(完整)小学六年级数学组合图形周长面积计算

合集下载

小学六年级【小升初】数学《平面图形的测量专题课程》含答案

小学六年级【小升初】数学《平面图形的测量专题课程》含答案

23.平面图形的测量知识要点梳理一、基本图形周长面积计算公式二、组合图形求周长、面积 1.阴影面积=整体-空白 2.代换法梯形中的蝴蝶定理: ①S 1=S 4 ②S 1×S 3=S 2×S 4 3.分割法 4.等高三角形(1)等高三角形面积的比等于底之比。

(2)等高三角形的常用判定方法:有一个公用的顶点,其余顶点均在同一直线上,所有顶点均在同一对平行线上。

(3)等底三角形的面积之比等于高之比。

5.交叉定理 bc ad =扇形r 表示半径α表示圆心角︒⨯=3602απr S ︒⨯=3602απr C圆环 r 表示小圆半径R 表示大圆半径圆环面积=大圆面积-小圆面积)(22r R S -=π环a bcd考点精讲分析典例精讲考点1组合图形的周长和面积【例1】 求下面图形的周长和面积。

(单位:米) 【精析】 要求它的周长,可用长方形的2个长+1个宽+圆的周长的一半;要求它的面积,可用图中长方形的面积加上半圆的面积即可。

【答案】 周长:2.5×2+2+3.14×2÷2 =5+2+3.14 =10.14(米)面积:2.5×2+3.14×2)22(÷2 =5+3.14×1÷2 =5+1.57 =6.57(平方米)答:这个图形的周长是10.14米,面积是6.57平方米【归纳总结】 组合图形的计算,一般都要把它分割成规则图形再进行计算。

考点2 等积变换法求面积【例2】 如图,ABCD 是直角梯形,AB =3厘米,AD =4厘米,BC =6厘米,求阴影部分的面积。

【精析】 阴影部分的面积为三角形ABE 和三角形DEC 的面积之和,利用△ABE 和△DEC 是等高三角形则阴影部分的面积可以变换为BC 边的长乘以高,再除以2。

【答案】 6×3÷2=9(平方厘米)【归纳总结】 高一定,阴影部分面积=底之和×高÷2。

六年级数学上册组合图形的周长和面积讲解

六年级数学上册组合图形的周长和面积讲解

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

六年级组合图形面积的计算

六年级组合图形面积的计算

六年级组合图形面积的计算(一) 说明:1题中A组的题,中等以上学生能全部写出,注意公式的正确运用。

B组的题,三个图形有联系。

C组的题,有一定难度,可以指导后完成。

4、5、6题较难,注意思考。

1. 求阴影部分的面积(单位:厘米)。

ABC2. 求周长和面积.(单位:米)3. 已知A是正方形的边上的中点,求阴影部分的面积。

4. 下图正方形的面积是8平方厘米,求阴影部分的面积。

5. 在正方形ABCD中,AC=6厘米。

求阴影部分的面积。

6. 两圆的半径都是1厘米,且图中两个阴影部分的面积相等。

求长方形ABO1O的面积。

六年级组合图形面积的计算(二)1.根据左下图中条件,求阴影部分的面积。

(单位:厘米)2.右上图中阴影部分的面积是40厘米,那么环形的面积是多少平方厘米?3.已知O是圆心,求图中阴影部分的面积。

(单位:厘米)4.求下左图阴影部分的面积。

(单位:厘米)5.求右上图阴影部分的面积。

(单位:厘米)6.如下左图(单位:米),三个圆的周长都是25.12厘米,求阴影部分的面积。

7.如上右图,有一个平行四边形,它的一个角是60°,两条边分别是4厘米和6厘米,高3.4厘米,求图中阴影部分的面积。

(得数保留两位小数)8.右图中△①比△②的面积小6平方厘米,求a边的长。

(单位:厘米)9.平行四边形ABCD的面积是24平方厘米。

以平行四边形底边AB为直径,AB的中点O 为圆心,画一个周长为25.12厘米的圆,恰好过点D,连接OD,量得∠DOB为45°,求图中阴影部分的面积。

(完整版)小学数学所有图形周长,面积,体积,表面积公式大全,推荐文档

(完整版)小学数学所有图形周长,面积,体积,表面积公式大全,推荐文档

图形名称正方形(4 条对称轴)长方形(2 条对称轴)三角形(等边△ 有3条对称轴;等腰△有 1 条对称轴)平行四边形(没有对称轴)梯形(等腰梯形有 1 条对称轴)圆形图形abac bhah baad h ebrd.小学数学图形计算公式平面图形周长( C)公式周长=边长× 4C=4a公式变换: a = C÷ 4=1C4周长=长 +长 +宽 +宽 =2 长 +2 宽=(长+宽)× 2C= (a+b )× 2公式变换:a = C ÷ 2-b b = C ÷ 2- a周长=边长 a+边长 b+ 边长 cC =a+ b+ c注:等边△周长C=3a公式变换: a = C ÷3周长=边长a+边长 a+边长 b+ 边长 b=边长 a× 2+边长 b× 2C= 2a+2b=2 ( a+ b)周长=边长 a+边长 b +边长 d + 边长 eC= a+b+ d+e周长 =直径×π =2×π×半径C=π d=2 πr公式变换:d=2r r = d ÷2d = C÷πr = C÷ 2π※半圆周长 =π r + d面积( S)公式面积 =边长×边长2面积 =长×宽S=a× b= ab公式变换:a= S ÷ b b= S ÷ a面积 =底×高÷ 2s=ah÷2=1ah2公式变换:三角形高 =面积× 2÷底h=2 s ÷a三角形底 =面积× 2÷高a =2 s÷ h面积 =底×高s=ah公式变换:a=s ÷h h =s÷a面积 =(上底 +下底 )×高÷ 2s=(a+b) ×h ÷2公式变换:a = 2s÷h -bb = 2s÷h -a面积 =半径×半径×πS = π r 2.1 / 6. 周长 =C 大圆 +C小圆圆环=π D+π d=2π R+2π r=2π( R+r)立体图形图形名总棱长( L)公式图形称正方体总棱长 =棱长× 12L=12aa总棱长 =长× 4+宽长方体×4+高× 4=4(长 +宽+高)ha bL=4( a+b+h)面积 = S 大圆- S 小圆=π R2-π r 2=π( R2- r 2)体(容)积( V)表面积( S)公式公式S=一个面的面积× 6体积 = 棱长×棱长×棱长S= a×a×6 =6a 23V= a ×a×a=a表面积 =( 长×宽 + 长×体积 = 长×宽×高 +宽×高 ) × 2 高S=2(ab+ah+bh) V=abh圆柱体圆筒侧面积 =底面周长×高S 侧 =ch=dπh=2π rh表面积 =底面积× 2+侧面积S 表= S 底×2+ S 侧圆柱的表面积公式:(1)有两个底面的圆柱的表面积公式:S表 = S 底× 2+ S 侧=πr 2×2+πdh=π r 2×2+2π rh=2π r (r+h )(2)只有 1 个底面的圆柱的表面积公式:S表 = S 底 + S 侧 =πr 2+π dh=π r 2+2π rh= π r (r+2h )(3)两个底面都没有的圆柱的表面积公式: S 表 =S 侧 =ch = πdh =2 π rh大圆柱直径为 D,半径为 R,周长为 C;小圆柱直径为 d ,半径为 r ,周长为 c;高都为hS表 = S 大圆柱侧 + S 小圆柱侧 +(S 大圆柱底-S 小圆柱底)× 2= C 大圆柱 h+c 小圆柱 h+(π R2-π r 2)× 22 2=Dπh+dπ h+(π R-π r )× 22 2=2π h( R+r)+2π( R - r )V圆锥 =1V圆柱 =1S 底×h=1πr 2 h体积 = 底面积×高=侧面积÷ 2×半径V= S 底× h2= π r hV= V 大圆柱- V 小圆柱=S大圆柱底×h- S小圆柱底×h=π R2 h -π r 2×h=π h( R2- r 2)33 3圆锥体V圆柱=3 V圆锥等底等体积的圆柱与圆锥,圆锥的高=圆柱高的 3 倍.2 / 6.做人最好状态是懂得尊敬,不论他人闲事,不晒自己优胜,也不秀恩爱。

(完整版)六年级数学上册组合图形的周长和面积

(完整版)六年级数学上册组合图形的周长和面积

六年级数学上册组合图形的周长和面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形)例8.求阴影部分的面积。

(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。

数学(小升初) 组合图形周长、面积的计算

数学(小升初) 组合图形周长、面积的计算

第2讲组合图形面积的计算一、计算公式例1、如图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.例2、下图,求阴影部分的面积。

其他常用的基本方法有:一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积。

例如:求下图整个图形的面积二、相减法这方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。

例如:下图,求阴影部分的面积。

一句话:正方形面积减去圆的面积即可。

三、直接求法这种方法是根据已知条件,从整体出发直接求出不规则图形面积。

例如:下图,求阴影部分的面积。

一句话:通过分析发现阴影部分就是一个底是2、高是4的三角形。

四、重新组合法这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可。

例如:下图,求阴影部分的面积。

一句话:拆开图形,使阴影部分分布在正方形的4个角处,如下图。

五、辅助线法这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可例如:下图,若求阴影部分的面积。

六、割补法法这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决。

例如:求阴影部分的面积.七、平移法这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积。

例如:下图,求阴影部分的面积。

一句话:可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积。

例如图(1),求阴影部分的面积。

一句话:左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半。

六年级奥数举一反三-组合图形面积计算小学

六年级奥数举一反三-组合图形面积计算小学

六年级奥数举⼀反三-组合图形⾯积计算⼩学组合图形⾯积计算(⼀)⼀、知识要点在进⾏组合图形的⾯积计算时,要仔细观察,认真思考,看清组合图形是由⼏个基本单位组成的,还要找出图中的隐蔽条件与已知条件和要求的问题间的关系。

⼆、精讲精练【例题1】求图中阴影部分的⾯积(单位:厘⽶)。

圆的⾯积。

【思路导航】如图所⽰的特点,阴影部分的⾯积可以拼成14=28.26(平⽅厘⽶)62×3.14×14答:阴影部分的⾯积是28.26平⽅厘⽶。

练习1:1.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。

2.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。

3.求下⾯各个图形中阴影部分的⾯积(单位:厘⽶)。

【例题2】求图中阴影部分的⾯积(单位:厘⽶)。

【思路导航】阴影部分通过翻折移动位置后,构成了⼀个新的图形(如图所⽰)。

从图中可以看出阴影部分的⾯积等于⼤扇形的⾯积减去⼤三⾓形⾯积的⼀半。

3.14×2144-4×4÷2÷2=8.56(平⽅厘⽶)答:阴影部分的⾯积是8.56平⽅厘⽶。

练习2:1.计算下⾯图形中阴影部分的⾯积(单位:厘⽶)。

2.计算下⾯图形中阴影部分的⾯积(单位:厘⽶,正⽅形边长4)。

3.计算下⾯图形中阴影部分的⾯积(单位:厘⽶,正⽅形边长4)。

【例题3】如图19-10所⽰,两圆半径都是1厘⽶,且图中两个阴影部分的⾯积相等。

求长⽅形ABO1O的⾯积。

【思路导航】因为两圆的半径相等,所以两个扇形中的空⽩部分相等。

⼜因为图中两个阴影部分的⾯积相等,所以扇形的⾯积等于长⽅形⾯积的⼀半(如图19-10右图所⽰)。

所以3.14×12×1/4×2=1.57(平⽅厘⽶)答:长⽅形长⽅形ABO1O的⾯积是1.57平⽅厘⽶。

练习3:1.如图所⽰,圆的周长为12.56厘⽶,AC两点把圆分成相等的两段弧,阴影部分(1)的⾯积与阴影部分(2)的⾯积相等,求平⾏四边形ABCD的⾯积。

六年级数学思维:组合图形的面积计算,例题解析!

六年级数学思维:组合图形的面积计算,例题解析!

六年级数学思维:组合图形的面积计算,例题解析!主要题型:一、求不规则图形面积(阴影部分面积);二、求不能直接利用公式计算的图形面积;三、求规则图形的面积,但条件比较隐蔽,用常规思路无法解答。

基本解题思路:解题的基本思路是,先通过分割、切拼、旋转、平移、翻折、缩放、等积替换等方法,把不规则图形转化为规则图形(或规则图形面积的和差),让隐蔽条件明朗化,再合理运用面积公式,巧求不规则图形面积。

解题技巧:这一块分六讲,以后会陆续更新,每一块各有侧重地介绍了六种求面积的计算方法,但每一种解题方法并不是孤立存在的,在实际解题时一道题常常需要综合运用多种方法,才能巧妙解题。

例如加减法求面积常需要对图形进行割补,而用割补法求面积常需要添加辅助线、平移、旋转、进行加减运算等。

在解答图形面积问题时,关键就是要注意寻找不同图形或同一个图形的各个部分之间的内在联系,可以变换角度或适当添加辅助线帮助观察,特别要注意观察图形边角的形状、长度和角度,及是否隐藏有等底等高之类的条件。

从而根据图形的形状特征,合理地进行分割重组,化不规则为规则,巧妙地运用题目给出的各种条件。

小学阶段常见的面积公式:长方形的面积=长×宽S=ab正方形的面积=边长×边长S=a.a=a2三角形的面积=底×高÷2S=ah÷2平行四边形的面积=底×高S=ah梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2圆的面积=圆周率×半径×半径S=πr2今天我们讲第一块内容:加减法求面积方法介绍:根据组合图形的形状特征,从整体上观察,将不规则图形分解转化成几个基本规则图形,分别计算它们的面积。

再变化角度思考,通过相加或相减求出所求图形的面积。

例题1:求下图中阴影部分的面积(最后结果保留一位小数)。

(单位:厘米)【解析】:上图阴影部分可以分割成3个完全相同的弓形,先求出其中一个弓形的面积,再求出3个弓形的总面积就是所求阴影部分的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档