Warshall算法C语言实现

合集下载

C语言常用算法概述

C语言常用算法概述

C语言常用算法概述C语言作为一种通用的高级编程语言,广泛应用于计算机科学领域,特别是在算法和数据结构方面。

C语言提供了许多常用算法,这些算法能够解决各种计算问题,并提供了高效的解决方案。

本文将概述C语言中常用的算法,包括排序算法、查找算法和图算法。

一、排序算法排序算法是将一组元素按照特定的顺序排列的算法。

C语言提供多种排序算法,下面将介绍几种常用的排序算法。

1. 冒泡排序冒泡排序是一种简单的排序算法,它通过多次遍历数组,每次比较相邻的两个元素,将较大的元素向后移动。

通过多次遍历,最大的元素会逐渐“冒泡”到数组的末尾。

2. 插入排序插入排序是一种稳定的排序算法,它通过将数组分为已排序和未排序两部分,将未排序的元素逐个插入已排序的部分,使得整个数组逐渐有序。

3. 快速排序快速排序是一种高效的排序算法,它通过选择一个基准元素,将数组分成两个子数组,其中一个子数组中的元素都小于基准,另一个子数组中的元素都大于基准。

然后递归地对两个子数组进行排序。

4. 归并排序归并排序是一种稳定的排序算法,它通过将数组划分为多个子数组,然后将这些子数组逐个合并,最终得到有序的数组。

归并排序使用了分治的思想,对子数组进行递归排序。

二、查找算法查找算法用于在一个集合中寻找特定元素的算法。

C语言提供了多种查找算法,下面将介绍两种常用的查找算法。

1. 顺序查找顺序查找是一种简单的查找算法,它通过逐个比较集合中的元素,直到找到需要查找的元素或者遍历完整个集合。

2. 二分查找二分查找是一种高效的查找算法,它要求集合必须有序。

它通过将集合分成两半,然后比较需要查找的元素与中间元素的大小关系,从而确定下一步查找的范围。

三、图算法图算法用于解决图结构相关的计算问题。

C语言提供了多种图算法,下面将介绍两种常用的图算法。

1. 深度优先搜索深度优先搜索是一种用于遍历或搜索图的算法,它通过从一个顶点出发,依次访问与该顶点相邻的未访问过的顶点。

当无法再继续访问时,回退到上一个顶点继续搜索。

C语言实现的打擂台算法的示例

C语言实现的打擂台算法的示例
以下是一个使用 C 语言实现的打擂台算法的示例:
c 复制代码
#include <stdio.h>
// 定义一个函数指针类型 typedef int (*ComparisonFunc)(int, int);
// 比较函数,用于比较两个整数的大小 int compare(int a, int b) {
if (a < b) { return -1;
// 调用打擂台函数,并传入比较函数和数组 int result = champion(compare, arr, size);
printf("冠军是:%d\n", result);
return 0;
}
这个示例中,我们定义了一个比较函数 compare ,用于比较两个整数的大小。然后,我们定 义了一个打擂台函数 champion ,它接受一个比较函数和一个整数数组作为参数,通过遍历 数组找到最大的元素作为冠军。最后,在 main 函数中调用打擂台函数,并输出冠军的值。 请注意,这只是一个简单的示例,你可以根据实际需求进行修改和扩展。
} else if (a > b) { return 1;} else { 来自eturn 0;} }
// 打擂台函数,接受一个比较函数和一个整数数组作为参数 int champion(ComparisonFunc compareFunc, int arr[], int size) {
int champ = arr[0]; // 初始化冠军为数组的第一个元素
for (int i = 1; i < size; i++) { if (compareFunc(arr[i], champ) > 0) { champ = arr[i]; // 如果当前元素比冠军大,则更新冠军 }

C语言常用算法大全

C语言常用算法大全

C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。

c语言 高效算法 集锦

c语言 高效算法 集锦

c语言高效算法集锦
C语言作为一种高效的编程语言,其算法集锦涵盖了众多领域,包括但不限于搜索算法、排序算法、图算法、动态规划等。

在C语
言中,高效的算法对于提高程序的性能至关重要。

首先,让我们来谈谈搜索算法。

在C语言中,常见的搜索算法
包括线性搜索、二分搜索和哈希表等。

线性搜索逐个遍历数据,适
用于小型数据集;而二分搜索则适用于已排序的数组,能够快速定
位目标值。

哈希表则通过哈希函数将关键字映射到表中的一个位置,实现快速的检索。

其次,排序算法在C语言中也是非常重要的。

经典的排序算法
包括冒泡排序、快速排序、归并排序等。

这些算法各有优劣,选择
合适的排序算法可以大大提高程序的效率。

此外,图算法在C语言中也有广泛的应用,比如最短路径算法(Dijkstra算法、Floyd-Warshall算法)、最小生成树算法(Prim
算法、Kruskal算法)等。

这些算法对于解决网络最优路径、资源
分配等问题非常重要。

最后,动态规划作为一种重要的算法思想,在C语言中也有着丰富的应用场景。

例如,背包问题、最长公共子序列等都是经典的动态规划问题,通过合理的状态转移方程和递推关系,可以高效地解决这些问题。

总的来说,C语言高效算法集锦涵盖了搜索算法、排序算法、图算法、动态规划等多个领域,对于理解和掌握这些算法,可以帮助我们编写高效、稳定的程序,提高算法的执行效率和性能。

希望这些信息能对你有所帮助。

Floyd—Warshall算法的C语言实现

Floyd—Warshall算法的C语言实现

0 引 言
最 短 路 是 图 论 研 究 中 的 一 个 经 典 算 法 问题 。 最 短 路 问 题 , 般 来 说 就 是 从 给 定 的 网 络 中 找 出 任 意 一 两 点 之 间 距 离 最 短 的 一 条 路 径 。 这 里 说 的 距 离 是 权 数 的 代 称 , 实 际 的 网 络 中 , 数 可 以是 时 间 、 用 在 权 费
为 与 ,的 距 离 。
Fly o d~ W a s al 法 可 求 每 对 顶 点 之 间 最 短 距 离 ,g中 的 权 可 为 负 值 , 不 可 以 有 带 负 权 的 圈 。 rh l算 ; I 但
Fly o d~ W a s al 法 的 描 述 如 下 : rh l算
20 0 8年 l 月 1
安庆 师 范学 院学报 ( 自然科 学版)
Jun l f n i e cesC l g ( aua S i c d in o ra o qn T a h r ol e N trl c neE io ) A g e e t
NO 2 0 V. 0 8
E , 应 一 个 实 数 叫 称 为 弧 上 的 “ ” 通 常 把 这 种 赋 权 的 图 称 为 赋 权 图 或 网 络 。 对 权 。 定 义 3 对 于 赋 权 有 向 图 D 一 (/ E) 其 中 边 有 权 一¨ 构 造 矩 阵 U 一 ( d , 中 : 、, , r ) 其
定 义 2 在实 际应 用 中 , 定 一个 图 G一 ( , 给 E)或 有 向 图 D 一 ( , , V 中 指 定 两 个 点 , 个 称 V E) 在 一 为 始 点 ( 发 点 ) 记 作 , 一 个 称 为 终 点 ( 收 点 ), 作 , 余 的 点 称 为 中 间 点 。 每 一 条 弧 ( , ) ∈ 或 , , 或 记 其 对

c语言数据结构及算法

c语言数据结构及算法

C语言是一种广泛应用于编程和软件开发的编程语言,它提供了一系列的数据结构和算法库,使得开发者能够在C语言中使用这些数据结构和算法来解决各种问题。

以下是C语言中常用的数据结构和算法:数据结构:1. 数组(Array):一组相同类型的元素按顺序排列而成的数据结构。

2. 链表(Linked List):元素通过指针连接而成的数据结构,可分为单向链表、双向链表和循环链表等。

3. 栈(Stack):具有后进先出(LIFO)特性的数据结构,可用于实现函数调用、表达式求值等。

4. 队列(Queue):具有先进先出(FIFO)特性的数据结构,可用于实现任务调度、缓冲区管理等。

5. 树(Tree):一种非线性的数据结构,包括二叉树、二叉搜索树、堆、A VL树等。

6. 图(Graph):由节点和边组成的数据结构,可用于表示网络、关系图等。

7. 哈希表(Hash Table):基于哈希函数实现的数据结构,可用于高效地查找、插入和删除元素。

算法:1. 排序算法:如冒泡排序、插入排序、选择排序、快速排序、归并排序等。

2. 查找算法:如线性查找、二分查找、哈希查找等。

3. 图算法:如深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra、Floyd-Warshall)、最小生成树算法(Prim、Kruskal)等。

4. 字符串匹配算法:如暴力匹配、KMP算法、Boyer-Moore 算法等。

5. 动态规划算法:如背包问题、最长公共子序列、最短编辑距离等。

6. 贪心算法:如最小生成树问题、背包问题等。

7. 回溯算法:如八皇后问题、0-1背包问题等。

这只是C语言中常用的一部分数据结构和算法,实际上还有更多的数据结构和算法可以在C语言中实现。

开发者可以根据具体需求选择适合的数据结构和算法来解决问题。

同时,C语言也支持自定义数据结构和算法的实现,开发者可以根据需要进行扩展和优化。

C语言中的模式匹配算法

C语言中的模式匹配算法

C语言中的模式匹配算法在计算机科学中,模式匹配是一种非常重要的算法,它可以用于文本匹配、字符串匹配、图形识别等领域。

在C语言中,有多种模式匹配算法可以用于实现字符串匹配操作。

本文将介绍C语言中的一些常用模式匹配算法,包括Brute-Force算法、Knuth-Morris-Pratt(KMP)算法和Boyer-Moore算法。

一、Brute-Force算法Brute-Force算法,也称为朴素模式匹配算法,是最简单直接的一种算法。

它的思想是从目标字符串的第一个字符开始,依次和模式字符串对应位置的字符比较,如果出现不匹配的字符,则将目标字符串的指针向后移动一位,再次进行比较,直到找到匹配的子串或遍历完整个目标字符串。

Brute-Force算法的时间复杂度为O(m*n),其中m为目标字符串的长度,n为模式字符串的长度。

该算法简单易懂,但对于较长的字符串匹配操作效率较低。

二、Knuth-Morris-Pratt(KMP)算法KMP算法是一种优化的字符串模式匹配算法,它利用了模式字符串中的信息来避免不必要的比较。

该算法的核心思想是,当模式字符串中的某一部分与目标字符串不匹配时,不需要将目标字符串的指针回溯到上一次比较的位置,而是利用已有的信息直接跳过一部分字符,从而提高了匹配的效率。

KMP算法的时间复杂度为O(m+n),其中m为目标字符串的长度,n为模式字符串的长度。

相较于Brute-Force算法,KMP算法在处理较长字符串时能够明显提高匹配速度。

三、Boyer-Moore算法Boyer-Moore算法是一种更加高效的字符串模式匹配算法,它充分利用了模式字符串中的信息进行跳跃式匹配。

该算法的核心思想包括两个关键步骤:坏字符规则和好后缀规则。

坏字符规则是通过将模式串与目标串在不匹配的位置对齐,找出目标串中不匹配的字符在模式串中最后一次出现的位置,从而跳过一部分字符的比较。

好后缀规则则是利用模式串与目标串中已匹配的部分,找出能够与好后缀匹配的最长子串,直接将模式串向后滑动到该子串的位置,从而跳过一部分字符的比较。

C语言常用的入门算法

C语言常用的入门算法

C语言常用的入门算法C语言是一门广泛应用于计算机科学和软件开发领域的编程语言。

作为一门通用的编程语言,C语言提供了丰富的算法和数据结构库,使得开发人员能够解决各种不同类型的问题。

下面是C语言入门算法的一些常见示例:1.排序算法:-冒泡排序:通过不断比较相邻的元素,并交换它们的位置来排序。

-插入排序:将未排序的元素逐一插入已排序的列表中。

-选择排序:通过重复找到最小的元素并将其放置在已排序序列的末尾来排序。

-快速排序:通过选择一个基准元素,将列表划分成较小和较大的两部分,然后对其进行递归排序。

-归并排序:将列表分成较小的子列表,然后逐个合并这些子列表。

2.查找算法:-顺序查找:逐个比较列表中的元素,直到找到匹配的元素为止。

-二分查找:在已排序的列表中通过递归或循环的方式,将待查找的元素与中间元素进行比较,以确定它可能在哪一半中。

-哈希表:通过散列函数将元素映射到一个较小的固定大小的数组(哈希表)中,并通过索引快速查找。

3.字符串算法:-字符串长度:使用循环逐个字符遍历,直到遇到字符串结束符'\0'为止,统计字符个数。

-字符串比较:逐个字符比较两个字符串的对应位置,直到遇到不相等的字符或字符串结束符。

-字符串拼接:将一个字符串的字符逐个复制到另一个字符串的末尾,直到遇到字符串结束符'\0'。

-子字符串匹配:在一个较长的字符串中查找一个较短的子字符串,常用的算法有朴素算法和KMP算法。

4.数值算法和运算:-求和、平均值、最大/最小值:循环遍历列表,累加求和,计算平均值,找出最大/最小值。

-阶乘和斐波那契数列:使用循环或递归计算给定数字的阶乘和斐波那契数列。

-幂运算和开方:通过循环或递归计算给定数字的幂和开方。

- 线性方程求解:求解形如ax + b = 0的一元线性方程。

5.图算法:-广度优先(BFS):通过遍历图的邻居节点来逐层扩展区域,通常用于查找最短路径。

-深度优先(DFS):通过遍历图的邻居节点来递归到达所有可能的节点,通常用于查找所有路径、拓扑排序等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档