A .到达集尘极的尘埃带正电荷B .电场方向由集尘极指向放电极C .带电尘埃所受电场力的方向与电场方向相同D .同一位置带电荷量越多的尘埃所受电场力越大 3.BD4.真空中的某装置如图所示,其中平行金属板A 、B 之间有加速电场,C 、D 之间有偏转电场,M 为荧光屏.今有质子、氘核和α粒子均由A 板从静止开始被加速电场加速后垂直于电场方向进入偏转电场,最后打在荧光屏上.已知质子、氘核和α粒子的质量之比为1∶2∶4,电荷量之比为1∶1∶2,则下列判断中正确的是( )A .三种粒子从B 板运动到荧光屏经历的时间相同 B .三种粒子打到荧光屏上的位置相同C .偏转电场的电场力对三种粒子做功之比为1∶2∶2D .偏转电场的电场力对三种粒子做功之比为1∶2∶44.B5.(2010·济南质检)如图所示,两平行金属板间有一匀强电场,板长为L ,板间距离为d ,在板右端L 处有一竖直放置的光屏M ,一带电荷量为q ,质量为m 的质点从两板中央射入板间,最后垂直打在M 屏上,则下列结论正确的是( )A .板间电场强度大小为mg/qB .板间电场强度大小为2mg/qC .质点在板间的运动时间和它从板的右端运动到光屏的时间相等D .质点在板间的运动时间大于它从板的右端运动到光屏的时间 5.BC 6.(2011·厦门月考)如图所示,质量相同的两个带电粒子P 、Q 以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P 从两极板正中央射入,Q 从下极板边缘处射入,它们最后打在同一点(重力不计),则从开始射入到打到上极板的过程中( )A .它们运动的时间t Q >t PB .它们运动的加速度a Q <a PC .它们所带的电荷量之比q P ∶q Q =1∶2D .它们的动能增加量之比ΔE kP ∶ΔE kQ =1∶26.C [设P 、Q 两粒子的初速度是v 0,加速度分别是a P 和a Q ,粒子P 到上极板的距离是h/2,它们做类平抛运动的水平距离为l.则对P ,由l =v 0t P ,h 2=12a p t 2P ,得到a P =hv 20l 2,同理对Q ,l =v 0t Q ,h =12a Q t 2Q,得到a Q =2hv 20l 2.可见t P =t Q ,a Q =2a P 而a P =q P E m ,a Q =q Q E m ,可见,q P ∶q Q =1∶2.由动能定理知,它们的动能增加量之比ΔE kP ∶ΔE kQ =ma P h2∶ma Q h =1∶4.综上,选C.]【能力提升】7.(2011·黄冈模拟)如图所示,带电的粒子以一定的初速度v 0沿两板的中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L ,板间距离为d ,板间电压为U ,带电粒子的电荷量为q ,粒子通过平行金属板的时间为t(不计粒子的重力),则( )A .在前t 2时间内,电场力对粒子做的功为Uq4B .在后t 2时间内,电场力对粒子做的功为38UqC .在粒子下落前d 4和后d4的过程中,电场力做功之比为1∶2D .在粒子下落前d 4和后d4的过程中,电场力做功之比为2∶17.B [电场力做总功W =12Uq ,前、后t2时间内偏转位移之比为1∶3,则做功之比为1∶3,所以后t/2时间内对粒子做功38Uq ;粒子下落前、后d/4的过程中电场力做功之比为1∶1.C 、D 错误.]8.(2011·河南郑州联考)如图所示,在真空中有一水平放置的不带电平行板电容器,板间距离为d ,电容为C ,上板B 接地.现有大量质量均为m ,带电荷量为q 的小油滴,以相同的初速度持续不断地从两板正中间沿图中虚线所示方向射入,第一滴油滴正好落到下板A 的正中央P 点.如果能落到A 板的油滴仅有N 滴,且第N +1滴油滴刚好能飞离电场,假设落到A 板的油滴的电荷量能被板全部吸收,不考虑油滴间的相互作用,重力加速度为g ,则( )A .落到A 板的油滴数N =3Cdmg4q 2B .落到A 板的油滴数N =Cdmg4q 2C .第N +1滴油滴经过电场的整个过程中增加的动能为mgd8D .第N +1滴油滴经过电场的整个过程中减少的机械能为3mgd88.ACD [第一滴油滴在电容器中运动时,只受重力作用.设板长为l ,板间距为d ,由平抛运动的知识有v 0=l2gd.当第N +1滴油滴恰好离开电容器时,必定是沿下极板的边缘飞出,油滴的加速度为a =g -Eq m ,由类平抛运动知d 2=12(g -Eq m )t 2,又t =l v 0,而E =U d =Nq Cd ,可以求得N =3Cdmg 4q 2,A 正确.因为电场力做了负功,电势能增加了,而电场力做功为W =-3mgd 8.由动能定理有Ek =W =12mgd -38mgd =mgd8.] 9.(北京高考)两个半径均为R 的圆形平板电极,平行正对放置,相距为d ,极板间的电势差为U ,板间电场可以认为是均匀的.一个α粒子从正极板边缘以某一初速度垂直于电场方向射入两极板之间,到达负极板时恰好落在极板中心.已知质子电荷量为e ,质子和中子的质量均视为m ,忽略重力和空气阻力的影响,求 (1)极板间的电场强度E ;(2)α粒子在极板间运动的加速度a ; (3)α粒子的初速度v 0.9.(1)E =U d (2)a =eU 2md (3)v 0=R2deUm解析 (1)极板间场强E =Ud.①(2)α粒子电荷量为2e ,质量为4m ,所受电场力F =2eE =2eUd ,②α粒子在极板间运动的加速度a =F 4m =eU2md ③(3)由d =12at 2,得t =2da=2d m eU ④ v 0=R t =R 2deU m.⑤10.如图所示,M 、N 为两块水平放置的平行金属板,板长为l ,两板间的距离也为l ,板间电压恒定.今有一带负电粒子(重力不计)以一定的初速度沿两板正中间垂直进入电场,最后打在距两平行板右端距离为l 的竖直屏上.粒子的落点距O 点的距离为l2.若大量的上述粒子(与原来的初速度一样,并忽略粒子间相互作用)从MN 板间不同位置垂直进入电场.试求这些粒子落在竖直屏上的范围并在图中画出.10.见解析解析 设粒子质量为m ,带电荷量为q ,初速度为v 0,则有v 0t =l ,y =12at 2,tan θ=v y v 0=atv 0,y +ltan θ=l2, 所以12a·l 2v 20+l·al v 20=l2,3al =v 20.由题意可分析出大量粒子垂直射入偏转电场后情况,如上图甲、乙所示.能飞出平行板的粒子范围是l -y.其中y =12a·l 2v 20=12·v 203l ·l2v 20=16l ,粒子落在竖直屏上的范围是从O 点到O 点以上56l 处之间的水平带状区域.易错点评1.示波管中,粒子的水平偏转与竖直偏转互不影响、各自独立.又因运动的是电子,所以总向电势高的极板一侧偏转.2.带电粒子在电场中的偏转问题常与电容器相结合,因而应熟记电容器的几个关系,特别是E =Ud 应用较多.3.不要把类平抛运动理解为必须是水平方向的匀速和竖直方向的匀加速,而要看所受恒力的方向,一般是把运动分解为垂直于恒力方向的匀速直线运动和沿恒力方向初速为0的匀加速直线运动.。

高二物理电荷及电荷守恒试题

高二物理电荷及电荷守恒试题

高二物理电荷及电荷守恒试题1.将不带电的导体A和带有负电荷的导体B接触后,在导体A中的质子数()A.增加B.减少C.不变D.先增加后减少【答案】C【解析】物体接触带电时,电子发生转移,导致相互接触的物体之间电荷不平衡,从而带电,而并非质子数目的变化,质子数目在接触过程中是不变的。

C正确【考点】电荷守恒定律,注意接触带电的实质:物体接触带电时是由于电子的转移引起的,即电子的重新分配,而质子数并没有发生变化。

2.两个放在绝缘架上的相同金属球,相距r,球的半径比r小得多,带电荷量大小分别为q和3q,相互作用的斥力为3F. 现让这两个金属球相接触,然后分开,仍放回原处,则它们之间的相互作用力将变为A.F.B.C.4F D.以上三个选项之外的一个值【答案】C【解析】由库仑定律可得:,得而两球接触后再分开平分总电量,故分开后两球的带电量为2q;则库仑力,所以C正确。

【考点】库仑定律;电荷守恒定律.3.对点电荷的理解,你认为正确的是A.体积很大的带电体都不能看成点电荷B.只要体积很小的带电体就能看成点电荷C.只要是均匀的球形带电体,不管球的大小,都能被看成点电荷D.带电体间的距离比它们本身的大小大得多,以至于带电体的形状和大小对它们间相互作用力的影响可忽略不计时,带电体就可以视为点电荷【答案】D【解析】点电荷是一种理想情况,在带电体间的距离比它们本身的大小大得多,以至于带电体的形状和大小对它们间相互作用力的影响可忽略不计时,带电体就可以视为点电荷。

D正确、ABC错误。

【考点】本题考查点电荷的理解。

4.以下说法正确的是()A.体积很小的带电体就能看成点电荷B.电场为零的地方电势一定为零C.雷雨天留在金属房里比留在木房子里更安全D.处于静电平衡状态的导体电场处处为零【答案】C【解析】点电荷是指本身的大小比它到其它带电体的距离小得多的带电体,不是看体积的大小,故A错;电势只是相对的,和重力势能一样,你可以规定任意一点的重力势能为零,即零势能面,同样你也可以规定任意一点的电势为零,根电场强度没有关系,B错;雷雨天时,金属房处于静电平衡状态,内部的场强处处为零,故C对,D错。

高二物理 电荷及其守恒定律、库仑定律 习题及答案解析

高二物理 电荷及其守恒定律、库仑定律 习题及答案解析

电荷及其守恒定律、库仑定律一、选择题: 1.将带电棒移近两个不带电的导体球,两个导体球开始时互相接触且对地绝缘,如图所示.下列几种方法中能使两球都带电的是( )A .先把两球分开,再移走棒B .先移走棒,再把两球分开C .先将棒接触一下其中一球,再把两球分开D .棒带的电荷量如果不变,不能使两导体球带电2、由库仑定律可知,真空中两个静止的点电荷,带电荷量分别为q 1和q 2。

其间距离为r 时,它们之间相互作用力的大小为221rq q k F ,式中k 为静电力常量。

若用国际单位制的基本单位表示,k 的单位应为A .kg·A 2·m 3B .kg·A -2·m 3·s -4C .kg·m 2·C -2D .N·m 2·A -23.如图所示,半径相同的两个金属小球A 、B 带有电荷量相等的电荷(可视做点电荷),相隔一定距离,两球之间的相互吸引力的大小是F .现让第三个半径相同的不带电的金属小球C 先后与A 、B 两球接触后移开,这时A 、B 两球之间的相互作用力为 ( )A .吸引力,18F B .吸引力,14FC .排斥力,38F D .排斥力,34F4. (2017•镇江学业考试)真空中,相距为r 的两点电荷间库仑力的大小为F ,若要使它们之间的库仑力变为原来的4倍,下列措施可行的是( ) A .保持两个电荷间距离不变,将它们的电量都增加为原来的2倍B.保持两个电荷间距离不变,将它们的电量都减小为原来的1 2C.保持两个电荷的电量不变,将它们之间的距离减小为原来的1 4D.保持两个电荷的电量不变,将它们之间的距离增大为原来的4倍5.如图所示,大小可以忽略不计的带有同种电荷的小球A和B相互排斥,静止时绝缘细线与竖直方向的夹角分别为α和β,且α<β,两小球在同一水平线上,由此可知( ) A.B球受到的库仑力较大,电荷量较大B.B球的质量较大C.B球受到的拉力较大D.两球接触后,再处于静止状态时,悬线的偏角α′、β′仍满足α′<β′6.(2016 长春外国语学校质检)如图所示,带电小球A、B的电荷量分别为Q A、Q B,OA=OB,A、B都用长L的丝线悬挂在O点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.D
2.C
3.CD
4.BD
8.D
9.BC
二、填空题
10.1.6×10-19C,-1.6×10-19C,1.6×10-19C,整数倍
14.2×10-3N,-0.5×10-8C
三、计算题
15.F/3或4F/3
13.将一定量的电荷Q,分成电量q、q'的两个点电荷,为使这两个点电荷相距r时,它们之间有最大的相互作用力,则q值应为______.
14.如图3所示,把质量为0.2克的带电小球A用丝线吊起,若将带电量为4×10-8库的小球B靠近它,当两小球在同一高度相距3cm时,丝线与竖直夹角为45°,此时小球B受到的库仑力F=______,小球A带的电量qA=______.
上某点时,正好处于平衡,则[]
A.q一定是正电荷B.q一定是负电荷
C.q离Q2比离Q1远D.q离Q2比离Q1近
9.如图1所示,用两根绝缘丝线挂着两个质量相同不带电的小球A和B,此时,上、下丝线受的力分别为TA、TB;如果使A带正电,
二、填空题
10.在原子物理中,常用元电荷作为电量的单位,元电荷的电量为______;一个电子的电量为______,一个质子的电量为______;任何带电粒子,所带电量或者等于电子或质子的电量,或者是它们电量的______.
三、计算题
15.大小相同的金属小球,所带电量的值分别为Q1、Q2,且Q1= Q2,把Q1、Q2放在相距较远的两点,它们间作用力的大小为F,若使两球相接触后再分开放回原位置,求它们间作用力的大小.
16.设氢原子核外电子的轨道半径为r,电子质量为m,电量为e,求电子绕核运动的周期.
电荷守恒定律库仑定律练习题答案
(3)保持原电荷电量不变,将距离增为原来的3倍,那么它们之间的相互作用力变为原来的______倍;
(4)保持其中一电荷的电量不变,另一个电荷的电量变为原来的4倍,为保持相互作用力不变,则它们之间的距离应变为原来的______倍.
(5)把每个电荷的电荷都增大为原来的4倍,那么它们之间的距离必须变为原来的______倍,才能使其间的相互作用力不变.
A.带有等量异种电荷B.带有等量同种电荷
C.带有不等量异种电荷D.一个带电,另一个不带电
5.有A、B、C三个塑料小球,A和B,B和C,C和A间都是相互吸引的,如果A带正电,则[]
A.B、C球均带负电
B.B球带负电,C球带正电
C.B、C球中必有一个带负电,而另一个不带电
D.B、C球都不带电
6.A、B两个点电荷间距离恒定,当其它电荷移到A、B附近时,A、B之间的库仑力将[]
A.增加B.减少C.不变D.先增加后减少
3.库仑定律的适用范围是[]
A.真空中两个带电球体间的相互作用
B.真空中任意带电体间的相互作用
C.真空中两个点电荷间的相互作用
D.真空中两个带电体的大小远小于它们之间的距离,则可应用库仑定律
4.把两个完全相同的金属球A和B接触一下,再分开一段距离,发现两球之间相互排斥,则A、B两球原来的带电情况可能是[]
A.可能变大B.可能变小C.一定不变D.不能确定
7.两个半径均为1cm的导体球,分别带上+Q和-3Q的电量,两球心相距90cm,相互作用力大小为F,现将它们碰一下后,放在两球心间相距3cm处,则它们的相互作用力大小变为[]
A.3000FB.1200FC.900FD.无法确定
8.真空中有两个固定的带正电的点电荷,其电量Q1>Q2,点电荷q置于Q1、Q2连线
11.库仑定律的数学表达式是______,式中的比例常量叫______,其数值为______,其单位是______.
12.两个点电荷甲和乙同处于真空中.
(1)甲的电量是乙的4倍,则甲对乙的作用力是乙对甲的作用力的______倍.
(2)若把每个电荷的电量都增加为原来的2倍,那么它们之间的相互作用力变为原来的______倍;
电荷守恒定律、库仑定律练习题
一、选择题
1.关于点电荷的说法,正确的是[]
A.只有体积很小的带电体,才能作为点电荷
B.体积很大的带电体一定不能看作点电荷
C.点电荷一定是电量很小的电荷
D.两个带电的金属小球,不一定能将它们作为电荷集中在球心的点电荷处理
2.将不带电的导体A和带有负电荷的导体B接触后,在导体A中的质子数[]
相关文档
最新文档