三角形中的五种常见证明类型

三角形中的五种常见证明类型
三角形中的五种常见证明类型

专训一:三角形中的五种常见证明类型名师点金:学习了全等三角形及等腰三角形的性质和判定后,与此相关的几何证明题的类型非常丰富,常见的类型有:证明数量关系、位置关系,线段的和差关系、倍分关系、不等关系等.

证明数量关系

题型1证明线段相等

1.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC 上的点,且AE=AF,求证:DE=DF.

(第1题)

题型2证明角相等

2.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD 于F交BC于E.

求证:∠ADB=∠CDE.

(第2题)

证明位置关系

3.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE=CD,点G是EF的中点,求证:DG⊥EF.

(第3题)

证明倍分关系

4.如图,在△ABC中,AB=AC,AD,BE是△ABC的高,AD,BE相交于点H,且AE=BE,求证:AH=2BD.

(第4题)

证明和、差关系

5.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC.求证:AB+BD=AC.

(第5题)

证明不等关系

6.如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB >AC,求证:AB-AC>PB-PC.

(第6题)

专训二:构造全等三角形的六种常用方法

名师点金:在进行几何题的证明或计算时,需要在图形中添加一些辅助线,辅助线能使题目中的条件比较集中,能比较容易找到一些量之间的关系,使数学问题得以较轻松地解决.常见的辅助线作法有:构造法、平移法、旋转法、翻折法、加倍折半法和截长补短法,目的都是构造全等三角形.

构造基本图形法

1.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.

求证:∠ADC=∠BDF.

(第1题)

翻折法

2.如图,在△ABC中,BE是∠ABC的平分线,AD⊥BE,垂足为D.求证:∠2=∠1+∠C.

(第2题)

旋转法

3.如图,在正方形ABCD中,E为BC上的一点,F为CD上的一点,BE +DF=EF,求∠EAF的度数.

(第3题)

平移法

4.在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC交AC于点Q,且AP与BQ相交于点O.

求证:AB+BP=BQ+AQ.

(第4题)

加倍折半法

5.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.

(第5题)

截长补短法

6.如图所示,AB∥CD,BE、CE分别为∠ABC、∠BCD的平分线,点E 在AD上.

求证:BC=AB+CD.

(第6题)

专训三:分类讨论思想在等腰三角形中的应用名师点金:分类讨论思想是解题的一种常用方法,在等腰三角形中,往往会遇到条件或结论不唯一的情况,此时就需要分类讨论.通过正确地分类讨论,可

以使复杂的问题得到清晰、完整、严密的解答.其解题策略为:先分类,再画图,后计算.

当顶角和底角不确定时,分类讨论

1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为()

A.40°B.100°C.40°或70°D.40°或100°

2.已知等腰三角形ABC中,AD⊥BC于D,且AD=1

2BC,则等腰三角形

ABC的底角的度数为()

A.45°B.75°C.45°或75°D.65°

3.若等腰三角形的一个外角为64°,则底角的度数为________.

当底和腰不确定时,分类讨论

4.(2015·荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()

A.8或10B.8C.10D.6或12

5.等腰三角形的两边长分别为7和9,则其周长为________.

6.若实数x,y满足|x-5|+(10-y)2=0,则以x,y的值为边长的等腰三角形的周长为________.

当高的位置关系不确定时,分类讨论

7.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.

由腰的垂直平分线引起的分类讨论

8.在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求∠B的度数.

由腰上的中线引起的分类讨论

9.等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分.求腰长.

点的位置不确定引起的分类讨论

10.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()

(第10题)

A.7个B.6个C.5个D.4个

11.如图,已知△ABC中,BC>AB>AC,∠ACB=40°,如果D,E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.

(第11题)

专训四:三角形中常见的热门考点

名师点金:本章主要学习了互逆命题与互逆定理,全等三角形的性质与判定,等腰三角形,线段垂直平分线与角平分线等常见的轴对称图形的性质与判定.本章的考点较多,也是中考的重点考查内容.

互逆命题、基本事实、互逆定理

1.下列命题是真命题的是()

A.无限小数是无理数

B.相反数等于它本身的数是0和1

C.对顶角相等

D.等边三角形既是轴对称图形,又是中心对称图形

2.下列命题及其逆命题是互逆定理的是()

A.全等三角形的对应角相等

B.若两个角都是直角,则它们相等

C.同位角相等,两直线平行

D.若a=b,则|a|=|b|

全等三角形的性质与判定

3.如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有()

A.3对B.2对C.1对D.0对

(第3题)

(第4题)

4.如图,在△ABC中,AC=5,F是高AD和BE的交点,AD=BD,则

BF的长是()

A.7 B.6 C.5 D.4

5.(2015·杭州)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC,求证:DM=DN.

(第5题)

等腰三角形的判定与性质

6.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F分别为垂足,则下列四个结论:

(1)∠DEF=∠DFE;(2)AE=AF;(3)DA平分∠EDF;(4)AD垂直平分EF.

其中正确的有()

A.1个B.2个C.3个D.4个

(第6题)

(第7题)

(第8题)

7.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,则BC′的长为________.

8.如图所示,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=6 cm,AC=9 cm,则△AMN 的周长为________.

9.(中考·淄博)如图,AD∥BC,BD平分∠ABC.

求证:AB=AD.

(第9题)

尺规作图

10.如图,已知线段a,h,作等腰三角形ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法如下:

(1)作线段BC=a;

(2)作线段BC的垂直平分线MN,MN与BC相交于点D;

(3)在直线MN上截取线段h;

(4)连接AB,AC.

△ABC即为所要求作的等腰三角形.

上述作法的四个步骤中,你认为有错误的一步是()

(第10题)

A.(1) B.(2) C.(3) D.(4)

线段垂直平分线与角平分线

11.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC 于点D,交AB于点E,则下列结论错误的是()

A.BD平分∠ABC

B.△BCD的周长等于AB+BC

C.AD=BD=BC

D.点D是线段AC的中点

(第11题)

(第12题)

12.如图,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,那么∠CAB的大小是()

A.80°B.50°C.40°D.20°

13.如图,已知C是∠MAN的平分线上一点,CE⊥AB于E,点B,D分

别在AM,AN上,且AE=1

2(AD+AB).问:∠1和∠2有何关系?并说明理由.

(第13题)

思想方法

a.分类讨论思想

14.等腰三角形的一个外角等于110°,则这个三角形的顶角度数为________.15.(2014·安顺)已知等腰三角形的两边长分别为a,b,且a,b满足

2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的周长为() A.7或8 B.6或10

C.6或7 D.7或10

b.方程思想

16.如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,求∠A的度数.

(第16题)

c.转化思想

17.如图,已知在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD

于E,求证:BE=1

2(AC-AB).

(第17题)

答案

专训一

1.证明:连接AD.∵AB =AC ,D 是BC 的中点,

∴∠EAD =∠FAD.

在△AED 和△AFD 中,???AE =AF ,

∠EAD =∠FAD ,AD =AD ,

∴△AED ≌△AFD(S .A .S .).

∴DE =DF.

2.证明:过点C 作CG ⊥AC 交AE 的延长线于G ,则CG ∥AB ,

∴∠BAF =∠G.

又∵AF ⊥BD ,AC ⊥CG ,

∴∠BAF +∠ABF =90°,∠CAG +∠G =90°.

∴∠ABF =∠CAG.

在△ABD 和△CAG 中,???∠ABF =∠CAG ,

AB =AC ,∠BAD =∠ACG =90°,

∴△ABD ≌△CAG(A .S .A .).

∴AD =CG ,∠ADB =∠G.

又∵D 为AC 的中点,∴AD =CD ,∴CD =CG.

∵AB =AC ,∴∠ABC =∠ACB.

又∵AB ∥CG ,∴∠ABC =∠GCE.

∴∠ACB =∠GCE.又∵CE =CE ,∴△CDE ≌△CGE(S .A .S .).

∴∠G =∠CDE.

∴∠ADB =∠CDE.

(第3题)

3.证明:如图,连接ED ,FD.∵AB =AC ,

∴∠B =∠C.在△BDE 和△CFD 中,

???BD =CF ,

∠B =∠C ,BE =CD ,

∴△BDE ≌△CFD(S .A .S .).

∴DE =DF.

又∵点G 是EF 的中点,∴DG ⊥EF.

4.证明:∵AD ,BE 是△ABC 的高,∴∠ADB =∠AEB =90°,

又∵∠BHD =∠AHE ,∴∠EBC =∠EAH.

在△BCE 和△AHE 中,???∠EBC =∠EAH ,

BE =AE ,∠BEC =∠AEH =90°,

∴△BCE ≌△AHE(A .S .A .).

∴AH =BC.

又∵AB =AC ,AD ⊥BC ,∴BC =2BD ,

∴AH =2BD.

5.证明:如图,延长CB 至E ,使BE =BA ,则∠BAE =∠E.

∵∠ABC =2∠C =2∠E ,∴∠E =∠C ,∴AE =AC.

∵AD 平分∠BAC ,∴∠BAD =∠DAC.

∵∠BAE =∠E ,∠E =∠C ,∴∠BAE =∠C.

又∵∠EAD =∠BAE +∠BAD ,∠EDA =∠C +∠DAC ,

∴∠EAD =∠EDA.

∴AE =DE.

∴AC =DE =BE +BD =AB +BD.

(第5题)

(第6题)

6.证明:如图,在AB 上截取AE ,使AE =AC ,连接PE.

∵AD 是∠BAC 的平分线,∴∠BAD =∠CAD.

在△AEP 和△ACP 中,???AE =AC ,

∠BAD =∠CAD ,AP =AP ,

∴△AEP ≌△ACP(S .A .S .),∴PE =PC.

在△PBE 中,BE >PB -PE ,∴AB -AC >PB -PC.

专训二

1.证明:如图,过点B 作BG ⊥BC 交CF 的延长线于点G.

∵∠ACB =90°,∴∠2+∠ACF =90°.

∵CE ⊥AD ,∴∠AEC =90°,∴∠1+∠ACF =180°-∠AEC =180°-90°=90°.

∴∠1=∠2.

在△ACD 和△CBG 中,???∠1=∠2,

AC =CB ,∠ACD =∠CBG =90°,

∴△ACD ≌△CBG(A .S .A .).

∴∠ADC =∠G ,CD =BG.

∵点D 为BC 的中点,∴CD =BD.∴BD =BG.

又∵∠DBG =90°,∠DBF =45°,

∴∠GBF =∠DBG -∠DBF =90°-45°=45°.∴∠DBF =∠GBF.

在△BDF 和△BGF 中,???BD =BG ,

∠DBF =∠GBF ,BF =BF ,

∴△BDF ≌△BGF(S .A .S .).

∴∠BDF =∠G.∴∠ADC =∠BDF.

点拨:本题运用了构造基本图形法,通过作辅助线构造△CBG 、△BGF 是解题的关键.

(第1题)

(第2题)

2.证明:如图,延长AD 交BC 于点F.(相当于将AB 边向下翻折,与BC 边重合,A 点落在F 点处,折痕为BE)

∵BE 平分∠ABC ,∴∠ABE =∠CBE.

∵BD ⊥AD ,∴∠ADB =∠BDF =90°.

在△ABD 和△FBD 中,???∠ABD =∠FBD ,

BD =BD ,∠ADB =∠FDB =90°,

∴△ABD ≌△FBD(A .S .A .).

∴∠2=∠DFB.

又∵∠DFB =∠1+∠C ,∴∠2=∠1+∠C.

(第3题)

3.解:如图,延长CB 到点H ,使得BH =DF ,连接AH.

∵∠ABE =90°,∠D =90°,∴∠ABH =∠D =90°.

在△ABH 和△ADF 中,

???AB =AD ,

∠ABH =∠D =90°

,BH =DF ,

∴△ABH ≌△ADF.∴AH =AF ,∠BAH =∠DAF.

∴∠BAH +∠BAF =∠DAF +∠BAF ,即∠HAF =∠BAD =90°. ∵BE +DF =EF ,∴BE +BH =EF ,即HE =EF.

在△AEH 和△AEF 中,???AH =AF ,

AE =AE ,EH =EF ,

∴△AEH ≌△AEF.∴∠EAH =∠EAF.

∴∠EAF =12∠HAF =45°.

点拨:图中所作辅助线,相当于将△ADF 绕点A 顺时针旋转90°,使AD 边与AB 边重合,得到△ABH.

4.证明:过点O 作OD ∥BC 交AB 于点D ,∴∠ADO =∠ABC. ∵∠BAC =60°,∠C =40°,∴∠ABC =80°.

∴∠ADO =80°.

∵BQ 平分∠ABC ,∴∠QBC =40°.

∴∠AQB =∠C +∠QBC =80°.

∴∠ADO =∠AQB.

易知∠DAO =∠QAO ,OA =OA ,∴△ADO ≌△AQO.

∴OD =OQ ,AD =AQ.

∵OD ∥BP ,∴∠PBO =∠DOB ,

又∵∠PBO =∠DBO ,∴∠DBO =∠DOB.

∴BD =OD.∴BD =OQ.

∵∠BAC =60°,∠ABC =80°,BQ 平分∠ABC ,AP 平分∠BAC , ∴∠BAP =30°,∠ABQ =40°,∴∠BOP =70°.

∵∠BAP =30°,∠ABC =80°,∴∠APB =70°.

∴∠BOP =∠APB ,∴BO =BP.

∴AB +BP =AD +DB +BP =AQ +OQ +BO =BQ +AQ.

5.解:在DC 上截取DE =BD ,连接AE ,∵AD ⊥BC ,BD =DE ,∴AD 是线段BE 的垂直平分线,∴AB =AE ,∠B =∠AEB.∵AB +BD =CD ,DE =BD ,∴AB +DE =CD.而CD =DE +EC ,∴AB =EC ,∴AE =EC.故设∠EAC =∠C =x ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠EAC +∠C =2x ,∴∠B =2x ,∠BAE =180°-2x -2x =180°-4x.∵∠BAC =120°,∴∠BAE +∠EAC =120°,即180°

-4x +x =120°,解得x =20°,则∠C =20°.

6.证法一:用截长法,如图①所示,在BC 上截取BF =AB ,连接EF.

(第6题)

因为BE 平分∠ABC ,CE 平分∠BCD ,

所以∠ABE =∠FBE ,∠FCE =∠DCE.

在△ABE 和△FBE 中,

因为???AB =FB ,

∠ABE =∠FBE ,BE =BE ,

所以△ABE ≌△FBE.

所以∠A =∠EFB.

因为AB ∥CD ,

所以∠A +∠D =180°.

因为∠BFE +∠EFC =180°,

所以∠EFC =∠D.

在△EFC 和△EDC 中,

因为???∠FCE =∠DCE ,

∠EFC =∠D ,EC =EC ,

所以△EFC ≌△EDC.

所以FC =DC.

所以BC =BF +FC =AB +CD.

证法二:用补短法,如图②所示,延长BE 交CD 的延长线于点G.

因为AB ∥CD ,

所以∠ABE =∠G.

因为BE 平分∠ABC ,

所以∠ABE =∠CBE.

所以∠CBE =∠G.

因为CE 平分∠BCD ,

所以∠BCE =∠GCE.

在△BEC 和△GEC 中,

因为???∠CBE =∠G ,

∠BCE =∠GCE ,CE =CE ,

所以△BEC ≌△GEC.

所以BC =GC ,BE =GE.

在△ABE 和△DGE 中,

因为???∠ABE =∠G ,

∠AEB =∠DEG ,BE =GE ,

所以△ABE ≌△DGE.

所以AB =DG.

所以BC =CG =GD +DC =AB +CD.

专训三

1.D 2.C 3.32°

4.C 5.23或25 6.25

7.解:设等腰三角形ABC 中,AB =AC ,BD ⊥AC 于D.

(1)当高与底边的夹角为25°时,高一定在△ABC 的内部,如图①,∵∠DBC =25°,∴∠C =90°-∠DBC =90°-25°=65°,∴∠ABC =∠C =65°,∠A =180°-2×65°=50°.

(第7题)

(2)当高与另一腰的夹角为25°时,

如图②,高在△ABC 的内部时,

∵∠ABD =25°,∴∠A =90°-∠ABD =65°,

∴∠C =∠ABC =(180°-∠A)÷2=57.5°;

如图③,高在△ABC 的外部时,∵∠ABD =25°,

∴∠BAD =90°-∠ABD =90°-25°=65°,

相似三角形基本类型证明题

发现、构造相似三角形的基本图形证题 支其韶 吴复 相似三角形主要有四种基本类型。 一、平行线型 如图1,若DE ∥BC ,则△ADE ∽△ABC 。 例1. 已知,如图2所示,AD 为△ABC 的中线,任一直线CF 交AD 、AB 于E 、F 。 求证:FB AF 2ED AE = 。 例2. 已知,如图3所示,BE 、CF 分别为△ABC 的两中线,交点为G 。 求证:2 GF GC GE GB ==。 例3. 已知,如图4所示,在△ABC 中,直线MN 交AB 、AC 和BC 的延长线于X 、Y 、Z 。 求证: AY CY CZ BZ BX AX ??=1。

二、相交线型 如图5,若∠1=∠B ,则可由公共角或对顶角得△ADE ∽△ABC 。 例4. 已知,如图6所示,△ABC 中,AB=AC ,D 为AB 上的点,E 为AB 延长线上的点, 且AE AD AB 2 ?=。 求证:BC 平分∠DCE 。 例5. 已知,如图7所示,CD 为Rt △ABC 的高,E 为CD 的中点,AE 的延长线交BC 于F ,FG ⊥AB 于G 。 求证:FB FC FG 2 ?=。 三、旋转型 如图8,若∠BAD=∠CAE ,则△ADE 绕点A 旋转一定角度后与△ABC 构成平行线型的相似三角形。

如图9,直角三角形中的相似三角形,若∠ACB=?90,AB ⊥CD ,则△ACD ∽△CBD ∽△ABC 。 例6. 已知,如图10所示,D 为△ABC 内的一点,E 为△ABC 外的一点,且∠EBC=∠DBA ,∠ECB=∠DAB 。 例7. 已知,如图11所示,F 为正方形ABCD 的边AB 的中点,E 为AD 上的一点,AE=41 AD , FG ⊥CE 于G 。 求证:CG EG FG 2 ?=。 例8. 已知,如图12所示,在平行四边形ABCD 中,O 为对角线BD 上的点,过O 作直线分别交DC 、AB 于M 、N ,交AD 的延长线于E ,交CB 的延长线于F 。 求证:OE ·ON=OM ·OF 。

全等三角形类型题汇总

13. 如图,已知AB=AC,AD=AE,BD=CE. 求证:∠3=∠1+∠2. 5. 一块三角形玻璃样板不慎被小强同学碰破,成了四片完整的碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.下列四个答案中考虑最全面的是( ) A.带其中的任意两块去都可以B.带1、2 或2、3 去就可以了 C.带1、4 或3、4 去就可以了D.带1、4 或2、4 或3、4 去均可16. 将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB =90°,∠A=∠D=30°,点 E 落在 AB 上,DE 所在直线交 AC所在直线于点 F. (1)求证:AF+EF=DE; (2)若将图①中的△DBE 绕点 B 按顺时针方向旋转角α,且 0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图①中的△DBE 绕点 B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程:若不成立,请写出 AF,EF与 DE之间的关系,并说明理由.

板块一、三角形全等的判定与应用 在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于O再连结AO、BC,若1=2, 则图中全等三角形共有哪几对?并简单说明理由. 【巩固】如图所示,AB = AD,BC = DC,E、F在AC上,AC与BD相交于P.图中有几对全等三角形?请一一找出来,并简述全等的理由. 板块二、三角形全等的判定与应用 (2008年巴中市高中阶段教育学校招生考试)如图,AC∥DE,BC∥EF,AC = DE.求证:AF =BD. C

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形证明方法归纳经典-(1)

【第1部分 全等基础知识归纳、小结】 1、全等三角形的定义: 能够完全重合的两个三角形叫全等三角形。两个全等三角形中, 互相重合的顶点叫做对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。 概念深入理解: (1)形状一样,大小也一样的两个三角形称为全等三角形。(外观长的像) (2)经过平移、旋转、翻折之后能够完全重合的两个三角形称为全等三角形。(位置变化) 2、全等三角形的表示方法:若△ABC 和△A′B′C′是全等的,记作“△ABC≌△A′B′C′”其中,“≌”读作“全等于”。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 3、全等三角形的性质: 全等是工具、手段,最终是为了得到边等或角等,从而解决某些问题。 (1)全等三角形的对应角相等、对应边相等。 (2)全等三角形的对应边上的高,中线,角平分线对应相等。 (3)全等三角形周长,面积相等。 4、寻找对应元素的方法 图 3 图 1 图2

(1)根据对应顶点找 如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。 (2)根据已知的对应元素寻找 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (3)通过观察,想象图形的运动变化状况,确定对应关系。 通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的;运动一般有3种:平移、对称、旋转; 5、全等三角形的判定:(深入理解) ①边边边(SSS)②边角边(SAS)③角边角(ASA)④角角边(AAS) ⑤斜边,直角边(HL) 注意:(容易出错) (1)在判定两个三角形全等时,至少有一边对应相等(边定全等); (2)不能证明两个三角形全等的是,㈠三个角对应相等,即AAA;㈡有两边和其中一角对应相等,即SSA。 全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。 6、常见辅助线写法:(照着辅助线说明要能做出图、养成严谨、严密的习惯) 如:⑴过点A作BC的平行线AF交DE于F

初中数学经典相似三角形练习题(附)

相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G. (1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC. 求证:△ABC∽△FDE. 4.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?

(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由. 5.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP. 6.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似? 7.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.

8.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似? 9.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似. 10.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.

全等三角形证明经典100题

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C B A C D F 2 1 E

5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C 6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE 7.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD 8.已知:D是AB中点,∠ACB=90°,求证: 1 2 CD AB A D B C C D B A

9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 10. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 11. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 12. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证: AE=AD+BE B A C D F 2 1 E C D B A

12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。 求证:BC=AB+DC。 13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C 14.已知:AB=CD,∠A=∠D,求证:∠B=∠C D C B A F E A B C D

全等三角形证明方法

全等三角形得证明方法 一、三角形全等得判定: (1)三组对应边分别相等得两个三角形全等(SSS); (2)有两边及其夹角对应相等得两个三角形全等(SAS); (3)有两角及其夹边对应相等得两个三角形全等(ASA) ; (4)有两角及一角得对边对应相等得两个三角形全等(AAS) ; (5)直角三角形全等得判定:斜边及一直角边对应相等得两个直角三角形全等(HL)、 二、全等三角形得性质: (1)全等三角形得对应边相等;全等三角形得对应角相等; (2)全等三角形得周长相等、面积相等; (3)全等三角形得对应边上得高对应相等; (4)全等三角形得对应角得角平分线相等; (5)全等三角形得对应边上得中线相等; 三、找全等三角形得方法: (1)可以从结论出发,瞧要证明相等得两条线段(或角)分别在哪两个可能全等得三角形中; (2)可以从已知条件出发,瞧已知条件可以确定哪两个三角形相等; (3)从条件与结论综合考虑,瞧它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。三角形全等得证明中包含两个要素:边与角。 ①积极发现隐含条件: 公共角对顶角公共边 ②观察发现等角等边: 等边对等角同角得余角相等同角得补角相等 等角对等边等角得余角相等等角得补角相等 ③推理发现等边等角: 图1:平行转化图2 :等角转化图3:中点转化 图4:等量与转化图5:等量差转化图6:角平分线性质转化 图7:三线合一转化图8:等积转化图9:中垂线转化图10:全等转化 图11:等段转化 四、构造辅助线得常用方法: 1、关于角平分线得辅助线: 当题目得条件中出现角平分线时,要想到根据角平分线得性质构造辅助线。 角平分线具有两条性质:①角平分线具有对称性; ②角平分线上得点到角两边得距离相等。 关于角平分线常用得辅助线方法: (1)截取构造全等: 如下左图所示,OC就就是∠AOB得角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

全等三角形相似三角形证明(中难度题型)

全等三角形证明经典50题.doc 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 1. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 2. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 B C D F A D B C B C

已知:∠1=∠2,CD=DE,EF 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。 8.已知:AB知:AB=CD,∠A=∠D,求证:∠B=∠C A D B C B A C D F 2 1 E C D B D C B A F E A B C D A

10. P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB

15.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交 AP 于D .求证:AD +BC =AB . 16.(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B 17.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若 AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF (2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立若成立请给予证明;若不成立请说明理由. P E D C B A D C B A

最新全等三角形专题分类复习讲义

第三章全等三角形专题分类复习 一.考点整理 1.三角形的边角关系 2.三角形全等 3.三角形当中的三线(角平分线、中线和高线的性质) 在三角形中,三角形的三线分别交于一点。 注:三角形内角平分线与外角平分线模型归纳: (1) (2) __________D ∠= ___________D ∠= (3) __________D ∠= 3.尺规作图 (1)作满足题意的三角形 (2)作最短距离(送水、供电、修渠道等最短路径问题) 角:内角和180度,余角和90度 边:构成三角形三边的条件 (1)证三角形全等(SSS/ASA/AAS/SAS/HL ) (2)证边等或角等(证三角形全等、等量代换、证等腰三角形) (3)证“AE=BD+CE ”等(证线段之间的等量关系)类似问题(三角形全等证边等代换、截长补短) (4)证线段之间的位置关系(垂直或平行 方法:证明角等代换) A D B C A B C D A B C D

考点1:证明三角形全等 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。求证: ACF BDE ???。 练习:已知,如图,△ABC 是等边三角形,过AC 边上的点D 作DG ∥BC ,交AB 于点G ,在GD 的延长线上取点E ,使DE =DC ,连接AE 、BD. (1)求证:△AGE ≌△DAB (2)过点E 作EF ∥DB ,交BC 于点F ,连结AF ,求∠AFE 的度数. 考点2:求证线段之间的数量关系(截长补短) 例1:如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD . D A B C G E F

全等三角形证明经典50题(含答案)

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC ∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4 即4-2<2AD <4+2 1<AD <3 ∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP ,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形 又∠ACB=90 ∴平行四边形ACBP 为矩形 A D B C

∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边) ∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF 。 ∵ ∠ABC=∠AED 。 ∴ ∠ABE=∠AEB 。 ∴ AB=AE 。 在三角形ABF 和三角形AEF 中 AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴ 三角形ABF 和三角形AEF 全等。 ∴ ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 过C 作CG ∥EF 交AD 的延长线于点G CG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角) B A C D F 2 1 E

专题研究:全等三角形证明方法归纳及典型例题

全等三角形的证明 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等. (2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等. (3)边边边定理(SSS):三边对应相等的两个三角形全等. (4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等. (5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础. 专题1、常见辅助线的做法 典型例题 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种:

最新(相似三角形)证明题

1、如图,△ABC中,三条内角平分线交于D,过D作AD垂线,分别交AB、AC于M、N,请写出图中相似的三角形,并说明其中两对相似的正确性。 2、如图,AD为△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,试判断∠ADF与∠AEF的大小,并说明明理由, 3、如图,在△ABC中,点D、E分别在BC、AB上,且∠CAD=∠ADE=∠B,AC:BC=1:2,设△EBD、△ADC、△ABC的周长分别为m1 、m2、m3,求的值, 4、如图,已知△ABC中,D为BC中点,AD=AC,DE⊥BC,DE与AB交于E,EC与AD相交于点F,(1)△ABC与△FCD相似吗?请说明理由;(2)若S =5,BD=10,求DE的长。 5、AD是△ABC的高,E是BC的中点,EF⊥BC交AC于F,若BD=15,DC=27,AC=45. 求AF的长。 6、已知:如图,在△PAB中,∠APB=120O,M、N是AB上两点,且△PMN是等边三角形。 求证: BM·PA=PN·BP

7、已知:如图,D是△ABC的边AC上一点,且CD=2AD,AE⊥BC于E, 若BC=13, △BDC的面积是39, 求AE的长。 8、已知:如图,在△ABC中,AB=15,AC=12,AD是∠BAC的外角平分线且AD交BC的延长线于点D,DE∥AB交AC的延长线于点E。 9、已知: 如图,四边形ABCD中,CB⊥BA于B,DA⊥BA于A,BC=2AD,DE⊥CD交AB于E,连结 CE,求证:DE2=AE?CE 10、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F. (1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长. 11、如图:三角形ABC是一快锐角三角形余料,边BC=120mm,高AD =80mm,要把它加工成正方形零件,是正方形的一边在BC上,其余两个顶点分别在AB 、AC上,这个正方形零件的边长是多少? N P A

全等三角形几种类型

全等三角形的认识与性质 全等图形: 能够完全重合的两个图形就是全等图形. 全等多边形: 能够完全重合的多边形就是全等多边形. 相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角. 全等多边形的对应边、对应角分别相等. 如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形 ''''' A B C D E . 这里符号“≌”表示全等,读作“全等于”. A' B' C' D' E' E D C B A 全等三角形: 能够完全重合的三角形就是全等三角形. 全等三角形的对应边相等,对应角分别相等; 反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等. 全等三角形对应的中线、高线、角平分线及周长面积均相等. 全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”. 全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法: (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. 中考要求 第一讲 全等三角形与角平分线 知识点睛

(4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角. (6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角). 要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法: (1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等. (4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 判定三角形全等的基本思路: SAS HL SSS →?? →??→? 找夹角已知两边 找直角 找另一边 ASA AAS SAS AAS ?? ?? ?? ?? ?? ?? 边为角的对边→找任意一角→ 找这条边上的另一角→已知一边一角 边就是角的一条边 找这条边上的对角→ 找该角的另一边→ ASA AAS →??→? 找两角的夹边已知两角 找任意一边 全等三角形的图形归纳起来有以下几种典型形式: ⑴ 平移全等型 ⑵ 对称全等型 ⑶ 旋转全等型

全等三角形证明经典题及答案

) 含答案题(全等三角形证明经典50 ADAD是整数,求D是BC中点,1.已知:AB=4,AC=2,A CB D 使AD=DE解:延长AD到E,BC中点∵D是∴BD=DC BDE中在△ACD和△AD=DE ADC∠BDE=∠BD=DC BDE∴△ACD≌△AC=BE=2∴ ABE中∵在△AB+BEAE<AB-BE<AB=4∵<4+2即4-2<2AD<31<AD∴AD=2 1ABCD?是AB中点,∠°,求证:ACB=90D2.已知:2A D BC 中点。连接AP,BP为与CDP,使DCP延长∵DP=DC,DA=DB为平行四边形∴ACBP又∠ACB=90为矩形ACBP∴平行四边形. ∴AB=CP=1/2AB 2 ∠中点,求证:∠1=,∠DF是CD3.已知:BC=DE,∠B=∠E,∠C=A 1E B DF C EFBF和证明:连接∠EDF BC=ED,CF=DF,∵∠BCF=边角边)三角形BCF全等于三角形EDF(∴∠DEF∴ BF=EF,∠CBF=连接BE中,BF=EF在三角形BEF。EBF=∠BEF∠∴ 。ABC=∠AED∵∠。∠AEB∠∴ ABE=。∴ AB=AE中和三角形AEF在三角形ABF AB=AE,BF=EF,∠AEFAEB+∠BEF=∠∠ABF=∠ABE+∠EBF= 全等。ABF和三角形AEF ∴三角形2)∠。BAF=∠EAF (∠1= ∴∠ A21F C D E B,EFCD=DE,2∠1=∠:知已.

A A A CB1CDB AB?CD2A A 2121F E B C D E D F C B C DB、ABC、CE分别平分∠AB∥DC,BEABCD如图,四边形中,。上。求证:BC=AB+DCBCD,且点E在AD∠ ,连接EF在BC上截取BF=AB平分∠ABC∵BE FBE∴∠ABE=∠BE=BE又∵)(SAS∴⊿ABE≌⊿ FBE∠BFE∴∠A=DA ED C F C B B AAB知:AB∵ PC-PBAB,求证:14.P是∠BAC C A DP B ,E在AC上取点。使AE=ABAB ∵AE=AP = AP ∠EAP=∠BAE, ∴△EAP≌△BAP 。∴PE=PBPE +PC<ECPB )+AC-AE∴PC<(-AB。∴PC-PB<AC ,求证:AC-AB=2BE2,BE⊥AEABC=315.已知∠∠C,∠1=∠ 证明:D,使得角DBC=AC上取一点角C 在∵∠ABC=3∠C ∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C;

全等三角形证明过程步骤练习

全等三角形训练 一、知识点填空 (1)能够 的两个图形叫做全等形,能够 的两个三角形叫做全等三角形. (2)把两个全等的三角形重合到一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 . (3)全等三角形的 边相等,全等三角形的 角相等. (4) 对应相等的两个三角形全等(边边边或 ). (5)两边和它们的 对应相等的两个三角形全等(边角边或 ). (6)两角和它们的 对应相等的两个三角形全等(角边角或 ). (7)两角和其中一角的 对应相等的两个三角形全等(角角边或 ). (8) 和一条 对应相等的两个直角三角形全等(斜边、直角边 或 ). (9)角的 上的点到角的两边的距离相等. 2.如图,图中有两对三角形全等,填空: (1)△CDO ≌ ,其中,CD 的对应边是 , DO 的对应边是 ,OC 的对应边是 ; (2)△ABC ≌ ,∠A 的对应角是 , ∠B 的对应角是 ,∠ACB 的对应角是 . 3. 如图,OA ⊥AC ,OB ⊥BC ,填空: (1)利用“角的平分线上的点到角的两边 的距离相等”,已知 = , 可得 = ; (2)利用“角的内部到角两边距离相等的点在角的平分线上”, 已知 = ,可得 = ; 4.如图,AB ⊥AC ,DC ⊥DB ,填空: (1)已知AB =DC ,利用 可以判定 △ABO ≌△DCO ; (2)已知AB =DC ,∠BAD =∠CDA ,利用 可以判△ABD ≌△DCA ; (3)已知AC =DB ,利用 可以判定△ABC ≌△DCB ; (4)已知AO =DO ,利用 可以判定△ABO ≌△DCO ; (5)已知AB =DC ,BD =CA ,利用 可以判定△ABD ≌△DCA. 二、推理填空,完成下面的证明过程: 5. 如图,OA =OC ,OB =OD. 求证:AB ∥DC. 证明:在△ABO 和△CDO 中, OA OC , AOB __________,OB OD ,?=? ∠=??=? ∴△ABO ≌△CDO ( ). ∴∠A = . A B C D E O A B C D O 12O A B C

相似三角形几何题

1、如图,AD 是圆O 的直径,BC 切圆O 于点D ,AB 、AC 与圆O 相交于点E 、F 。 求证:AC AF AB AE ?=?; 2为了加强视力保护意识,小明想在长为米,宽为米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、 丙位同学设计方案新颖,构思巧妙.(10分) (1)甲生的方案:如图1,将视力表挂在墙ABEF 和墙ADGF 的夹角处,被测试人站立 在对角线AC 上,问:甲生的设计方案是否可行?请说明理由. (2)乙生的方案:如图2,将视力表挂在墙CDGH 上,在墙ABEF 上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF 米处. (3)丙生的方案:如图3,根据测试距离为5m 的大视力表制作一个测试距离为3m 的小视 力表.如果大视力表中“E ”的长是,那么小视力表中相应“E ”的长是多少cm ? 3、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E .(12分) (1)求证:AB ·AF =CB ·CD ; (2)已知AB =15 cm ,BC =9 cm ,P 是射线DE 上的动点.设DP =x cm (0x >),四边形BCDP 的面积为y cm 2 . ①求y 关于x 的函数关系式; ②当x 为何值时,△PBC 的周长最小,并求出此时y 的值. 4已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1. (1)求证:△ABD ∽△CBA ; (2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长. H H (图1) (图2) (图3) ㎝ A C F 3m B 5m D A B C D E F P ·

八年级全等三角形证明经典题

全等三角形证明经典题 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = 3. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 4. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 5. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB = A D B C C D B B A C D F 2 1 E A

6. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 7. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 8. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 一:如果abc=1,求证 11++a ab +11++b bc +11 ++c ac =1 二:已知a 1+b 1= )(29b a +,则a b +b a 等于多少? B B A C D F 2 1 E C D B A

9. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证: AE=AD+BE 13. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 14.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C 14. 已知:AB=CD ,∠A=∠D ,求证:∠B=∠C 15. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

全等三角形三种证明方法经典例题

全等三角形经典例题 典型例题: 知识点一:全等三角形判定1 例1:如图,在△AFD 和△EBC 中,点A ,E ,F ,C 在同一直线上,有下面四个论断:(1)AD =CB ;(2)AE =CF ;(3)DF =BE ;(4)AD ∥BC 。请将其中三个论断作为条件,余下的一个作为结论,编一道证明题,并写出证明过程。 思路分析: 1)题意分析:本题一方面考查证明题的条件和结论的关系,另一方面考查全等三角形判定1中的三边对应关系。 2)解题思路:根据全等三角形判定1:三边对应相等的两个三角形全等。首先确定命题的条件为三边对应相等,而四个论断中有且只有三个条件与边有关,因此应把论断中的(1)(2)(3)作为条件,来证明论断(4)。在证明全等之前,要先证明三边分别对应相等。 ; 解答过程: 已知:如图,在△AFD 和△EBC 中,点A ,E ,F ,C 在同一直线上,AD =CB ,AE =CF ,DF =BE 。求证:AD ∥BC 。 证明:∵AE =CF ∴AE +EF =CF +EF ∴AF =CE 在△AFD 和△CEB 中, ∵ & ∴△AFD ≌△EBC (SSS ) ∴∠A =∠C ∴AD ∥BC 解题后的思考:在运用全等三角形判定1判断三角形全等时,一定要找准三边的对应关系,然后给出证明。 小结:本例题一方面考查了命题的书写与证明,另一方面通过本题的严格证明锻炼学生的逻辑思维能力,进一步规范了三角形全等证明题的书写。 知识点二:全等三角形判定2 AD CB AF CE DF BE =??=? ?=?

例2:已知:如图,是和的平分线,。 * 求证:(1)△OAB ≌△OCD ;(2)。 思路分析: 1)题意分析:本题主要考查全等三角形判定2中的对应关系。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先证明两边及夹角分别对应相等。 解答过程:证明:(1)∵OP 是和的平分线, ∴∠AOP =∠COP ,∠BOP =∠DOP ∴∠AOP -∠BOP =∠COP -∠DOP < ∴∠AOB =∠COD 在△OAB 和△OCD 中, ∵ ∴△OAB ≌△OCD (SAS ) (2)由(1)知△OAB ≌△OCD ∴AB =CD 解题后的思考:在判断三角形全等时,一定要根据全等三角形判定2,找准对应边和对应角。 . 例3:已知:如图,AB ∥CD ,AB =CD ,求证:AD ∥BC ,AD =BC 思路分析: 1)题意分析:本题主要考查全等三角形判定2的应用。 2)解题思路:根据全等三角形判定2:两边和它们的夹角对应相等的两个三角形全等。在证明三角形全等之前,要先将用于证明三角形全等的条件准备好。即如何由已知条件证明出两边和一角相等,以及如何用上AB ∥CD 这个条件。 解答过程: 连接BD ∵ AB ∥CD 、 OP AOC ∠BOD ∠OA OC OB OD ==,AB CD =AOC ∠BOD ∠OA OC AOB COD OB OD =?? ∠=∠??= ?

相似三角形推理证明复习题(含答案)

相似三角形推理证明 1.(顺义18期末19)如图,E 是□ABCD 的边BC 延长线上一点,AE 交CD 于点F ,FG ∥AD 交AB 于点G . (1)填空:图中与△CEF 相似的三角形有 ; (写出图中与△CEF 相似的所有三角形) (2)从(1)中选出一个三角形,并证明它与△CEF 相似. 19. (1)△ADF ,△EBA ,△FGA ;………………………….3分(每个一分) (2)证明:△ADF ∽△ECF ∵四边形ABCD 为平行四边形 ∴BE ∥AD …………………………………………………….4分 ∴∠1=∠E ,∠2=∠D ∴△ADF ∽△ECF …………………………………………….5分 (其它证明过程酌情给分) 2.(大兴18期末19)已知:如图,在△ABC 中,D ,E 分别为AB 、 AC 边上的点, 且AE AD 53= ,连接DE . 若AC =4,AB =5. 求证:△ADE ∽△ACB. 19.证明:∵ AC =3,AB =5,35AD AE = , ∴ AC AB AD AE =.……………………………… 3分 ∵ ∠A =∠A ,……………………………… 4分 ∴ △ADE ∽△ACB .……………………… 5分

3.(丰台18期末18)如图,△ABC 中,DE ∥BC ,如果AD = 2,DB = 3,AE = 4, 求AC 的长. 18. 解:∵DE ∥BC , ∴AD AE DB EC =.……2分 即243EC =. ∴EC =6.……4分 ∴AC =AE + EC =10. ……5分 其他证法相应给分. 4.(怀柔18期末18)如图,在△ABC 中,D 为AC 边上一点,BC =4,AC =8,CD=2. 求证:△BCD ∽△ACB . 18. 证明:∵BC =4,AC =8,CD =2.…………………………1分 ∴………………………………………3分 又∵∠C =∠C …………………………………………………………………………4分 ∴ △BCD ∽△ACB ……………………………………………………………………5分

相关文档
最新文档