人教版-数学-六年级上册-《数学广角——数与形》教材分析
六年级上册数学人教版《数学广角—数与形》教学实录教案

六年级上册数学人教版《数学广角—数与形》教学实录教案一. 教材分析《数学广角—数与形》是六年级上册数学人教版中的一章,主要内容包括数与形的对应关系、图形变换、几何图形的性质等。
本章通过具体的图形和实例,让学生感受数与形的联系,培养学生的空间观念和逻辑思维能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对数和形有一定的认识。
但是,对于一些复杂的图形变换和几何性质,学生可能还不是很清楚。
因此,在教学过程中,需要注重引导学生通过观察、操作、思考来理解数与形的内在联系,提高他们的空间观念和逻辑思维能力。
三. 教学目标1.让学生通过观察和操作,感受数与形的联系,培养学生的空间观念和逻辑思维能力。
2.使学生掌握一些基本的图形变换方法,并能应用于实际问题中。
3.培养学生运用数形结合的方法解决问题的能力,提高他们的解决问题的能力。
四. 教学重难点1.教学重点:让学生通过观察和操作,感受数与形的联系,掌握一些基本的图形变换方法。
2.教学难点:对于一些复杂的图形变换和几何性质,如何引导学生理解和应用。
五. 教学方法采用问题驱动法、观察操作法、小组合作法等教学方法。
通过提出问题,引导学生观察和操作,激发学生的思考,培养学生的空间观念和逻辑思维能力。
同时,学生进行小组合作,培养学生的合作意识和团队精神。
六. 教学准备1.准备一些相关的图形和实例,用于教学演示和引导学生观察。
2.准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考数与形的关系,激发学生的学习兴趣。
例如:“你们在生活中见过哪些数与形相关的事物?”2.呈现(10分钟)展示一些相关的图形和实例,引导学生观察和操作,让学生感受数与形的联系。
例如:通过展示一些几何图形的性质,让学生观察和总结。
3.操练(10分钟)让学生通过实际操作,加深对数与形关系的理解。
例如:让学生自己动手进行一些图形变换,并解释其背后的数学原理。
人教版六年级上册数学第八单元《数学广角——数与形》说课稿(共2课时)

人教版六年级上册数学第八单元《数学广角——数与形》说课稿(共2课时)一. 教材分析《数学广角——数与形》是人教版六年级上册数学第八单元的教学内容。
本节课的内容包括数与形的概念、关系以及运用。
通过本节课的学习,使学生理解数与形的联系,能够运用数与形的思想解决实际问题,培养学生的逻辑思维能力和创新能力。
教材通过丰富的实例和练习题,引导学生探索数与形的规律,提高学生的数学素养。
二. 学情分析六年级的学生已经具备了一定的数学基础,对数的概念和图形的认识有一定的了解。
但是,学生对数与形的联系和运用可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的认知水平,通过引导学生观察、思考、交流,帮助学生建立数与形的联系,提高学生解决问题的能力。
三. 说教学目标1.知识与技能:学生能够理解数与形的概念,掌握数与形的关系,能够运用数与形的思想解决实际问题。
2.过程与方法:学生通过观察、思考、交流,培养自己的逻辑思维能力和创新能力。
3.情感态度与价值观:学生体验数学学习的乐趣,增强对数学的兴趣,树立自信心。
四. 说教学重难点1.教学重点:学生能够理解数与形的概念,掌握数与形的关系。
2.教学难点:学生能够运用数与形的思想解决实际问题,对数与形的运用和创新。
五. 说教学方法与手段本节课采用问题驱动的教学方法,结合多媒体教学手段,引导学生观察、思考、交流,激发学生的学习兴趣,提高学生的学习效果。
同时,教师注重启发式教学,鼓励学生主动探究,培养学生的创新能力。
六. 说教学过程1.导入:教师通过展示一些生活中的实例,引导学生观察和思考,激发学生对数与形的兴趣。
2.探究:教师提出问题,引导学生通过观察、思考、交流,探讨数与形的关系,帮助学生建立数与形的概念。
3.巩固:教师通过一些练习题,帮助学生巩固所学内容,提高学生解决问题的能力。
4.拓展:教师引导学生运用数与形的思想解决实际问题,培养学生的创新能力。
5.总结:教师对本节课的内容进行总结,帮助学生形成知识体系。
人教版小学数学六年级上册数学广角《数与形》教案

人教版小学数学六年级上册数学广角《数与形》教案一、教材分析1.1 教材内容概述本册教材主要包括数的认识、简单的数学推理、图形的认识等内容。
是小学六年级上册数学教材中重要的一环。
1.2 教材特点•知识点渗透性强•注重培养学生的逻辑推理能力•图形呈现形式多样二、教学目标1.了解数的基本概念,掌握简单的运算规律;2.能够进行简单的数学推理,提高逻辑思维能力;3.掌握一些基本图形的性质,培养对图形的认识和观察能力。
三、教学重难点3.1 重点•数的认识•运算规律•数学推理3.2 难点•数学推理题目的解答•图形的性质认识四、教学内容及方法4.1 数的认识•教学内容:数的读写和数的大小比较•教学方法:可通过数轴、生活中的物品数量等形式让学生理解数的概念4.2 运算规律•教学内容:加法和减法规律•教学方法:可通过游戏、实际生活问题等让学生感受加减法的规律4.3 数学推理•教学内容:逻辑推理问题•教学方法:可通过故事情节、幻灯片等形式让学生进行逻辑推理训练4.4 图形的性质•教学内容:直线、曲线、几何图形的性质认识•教学方法:可通过几何工具、实物展示等方式让学生认识各种图形的性质五、教学过程5.1 导入通过一个引人入胜的数学问题或故事引起学生的兴趣,激发他们学习的积极性。
5.2 讲解老师结合教材内容,对学生逐步讲解知识点,注重启发式、引导式教学。
5.3 练习设计一些简单到复杂的练习题,让学生巩固所学知识,提高应用能力。
5.4 拓展针对学生不同的认知水平,设计一些拓展题目,挑战学生的思维。
5.5 总结引导学生总结本节课所学内容,强化记忆。
六、教学反思教学结束后,教师应对本节课进行深入反思,了解教学过程中的不足,为下一节课的教学改进做准备。
结语以上便是本节课的教学内容和方法,希望能够帮助到老师们更好地开展《数与形》教学工作。
祝愿学生在本节课中有所收获,加深对数学的理解和热爱。
六年级上册数学人教版第八单元《数学广角——数与形》集体备课说课稿

六年级上册数学人教版第八单元《数学广角——数与形》集体备课说课稿一. 教材分析六年级上册数学人教版第八单元《数学广角——数与形》是本学期的重要内容。
本节课的主要内容有:通过数与形的结合,让学生感受数形结合在解决实际问题中的应用。
教材通过丰富的素材,让学生在解决实际问题的过程中,体会数形结合的思想,培养学生的抽象思维能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于数形结合的概念和方法有一定的了解。
但在解决实际问题时,还不能很好地将数形结合的思想运用其中。
因此,在教学过程中,需要教师引导学生从实际问题中发现数形结合的规律,培养学生解决实际问题的能力。
三. 说教学目标1.让学生理解数形结合的概念,体会数形结合在解决实际问题中的应用。
2.培养学生的抽象思维能力,提高学生解决实际问题的能力。
3.激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 说教学重难点1.数形结合的概念和应用。
2.如何引导学生从实际问题中发现数形结合的规律。
五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生从实际问题中发现数形结合的规律。
2.利用多媒体手段,展示丰富的教学素材,帮助学生理解和掌握数形结合的方法。
3.学生进行小组合作探究,培养学生的合作意识和探究精神。
六. 说教学过程1.导入:通过一个实际问题,引出数形结合的概念。
2.新课导入:讲解数形结合的基本方法和应用。
3.案例分析:分析几个实际问题,让学生体会数形结合在解决实际问题中的应用。
4.小组合作:学生进行小组合作探究,让学生自己发现数形结合的规律。
5.总结提升:对数形结合的概念和方法进行总结,引导学生体会数形结合在解决实际问题中的应用。
6.课后作业:布置几个实际问题,让学生运用数形结合的方法进行解决。
七. 说板书设计板书设计要简洁明了,能够清晰地展示数形结合的概念和方法。
可以设计成以下形式:概念:数形结合是一种解决实际问题的方法,它将数学问题与图形相结合,通过观察图形来发现问题的规律。
人教版数学六年级上册《8 数学广角——数与形》精品课教案

人教版数学六年级上册《8 数学广角——数与形》精品课教案一. 教材分析《8 数学广角——数与形》是人教版数学六年级上册的一章内容。
这一章主要让学生感受数与形的联系,通过探索规律,发现图形中隐藏的数,培养学生的数形结合思想,提高学生解决问题的能力。
教材中安排了丰富的例题和练习题,供学生巩固所学知识。
二. 学情分析六年级的学生已经具备了一定的数学基础,对数的概念和图形的认识都有了一定的理解。
但是,对于数与形的联系,可能还不是很清晰,需要通过本节课的学习,去感受、发现和理解这种联系。
此外,学生可能对于探索规律这一类的问题还比较陌生,需要教师的引导和鼓励。
三. 教学目标1.让学生感受数与形的联系,培养学生的数形结合思想。
2.让学生通过探索规律,提高学生解决问题的能力。
3.让学生在小组合作中,培养学生的团队协作能力。
四. 教学重难点1.数与形的联系的发现和理解。
2.探索规律的方法的掌握。
五. 教学方法1.引导发现法:教师通过提问、启发,引导学生发现数与形的联系。
2.小组合作法:学生分组进行探索,培养团队协作能力。
3.实践操作法:学生通过实际操作,加深对知识的理解。
六. 教学准备1.课件:教师准备与本节课相关的课件,帮助学生直观地理解知识。
2.练习题:教师准备适量的练习题,供学生巩固所学知识。
3.学具:学生准备相应的学具,如三角板、直尺等。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生发现数与形的联系,激发学生的学习兴趣。
2.呈现(10分钟)教师通过课件,展示一些具体的例子,让学生直观地感受数与形的联系。
3.操练(10分钟)学生分组进行探索,尝试找出图形中隐藏的数,并解释其规律。
教师在这个过程中给予适当的引导和帮助。
4.巩固(10分钟)教师出示一些练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)教师引导学生思考:这些规律能不能应用到其他的问题中?让学生尝试将所学知识进行拓展。
6.小结(5分钟)教师引导学生总结本节课所学的知识,加深学生对数与形联系的理解。
人教版数学六年级上册第八单元《数学广角──数与形》教材分析与解读

人教版数学六年级上册第八单元《数学广角──数与形》教材分析与解读一、课标要求:《义务教育数学课程标准(2011年版)》在“学段目标”的“第二学段”中提出:“初步形成数感和空间观念,感受符号和几何直观的作用”“在观察、实验、猜想、验证等活动中,发展合情推理能力,能进行有条理的思考,能比较清楚地表达自己的思考过程与结果”“在运用数学知识和方法解决问题的过程中,认识数学的价值”。
《义务教育数学课程标准(2011年版)》在“课程内容”的“第二学段”中提出:“探索给定情境中隐含的规律或变化趋势”。
二、课标解读基于上述内容和要求,教师在实际教学时需注意以下方面问题:(一)引导学生自主探索规律、应用规律,培养学生合作交流、抽象概括的能力“形”的问题中包含着“数”的规律,“数”的问题也可以用“形”来帮助解决。
教师教学时,通过学生的自主探究、合作交流,既要让学生充分利用图形的直观、形象特点,用图形来表示数的规律性,感受化数为形的简捷性;同时,又要让学生寻找图形中所包含的数的规律,用数(或代数式)来表示图形,建立模式,感受用数或者代数式表示的概括性。
总之,要让学生在解决问题的过程体会到数与形的完美结合,并逐步培养学生的抽象概括能力。
(二)引导学生从多角度探索数与形的通用模式,培养学生的数学思想小学阶段,虽然不要求写出一个数列的通项公式,但可以通过数形结合的方式,利用图形的规律,从不同角度用自己的语言描述出数列的通用表达式,进而达到渗透数形结合、抽象概括等数学思想的教学目的。
三、教材介绍一、教学内容利用数与形的关系解决问题。
二、教学目标1.使学生会用数形结合的方法解决一些数学问题。
2.在解决问题的过程中培养学生的发现模式、应用模式的能力,提高推理能力。
3.在解决问题的过程中掌握和体会数形结合、极限等数学思想。
三、主要变化与具体编排(一)主要变化本册的数学广角,编排了一个新的内容──数与形。
数与形相结合的例子在小学数学教材与教学中随处可见。
六年级上册数学人教版第八单元《数学广角——数与形》集体备课教学设计

六年级上册数学人教版第八单元《数学广角——数与形》集体备课教学设计一. 教材分析本节课为人教版六年级上册数学《数学广角——数与形》单元,主要内容为数与形的探究和理解。
本节课通过具体的例子让学生感受数与形的联系,培养学生的数形结合思想。
教材内容由浅入深,逐步引导学生探索和发现数与形之间的关系,提高学生的数学思维能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对数的概念和简单的几何图形有一定的了解。
但是,对于数与形的内在联系可能还不太清楚,需要通过具体的活动和探究来加深理解。
在学习过程中,学生可能对一些抽象的概念和关系感到困惑,需要教师的引导和帮助。
三. 教学目标1.让学生理解数与形的概念,认识到数与形之间的联系。
2.通过具体的例子,让学生学会用数形结合的思想解决数学问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.数与形的概念及它们之间的关系。
2.如何运用数形结合的思想解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作探究法等,引导学生通过观察、思考、讨论、操作等活动,发现数与形之间的联系,提高学生的数学思维能力。
六. 教学准备1.准备相关的教学案例和图片,用于引导学生观察和分析。
2.准备一些实际的数学问题,让学生通过数形结合的思想解决。
3.准备黑板和粉笔,用于板书和总结。
七. 教学过程1.导入(5分钟)通过一些生活中的实际例子,引导学生认识到数与形的联系,激发学生的学习兴趣。
例如,可以展示一些物体排列的图片,让学生观察和描述它们的排列特点。
2.呈现(10分钟)呈现一些具体的数与形的案例,让学生观察和分析。
例如,可以给学生展示一些数字序列和对应的图形,让学生找出它们之间的关系。
3.操练(10分钟)让学生通过实际的数学问题,运用数形结合的思想解决。
可以给学生一些实际问题,让学生独立思考和解决,然后进行分享和讨论。
4.巩固(10分钟)通过一些练习题,让学生巩固所学的内容。
人教版小学数学六年级上册数学广角《数与形》教案

人教版小学数学六年级上册数学广角《数与形》教案一. 教材分析《数与形》这一章节主要让学生通过观察和操作,发现数与形之间的内在联系,体会数形结合的思想。
人教版小学数学六年级上册的《数与形》主要包括:正方形和圆形的面积公式,分数的应用,以及简单的概率知识。
二. 学情分析六年级的学生已经掌握了基本的数学运算能力和一定的几何知识。
但是,对于数与形之间的内在联系,可能还缺乏深入的理解。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,发现数与形之间的规律,培养学生的抽象思维能力。
三. 教学目标1.理解并掌握正方形和圆形的面积公式。
2.能够运用分数解决实际问题。
3.体会数与形之间的内在联系,培养学生的抽象思维能力。
四. 教学重难点1.正方形和圆形的面积公式的推导和应用。
2.分数在实际问题中的应用。
3.发现并理解数与形之间的内在联系。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、操作、思考、交流等活动,发现数与形之间的规律。
2.运用多媒体辅助教学,直观展示数与形的变换过程,帮助学生理解和记忆。
3.结合实际生活中的例子,让学生感受数学与生活的紧密联系。
六. 教学准备1.多媒体教学设备。
2.正方形和圆形的教具。
3.相关的生活实例。
七. 教学过程1.导入(5分钟)通过多媒体展示正方形和圆形,引导学生观察它们的特征,激发学生的学习兴趣。
2.呈现(10分钟)介绍正方形和圆形的面积公式,以及分数的应用。
通过教具演示和讲解,让学生初步理解并掌握这些知识。
3.操练(10分钟)让学生运用正方形和圆形的面积公式,解决一些实际问题。
同时,运用分数知识,解决一些与实际生活相关的问题。
4.巩固(10分钟)通过一些练习题,让学生进一步巩固正方形和圆形的面积公式,以及分数的应用。
5.拓展(10分钟)引导学生发现并理解数与形之间的内在联系。
例如,正方形的面积公式可以表示为边长的平方,而圆形的面积公式可以表示为半径的平方乘以π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学广角——数与形
数形结合是一种非常重要的数学思想,把数和形结合起来解决问题,可以使复杂的问题变得更简单,使抽象的问题变得更直观。
数与形相结合的例子在小学数学教材与教学中随处可见。
有些情况下,是图形中隐含着数的规律,可利用数的规律来解决图形的问题。
本单元的例1以及相关练习就属于这种情况。
例如,第109页第2题(如下图),使学生通过观察,发现第2个图比第1个图增加2个小圆,第3个图比第2个图增加3个小圆,第4个图比第3个图增加4个小圆……这样依次下去,各个图形中的小圆个数分别是1,3,6,10,…,即1,1+2,1+2+3,1+2+3+4,…如果是第个图,小圆的个数是。
等学生将来学习了等差数列的有关知识,
就知道第个图形中小圆的个数是。
而有些情况下,是利用图形来直观地解释一些比较抽象的数学原理与事实,让人一目了然。
尤其是对于小学生,其思维的抽象程度还不够高,经常需要借助直观模型来帮助理解。
例如,利用长方形模型来教学分数乘法的算理,利用线段图来帮助学生理解分数除法的算理,利用面积模型来解释两位数乘两位数的算理、乘法分配律、完全平方公式等。
还有的时候,数与形密不可分,可用“数”来解决“形”的问题,也可用“形”来解决“数”的问题。
例如,解析几何中,函数图象与方程、方程组互为工具,互为解释,有机融合。
小学中的正比例关系和反比例关系图象也很好地反映了这样的思想。
本单元教材以“”“”为例,引导学生认识利用数和形的结合解决一些有趣的数学问题。
一、与实验教材(《义务教育课程标准实验教科书数学六年级》,下同)的主要区别
新教材把《义务教育课程标准实验教科书数学六年级》上册的“鸡兔同笼”问题移至四年级下册,新编“数形结合”的内容。
本册的数学广角,编排了一个新的内容──数与形。
二、教材例题分析
例1:连续奇数的等差数列之和等于某平方数。
本例让学生计算从1开始的连续若干奇数之和。
在计算时,即使不借助图形,也可以通过,,…发现规律:从1开始,连续个奇数之和,就是的平方。
但把图形与算式对应起来,更具直观性,更能让学生体会到数学之美。
图中有的规律显而易见(每个图都是一个大的正方形,第个图形中,大正方形的每行、每列都有个小正方形,因此,小正方形的总数是),有的规律相对比较隐蔽(从左下角到右上角,每个“┓”形的小正方形的个数分别是1,3,5,7,…)。
每个图中都“隐藏”着一个等式,如第个图中的等式就是。
从图形的角度直观理解“正方形数”或“平方数”的特点,显然,使学生通过数与形的对照,利用图形直观形象的特点得到关于数的规律。
例2:等比数列之和等于1。
本例让学生计算的得数。
学生在计算的过程中发现
,,,…
加数有规律,即后一个加数是前一个加数的;和也有规律,每次相加所得的和都等于1减去最后一个加数;加数的项数越多,和越接近1。
这些加数无限地加下去,最后的和无限接近于1。
但这个无限接近于1的数到底是多少呢?教材利用“分数的认识”中的面积模型和长度模型,在圆上和线段上表示出这些加数,使学生借助图理解:无限加下去,最终的得数为1。
由此,教材借助图形解决了比较抽象的、复杂的、不好解决的问题。
但在实际教学中,即使有了图形的直观支持,仍有学生对最终结果为1这一事实不能理解,这也是非常正常的。
可以有两种解释的方法:第一种,如果学生认为和为,教师
可以追问:如果再加上一项呢?加上,和就变成了。
不管找到一个多么接近1的数,总还能再加一项,得到一个比它更接近1的和,这恰恰是极限思想的精髓所在。
第二种,
可以利用反推的方法来使学生明白其中的道理:
……
本单元的教学重点是自主探索图形中隐藏着的数的规律,会利用图形来解决一些有关数的问题,并学会应用所发现的规律。
教学难点是体会和掌握数形结合、归纳推理、极限等基本数学思想。