应用回归分析何晓群
《应用回归分析》部分课后习题答案-何晓群版

《应用回归分析》部分课后习题答案第一章回归分析概述1.1 变量间统计关系和函数关系的区别是什么?答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另外一个变量的确定关系。
1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3 回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.1.5 回归变量的设置理论根据是什么?在回归变量设置时应注意哪些问题?答:理论判断某个变量应该作为解释变量,即便是不显著的,如果理论上无法判断那么可以采用统计方法来判断,解释变量和被解释变量存在统计关系。
应用回归分析第三版·何晓群-第三章所有习题答案

应用回归分析第三章习题 3.1y x =β基本假定:(1) 诸1234n x ,x x ,x x ……非随机变量,rank (x )=p+1,X 为满秩矩阵(2) 误差项()()200i i j E ,i j cov ,,i j⎧ε=⎪⎧δ=⎨εε=⎨⎪≠⎩⎩(3)()20i i j ~N ,,⎧εδ⎪⎨εε⎪⎩诸相互独立3.2()10111ˆX X X X |rank(X X )p rank(X )p n p -'β'≠'=+≥+≥+存在,必须使存在。
即|则必有故3.3()()()()()22111221222211111111n nn i i ii i i i nii i ni i E e D e h n h n p ˆE E e n p n p n p =====⎛⎫==-δ ⎪⎝⎭⎛⎫=-δ=--δ ⎪⎝⎭⎛⎫∴δ==--δ=δ ⎪----⎝⎭∑∑∑∑∑3.4并不能这样武断地下结论。
2R 与回归方程中的自变量数目以及样本量n 有关,当样本量n 与自变量个数接近时,2R 易接近1,其中隐含着一些虚假成分。
因此,并不能仅凭很大的2R 就模型的优劣程度。
3.5首先,对回归方程的显著性进行整体上的检验——F 检验001230p H :β=β=β=β==β=……接受原假设:在显著水平α下,表示随机变量y 与诸x 之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y 与诸x 之间有显著的线性关系第二,对单个自变量的回归系数进行显著性检验。
00i H :β=接受原假设:认为i β=0,自变量i x 对y 的线性效果并不显著3.6原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。
中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。
3.71122011122201122ppp p p p p ˆˆˆˆˆy x x x ˆˆˆˆˆˆy y (x x )(x x )(x x )ˆˆˆˆy x x )x x )x x )y =β+β+β++β-=β+β-+β-++β--ββ=-+-++-=对最小二乘法求得一般回归方程:……对方程进行如下运算:…………*jjˆ+β=……即3.812132123313221231221233131231123233213231313*********111r r r r r r r r rr r r r r r r r r r r r ⎛⎫ ⎪= ⎪ ⎪⎝⎭∆==-∆==-∆==-即证3.9()()()()()1211121121211111j jj j j p j j j p yj j j p SSR /SSE F SSE /n p SSE /n p SSE x ,x ,,x ,x x SSE x ,x ,,x ,x ,x x r SSE x ,x ,,x ,x x -+-+-+∆∆==-----=……,?………,?…而……,?…由上两式可知,其考虑的都是通过j SSE ∆在总体中所占比例来衡量第j 个因素的重要程度,因而j F 与2yj r 是等价的。
《应用回归分析》课后习题部分答案-何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=(5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()ni i nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。
何晓群:《应用回归分析》第四版-第二章一元线性回归

1998年19年的样本数据 分布情况见图2.2.
( xi
,
yi
)(i
1,2,
, n)
.
数据见表2.2;样本
表2.2
人均国民收入表
年份 人均国民 人均消费金 收入(元) 额(元)
年份 人均国民 人均消费金
收入(元)
额(元)
1980 460
234.75
1990 1634
797.08
1981 489
259.26
返 回 前一页 后一页
二、一元线性回归模型的数学形式
1、一元线性理论回归模型
y 0 1x 称为变量 y 对 x 的一元线性理论回归模型.
y
被解释变量(因变量)
x
解释变量(自变量)
随机误差(不可观测)
未知 0 参数 1
回归常数 回归系数
回归分析
(2.1)
返 回 前一页 后一页
火灾损失 y (千元) 19.6 31.3 24.0 17.3 43.2 36.4 26.1
y
60
45 30 15
图2.1 0 1 2 3 4 5 6 7 8 9 x
返 回 前一页 后一页
回归分析
【例2.2】在研究我国人均消费水平的问题中, 把全国人均消费
金额记作 y (元); 气人均国民收入记为 x (元). 我们收集到1980-
( x1, y1 )
0
图2.3
x
返 回 前一页 后一页
回归分析
5、0, 1的最小二乘估计(OLSE)
求回归参数 0, 1 的最小二乘估计, 即求
n
Q(0,1) (yi 0 1xi)2 i1
应用回归分析课后习题参考答案_全部版__何晓群_刘文卿

第一章回归分析概述1.2 回归分析与相关分析的联系与区别是什么?答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有 a.在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。
应用回归分析第三版·何晓群-第三章所有习题答案

应用回归分析第三章习题 3.1y x =β基本假定:(1) 诸1234n x ,x x ,x x ……非随机变量,rank (x )=p+1,X 为满秩矩阵(2) 误差项()()200i i j E ,i j cov ,,i j⎧ε=⎪⎧δ=⎨εε=⎨⎪≠⎩⎩(3)()20i i j ~N ,,⎧εδ⎪⎨εε⎪⎩诸相互独立3.2()10111ˆX X X X |rank(X X )p rank(X )p n p -'β'≠'=+≥+≥+存在,必须使存在。
即|则必有故3.3()()()()()22111221222211111111n nn i i ii i i i nii i ni i E e D e h n h n p ˆE E e n p n p n p =====⎛⎫==-δ ⎪⎝⎭⎛⎫=-δ=--δ ⎪⎝⎭⎛⎫∴δ==--δ=δ ⎪----⎝⎭∑∑∑∑∑3.4并不能这样武断地下结论。
2R 与回归方程中的自变量数目以及样本量n 有关,当样本量n 与自变量个数接近时,2R 易接近1,其中隐含着一些虚假成分。
因此,并不能仅凭很大的2R 就模型的优劣程度。
3.5首先,对回归方程的显著性进行整体上的检验——F 检验001230p H :β=β=β=β==β=……接受原假设:在显著水平α下,表示随机变量y 与诸x 之间的关系由线性模型表示不合适 拒绝原假设:认为在显著性水平α下,y 与诸x 之间有显著的线性关系第二,对单个自变量的回归系数进行显著性检验。
00i H :β=接受原假设:认为i β=0,自变量i x 对y 的线性效果并不显著3.6原始数据由于自变量的单位往往不同,会给分析带来一定的困难;又由于设计的数据量较大,可能会以为舍入误差而使得计算结果并不理想。
中心化和标准化回归系数有利于消除由于量纲不同、数量级不同带来的影响,避免不必要的误差。
3.71122011122201122ppp p p p p ˆˆˆˆˆy x x x ˆˆˆˆˆˆy y (x x )(x x )(x x )ˆˆˆˆy x x )x x )x x )y =β+β+β++β-=β+β-+β-++β--ββ=-+-++-=对最小二乘法求得一般回归方程:……对方程进行如下运算:…………*jjˆ+β=……即3.812132123313221231221233131231123233213231313*********111r r r r r r r r rr r r r r r r r r r r r ⎛⎫ ⎪= ⎪ ⎪⎝⎭∆==-∆==-∆==-即证3.9()()()()()1211121121211111j jj j j p j j j p yj j j p SSR /SSE F SSE /n p SSE /n p SSE x ,x ,,x ,x x SSE x ,x ,,x ,x ,x x r SSE x ,x ,,x ,x x -+-+-+∆∆==-----=……,?………,?…而……,?…由上两式可知,其考虑的都是通过j SSE ∆在总体中所占比例来衡量第j 个因素的重要程度,因而j F 与2yj r 是等价的。
应用回归分析第四版课后习题答案全何晓群刘文卿

实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。
2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。
4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。
证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:01ˆˆˆˆi i i i iY X e Y Yββ=+=-0100ˆˆQ Qββ∂∂==∂∂即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。
证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xx i n i iY L X X X Y n E X Y E E ββ )] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X nL X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xx i ni i xx i ni X Var L X X X nY L X X X n Var Var εβββ++--=--=∑∑== 222212]1[])(2)1[(σσxxxx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 证明:(1)())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明2ˆ22-=∑neiσ是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章1.一个回归方程的复相关系数R=0.99,样本决定系数R2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
《应用回归分析》课后习题部分答案何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。
(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=≈ (5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。
因而/2|(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。
因而/2(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。
(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈ /2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章回归分析概述
1.2回归分析与相关分析的联系与区别是什么?
答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。
区别有a在回归分析中,变量y称为因变量,处在被解释的特殊地位。
在相关分析中,变量x和变量y处于平等的地位,即研究变量y与变量x的密切程度与研究变量x与变量y的密切程度是一回事。
b.相关分析中所涉及的变量y与变量x全是随机变量。
而在回归分析中,因变量y是随机变量,自变量x 可以是随机变量也可以是非随机的确定变量。
C.相关分析的研究主要是为了刻画两类变量间线性相关的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
1.3回归模型中随机误差项ε的意义是什么?
答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…xpD的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。
1.4线性回归模型的基本假设是什么?
答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值是常数。
2.等方差及不相关的假定条件为E(ci)=0i=1,2…xi1.x12……..xip
Cov(e i, e j)=i a2
3.正态分布的假定条件为相互独立。
4.样容量的个数要多于解释变量的个数。