【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题二第2讲函数的应用(含答案解析)
高考数学二轮增分策略(江苏理):2.2函数的应用

第2讲 函数的应用1.(2014·北京改编)已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是________.①(0,1);②(1,2);③(2,4);④(4,+∞).2.(2014·江苏)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.3.(2015·四川)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.4.(2014·湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76 000v v 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时.1.函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.2.函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题.热点一 函数的零点1.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根. 2.函数的零点与方程根的关系函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.例1 (1)(2015·黄冈中学期中)函数f (x )=lg x -1x 的零点所在区间为________.①(0,1);②(1,2);③(2,3);④(3,10).(2)已知函数f (x )=e x +x ,g (x )=ln x +x ,h (x )=ln x -1的零点依次为a ,b ,c ,则a ,b ,c 的大小关系为________________________________________________________.思维升华 函数零点(即方程的根)的确定问题,常见的有(1)函数零点值大致存在区间的确定;(2)零点个数的确定;(3)两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合求解. 跟踪演练1 (1)函数f (x )=x 2-2x 在x ∈R 上的零点的个数是________.(2)已知定义在R 上的函数f (x )满足:f (x )=错误!且f (x +2)=f (x ),g (x )=错误!,则方程f (x )=g (x )在区间[-5,1]上的所有实根之和为________.热点二 函数的零点与参数的范围解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.例2 (1)对任意实数a ,b 定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧b ,a -b ≥1,a ,a -b <1.设f (x )=(x 2-1)⊗(4+x ),若函数y =f (x )+k 的图象与x 轴恰有三个不同交点,则k 的取值范围是________.(2)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是______________________.思维升华 (1)f (x )=g (x )根的个数即为函数y =f (x )和y =g (x )图象交点的个数;(2)关于x 的方程f (x )-m =0有解,m 的范围就是函数y =f (x )的值域.跟踪演练2 (1)(2015·连云港模拟)若函数f (x )=m +log 2x (x ≥1)存在零点,则实数m 的取值范围是________. (2)(2015·湖南)若函数f (x )=|2x -2|-b 有两个零点,则实数b 的取值范围是________.热点三 函数的实际应用问题解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.例3 已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2 (0<x ≤10),108x -1 0003x 2(x >10).(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大?(注:年利润=年销售收入-年总成本)思维升华 (1)关于解决函数的实际应用问题,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去.(2)对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.跟踪演练3 (1)国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是________万元.(2)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.1.f (x )=2sin πx -x +1的零点个数为________.2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.3.已知函数f (x )=5x +x -2,g (x )=log 5x +x -2的零点分别为x 1,x 2,则x 1+x 2的值为________. 4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.提醒:完成作业 专题二 第2讲二轮专题强化练 第2讲 函数的应用A 组 专题通关1.已知函数f (x )=(14)x -cos x ,则f (x )在[0,2π]上的零点个数是________.2.函数f (x )=⎩⎪⎨⎪⎧(12)x -2,x <0,x -1,x ≥0的所有零点的和等于________.3.若函数f (x )=x 2+2a |x |+4a 2-3的零点有且只有一个,则实数a 等于________.4.直线y =x 与函数f (x )=⎩⎪⎨⎪⎧2, x >m ,x 2+4x +2, x ≤m 的图象恰有三个公共点,则实数m 的取值范围是________.5.定义在R 上的函数f (x )满足f (x +4)=f (x ),f (x )=⎩⎪⎨⎪⎧-x 2+1,-1≤x ≤1,log 2(-|x -2|+2),1<x ≤3.若关于x 的方程f (x )-ax=0有5个不同实根,则正实数a 的取值范围是__________________.6.若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.7.某企业投入100万元购入一套设备,该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.为使该设备年平均费用最低,该企业________年后需要更新设备.8.我们把形如y =b|x |-a (a >0,b >0)的函数因其图象类似于汉字中的“囧”字,故生动地称为“囧函数”,若当a =1,b =1时的“囧函数”与函数y =lg|x |的交点个数为n ,则n =________. 9.已知函数f (x )=mx 2-2x +1有且仅有一个正实数的零点,求实数m 的取值范围.10.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利b 万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?B 组 能力提高11.已知f (x )是定义在R 上且以2为周期的偶函数,当0≤x ≤1时,f (x )=x 2.如果函数g (x )=f (x )-(x +m )有两个零点,则实数m 的值为________________________________.12.已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.13.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )+1]的零点有________个.14.(2015·江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.学生用书答案精析第2讲 函数的应用高考真题体验 1.③解析 由题意知,函数f (x )在(0,+∞)上为减函数,又f (1)=6-0=6>0,f (2)=3-1=2>0,f (4)=64-log 24=32-2=-12<0,由零点存在性定理,可知函数f (x )在区间(2,4)上必存在零点. 2.(0,12)解析 作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.3.24解析 由题意得⎩⎪⎨⎪⎧e b =192,e22k +b=48,∴e 22k =48192=14,∴e 11k =12,∴x =33时,y =e 33k +b =(e 11k )3×e b =⎝⎛⎭⎫123×192=18×192=24. 4.(1)1 900 (2)100 解析 (1)当l =6.05时,F =76 000vv 2+18v +121=76 000v +121v +18≤76 0002v ·121v +18=76 00022+18=1 900.当且仅当v =11 米/秒时等号成立,此时车流量最大为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v+18≤76 0002v ·100v +18=76 00020+18=2 000.当且仅当v =10 米/秒时等号成立,此时车流量最大为2 000 辆/时. 比(1)中的最大车流量增加100 辆/时. 热点分类突破 例1 (1)③ (2)a <b <c 解析 (1)∵f (2)=lg 2-12<0,f (3)=lg 3-13>0,∴f (2)f (3)<0,f (x )的零点在区间(2,3)内.(2)由f (a )=e a +a =0,得a =-e a <0;b 是函数y =ln x 和y =-x 图象交点的横坐标,画图可知0<b <1; 由h (x )=ln c -1=0知c =e , 所以a <b <c .跟踪演练1 (1)3 (2)-7解析 (1)注意到f (-1)×f (0)=12×(-1)<0,因此函数f (x )在(-1,0)上必有零点,又f (2)=f (4)=0,因此函数f (x )的零点个数是3.(2)由题意知g (x )=2x +5x +2=2(x +2)+1x +2=2+1x +2,函数f (x )的周期为2,则函数f (x ),g (x )在区间[-5,1]上的图象如图所示:由图形可知函数f (x ),g (x )在区间[-5,1]上的交点为A ,B ,C ,易知点B 的横坐标为-3,若设C 的横坐标为t (0<t <1),则点A 的横坐标为-4-t ,所以方程f (x )=g (x )在区间[-5,1]上的所有实根之和为-3+(-4-t )+t =-7. 例2 (1)[-2,1) (2)(-∞,2ln 2-2]解析 (1)解不等式x 2-1-(4+x )≥1,得x ≤-2或x ≥3,所以,f (x )=⎩⎪⎨⎪⎧x +4,x ∈(-∞,-2]∪[3,+∞),x 2-1,x ∈(-2,3).函数y =f (x )+k 的图象与x 轴恰有三个不同交点转化为函数y =f (x )的图象和直线y =-k 恰有三个不同交点. 如图,所以-1<-k ≤2,故-2≤k <1.(2)f ′(x )=e x -2,当x ∈(-∞,ln 2)时,f ′(x )<0;当x ∈(ln 2,+∞)时,f ′(x )>0,所以f (x )min =f (ln 2)=2-2ln 2+a . 由于f (a 2)=e a2>0,所以f (x )有零点当且仅当2-2ln 2+a ≤0,所以a ≤2ln 2-2.跟踪演练2 (1)(-∞,0] (2)(0,2) 解析 (1)m =-log 2x (x ≥1)存在零点,则m 的范围即为函数y =-log 2x (x ≥1)的值域,∴m ≤0.(2)将函数f (x )=|2x -2|-b 的零点个数问题转化为函数y =|2x -2|的图象与直线y =b 的交点个数问题,数形结合求解. 由f (x )=|2x -2|-b =0, 得|2x -2|=b .在同一平面直角坐标系中画出y =|2x -2|与y =b 的图象,如图所示.则当0<b <2时,两函数图象有两个交点,从而函数f (x )=|2x -2|-b 有两个零点. 例3 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x )=98-1 0003x-2.7x . ∴W =⎩⎨⎧8.1x -x 330-10 (0<x ≤10),98-1 0003x-2.7x (x >10).(2)①当0<x ≤10时, 由W ′=8.1-x 210=0,得x =9,且当x ∈(0,9)时,W ′>0; 当x ∈(9,10)时,W ′<0, ∴当x =9时,W 取得最大值, 且W max =8.1×9-130×93-10=38.6.②当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-2 1 0003x×2.7x =38, 当且仅当1 0003x =2.7x ,即x =1009时,W =38,故当x =1009时,W 取最大值38.综合①②知:当x =9时,W 取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获得的年利润最大. 跟踪演练3 (1)320 (2)4 050解析 (1)设该公司的年收入为x 万元(x >280),则有280×p %+(x -280)(p +2)%x =(p +0.25)%,解得x =320.故该公司的年收入为320万元.(2)设每辆车的月租金为x (x >3 000)元,则租赁公司月收益为y =(100-x -3 00050)(x -150)-x -3 00050×50,整理得y =-x 250+162x -21 000=-150(x -4 050)2+307 050. ∴当x =4 050时,y 取最大值为307 050,即当每辆车的月租金定为4 050元时,租赁公司的月收益最大为307 050元. 高考押题精练 1.5解析 令2sin πx -x +1=0,则2sin πx =x -1,令h (x )=2sin πx ,g (x )=x -1,则f (x )=2sin πx -x +1的零点个数问题就转化为两个函数h (x )与g (x )图象的交点个数问题.h (x )=2sin πx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h (52)>g (52),g (4)=3>2,g (-1)=-2,所以两个函数图象的交点一共有5个,所以f (x )=2sin πx -x +1的零点个数为5.2.(0,1)解析 画出f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1, 即m ∈(0,1). 3.2解析 令f (x )=0,g (x )=0,得5x =-x +2,log 5x =-x +2.作出函数y =5x ,y =log 5x ,y =-x +2的图象,如图所示,因为函数f (x )=5x +x -2,g (x )=log 5x +x -2的零点分别为x 1,x 2,所以x 1是函数y =5x 的图象与直线y =-x +2交点A 的横坐标,x 2是函数y =log 5x 的图象与直线y =-x +2交点B 的横坐标.因为y =5x 与y =log 5x 的图象关于y =x 对称,直线y =-x +2也关于y =x 对称,且直线y =-x +2与它们都只有一个交点,故这两个交点关于y =x 对称.又线段AB 的中点是y =x 与y =-x +2的交点,即(1,1),所以x 1+x 2=2. 4.20解析 如图,过A 作AH ⊥BC 交于点H ,交DE 于点F ,易知DE BC =x 40=AD AB =AFAH ⇒AF =x ⇒FH =40-x ,则S =x (40-x )≤(402)2,当且仅当40-x =x ,即x =20时取等号,所以满足题意的边长x 为20 m.二轮专题强化练答案精析第2讲 函数的应用1.3解析 f (x )在[0,2π]上的零点个数就是函数y =(14)x 和y =cos x 的图象在[0,2π]上的交点个数,而函数y =(14)x和y =cos x 的图象在[0,2π]上的交点有3个. 2.0解析 令(12)x -2=0,解得x =-1,令x -1=0,解得x =1,所以函数f (x )存在两个零点1和-1,其和为0. 3.32解析 令|x |=t ,原函数的零点有且只有一个,即方程t 2+2at +4a 2-3=0只有一个0根或一个0根、一个负根,∴4a 2-3=0,解得a =32或-32,经检验,a =32满足题意. 4.[-1,2)解析 直线y =x 与函数f (x )=⎩⎪⎨⎪⎧2, x >m ,x 2+4x +2, x ≤m 的图象恰有三个公共点,即方程x 2+4x +2=x (x ≤m )与x =2(x >m )共有三个根.∵x 2+4x +2=x 的解为x 1=-2,x 2=-1, ∴-1≤m <2时满足条件. 5.(16,8-215)解析 f (x )是周期为4的周期函数.做出y =f (x )和y =ax 的图象,由图可知,要使方程f (x )-ax =0有5个不同实根,即y =f (x )和y =ax 的图象有5个交点.由图可知,当x ∈(3,5)时,f (x )=-(x -4)2+1,此时若y =ax 与其相切,则a =8-215;又方程 f (x )=ax 在(5,6)无解,得a >16,故正实数a 的取值范围是(16,8-215).6.(0,1]解析 当x >0时,由f (x )=ln x =0, 得x =1.因为函数f (x )有两个不同的零点, 则当x ≤0时,函数f (x )=2x -a 有一个零点, 令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1, 所以实数a 的取值范围是0<a ≤1. 7.10解析 由题意可知x 年的维护费用为2+4+…+2x =x (x +1),所以x 年的平均费用y =100+0.5x +x (x +1)x =x +100x +1.5,由基本不等式得y =x +100x +1.5≥2x ·100x +1.5=21.5,当且仅当x =100x,即x =10时取等号,所以该企业10年后需要更新设备. 8.4解析 由题意知,当a =1,b =1时,y =1|x |-1=⎩⎪⎨⎪⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1).在同一坐标系中画出“囧函数”与函数y =lg|x|的图象如图所示,易知它们有4个交点.9.解 依题意,得①⎩⎨⎧m >0,Δ=(-2)2-4m >0,f (0)<0或②⎩⎨⎧m <0,Δ=(-2)2-4m >0,f (0)>0或③⎩⎪⎨⎪⎧m ≠0,Δ=(-2)2-4m =0.显然①无解;解②,得m <0;解③,得m =1,经验证,满足题意.又当m =0时,f (x )=-2x +1,它显然有一个为正实数的零点.综上所述,m 的取值范围是(-∞,0]∪{1}.10.解 设裁员x 人,可获得的经济效益为y 万元,则 y =(2a -x )(b +0.01bx )-0.4bx =-b100[x 2-2(a -70)x ]+2ab .依题意得2a -x ≥34·2a ,所以0<x ≤a2.又140<2a <420,即70<a <210.①当0<a -70≤a2,即70<a ≤140时,x =a -70,y 取到最大值;②当a -70>a 2,即140<a <210时,x =a2,y 取到最大值.故当70<a <140时,公司应裁员(a -70)人,经济效益取到最大; 当140<a <210时,公司应裁员a2人,经济效益取到最大.11.2k 或2k -14(k ∈Z )解析 令g (x )=0,得f (x )=x +m .因为函数f (x )=x 2在[0,1]上的两个端点分别为(0,0),(1,1),所以过这两点的直线为y =x .当直线y =x +m 与f (x )=x 2(x ∈[0,1])的图象相切时,与f (x )在x ∈(1,2]上的图象相交,也就是两个交点,此时g (x )有两个零点,可求得此时的切线方程为y =x -14.根据周期为2,得m =2k 或2k -14(k ∈Z ).12.m >1解析 函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根.∵1x +2=m |x |⇔1m =|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m<1,故m>1.13.4解析 当f (x )=0时,x =-1或x =1,故f [f (x )+1]=0时,f (x )+1=-1或1.当f (x )+1=-1,即f (x )=-2时,解得x =-3或x =14;当f (x )+1=1,即f (x )=0时,解得x =-1或x =1.故函数y =f [f (x )+1]有4个不同的零点. 14.4解析 令h (x )=f (x )+g (x ), 则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.。
(全国新课标)高考数学大二轮复习 第二编 专题整合突破 专题二 函数与导数 第四讲 导数的综合应用适

专题二 函数与导数 第四讲 导数的综合应用适考素能特训 文一、选择题1.[2015·某某高考]设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数 D .是没有零点的奇函数 答案 B解析 ∵f (-x )=-x -sin(-x )=-(x -sin x )=-f (x ),∴f (x )为奇函数.又f ′(x )=1-cos x ≥0,∴f (x )单调递增,选B.2.[2016·某某某某质检]对于R 上可导的任意函数f (x ),若满足1-xf ′x≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1) 答案 A解析 当x <1时,f ′(x )<0,此时函数f (x )递减;当x >1时,f ′(x )>0,此时函数f (x )递增,即当x =1时,函数f (x )取得极小值同时也取得最小值f (1),所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1),故选A.3.[2016·某某某某模拟]若不等式2x ln x ≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值X 围是( )A .(-∞,0)B .(-∞,4]C .(0,+∞) D.[4,+∞) 答案 B解析 2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x .设h (x )=2ln x +x +3x(x >0),则h ′(x )=x +3x -1x2.当x ∈(0,1)时,h ′(x )<0,函数h (x )单调递减;当x ∈(1,+∞)时,h ′(x )>0,函数h (x )单调递增,所以h (x )min =h (1)=4,所以a ≤h (x )min =4,故a 的取值X围是(-∞,4].4.[2016·某某某某中学调研]已知函数f (x )=x 33+mx 2+m +n x +12的两个极值点分别为x 1,x 2,且x 1∈(0,1),x 2∈(1,+∞),点P (m ,n )表示的平面区域为D ,若函数y =log a (x +4)(a >1)的图象上存在区域D 内的点,则实数a 的取值X 围是( )A .(1,3)B .(1,3]C .(3,+∞) D.[3,+∞) 答案 A解析 f ′(x )=x 2+mx +m +n2=0的两根为x 1,x 2,且x 1∈(0,1),x 2∈(1,+∞),则⎩⎪⎨⎪⎧ f ′0>0,f ′1<0⇔⎩⎪⎨⎪⎧m +n2>0,1+m +m +n2<0,即⎩⎪⎨⎪⎧m +n >0,3m +n +2<0,作出区域D ,如图阴影部分,可得log a (-1+4)>1,所以1<a <3.5.[2016·某某八校联考]已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值X 围是( )A .(-∞,0) B.⎝ ⎛⎭⎪⎫0,12C .(0,1)D .(0,+∞) 答案 B解析 ∵f (x )=x (ln x -ax ),∴f ′(x )=ln x -2ax +1,故f ′(x )在(0,+∞)上有两个不同的零点,令f ′(x )=0,则2a =ln x +1x ,设g (x )=ln x +1x,则g ′(x )=-ln xx2,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0,而g (x )max =g (1)=1,∴只需0<2a <1⇒0<a <12.6.[2015·某某某某二模]已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+f x x >0,则函数F (x )=xf (x )+1x的零点个数是( ) A .0 B .1 C .2 D .3 答案 B解析 ∵x ≠0时,f ′(x )+f xx>0, ∴xf ′x +f x x >0,即xf x′x>0. ①当x >0时,由①式知(xf (x ))′>0, ∴U (x )=xf (x )在(0,+∞)上为增函数, 且U (0)=0·f (0)=0,∴U (x )=xf (x )>0在(0,+∞)上恒成立. 又1x>0,∴F (x )>0在(0,+∞)上恒成立,∴F (x )在(0,+∞)上无零点. 当x <0时,(xf (x ))′<0,∴U (x )=xf (x )在(-∞,0)上为减函数, 且U (0)=0·f (0)=0,∴U (x )=xf (x )>0在(-∞,0)上恒成立, ∴F (x )=xf (x )+1x在(-∞,0)上为减函数.当x →0时,xf (x )→0,∴F (x )≈1x<0,当x →-∞时,1x→0,∴F (x )≈xf (x )>0,∴F (x )在(-∞,0)上有唯一零点.综上所述,F (x )在(-∞,0)∪(0,+∞)上有唯一零点,故选B. 二、填空题7.[2015·某某四校联考]函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,ln x ,x >1,若方程f (x )=mx -12恰有四个不相等的实数根,则实数m 的取值X 围是________.答案 ⎝ ⎛⎭⎪⎫12,e e解析 在平面直角坐标系中作出函数y =f (x )的图象,如图,而函数y =mx -12恒过定点⎝ ⎛⎭⎪⎫0,-12,设过点⎝ ⎛⎭⎪⎫0,-12与函数y =lnx 的图象相切的直线为l 1,切点坐标为(x 0,ln x 0).因为y =ln x 的导函数y ′=1x ,所以图中y =ln x 的切线l 1的斜率为k =1x 0,则1x 0=ln x 0+12x 0-0,解得x 0=e ,所以k =1e.又图中l 2的斜率为12,故当方程f (x )=mx -12恰有四个不相等的实数根时,实数m 的取值X 围是⎝ ⎛⎭⎪⎫12,e e .8.[2015·某某某某质检三]设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且有2f (x )+xf ′(x )>x 2,则不等式(x +2014)2f (x +2014)-4f (-2)>0的解集为________.答案 (-∞,-2016)解析 由2f (x )+xf ′(x )>x 2,x <0得2xf (x )+x 2f ′(x )<x 3,∴[x 2f (x )]′<x 3<0.令F (x )=x 2f (x )(x <0),则F ′(x )<0(x <0),即F (x )在(-∞,0)上是减函数,因为F (x +2014)=(x +2014)2f (x +2014),F (-2)=4f (-2),所以不等式(x +2014)2f (x +2014)-4f (-2)>0即为F (x +2014)-F (-2)>0,即F (x +2014)>F (-2),又因为F (x )在(-∞,0)上是减函数,所以x +2014<-2,∴x <-2016.9.已知偶函数y =f (x )对于任意的x ∈⎣⎢⎡⎦⎥⎤0,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式中成立的有________.(1)2f ⎝ ⎛⎭⎪⎫-π3<f ⎝ ⎛⎭⎪⎫π4(2)2f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫-π4 (3)f (0)<2f ⎝ ⎛⎭⎪⎫-π4 (4)f ⎝ ⎛⎭⎪⎫π6<3f ⎝ ⎛⎭⎪⎫π3 答案 (2)(3)(4)解析 因为偶函数y =f (x )对于任意的x ∈⎣⎢⎡⎦⎥⎤0,π2满足f ′(x )cos x +f (x )sin x >0,且f ′(x )cos x +f (x )sin x =f ′(x )cos x -f (x )(cos x )′,所以可构造函数g (x )=f xcos x,则g ′(x )=f ′x cos x -f xcos x ′cos 2x>0,所以g (x )为偶函数且在⎣⎢⎡⎭⎪⎫0,π2上单调递增,所以有g ⎝ ⎛⎭⎪⎫-π3=g ⎝ ⎛⎭⎪⎫π3=f ⎝ ⎛⎭⎪⎫π3cos π3=2f ⎝ ⎛⎭⎪⎫π3,g ⎝ ⎛⎭⎪⎫-π4=g ⎝ ⎛⎭⎪⎫π4=f ⎝ ⎛⎭⎪⎫π4cos π4=2f ⎝ ⎛⎭⎪⎫π4,g ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π6cosπ6=233f ⎝ ⎛⎭⎪⎫π6.由函数单调性可知g ⎝ ⎛⎭⎪⎫π6<g ⎝ ⎛⎭⎪⎫π4<g ⎝ ⎛⎭⎪⎫π3,即233f ⎝ ⎛⎭⎪⎫π6<2f ⎝ ⎛⎭⎪⎫π4<2f ⎝ ⎛⎭⎪⎫π3,所以(2)(4)正确,(1)错.对于(3),g ⎝ ⎛⎭⎪⎫-π4=g ⎝ ⎛⎭⎪⎫π4=2f ⎝ ⎛⎭⎪⎫-π4>g (0)=f (0),所以(3)正确.三、解答题10.[2016·某某模拟]某造船公司年最大造船量是20艘,已知造船x 艘的产值函数为R (x )=3700x +45x 2-10x 3(单位:万元),成本函数为C (x )=460x +5000(单位:万元),又在经济学中,函数f (x )的边际函数Mf (x )定义为Mf (x )=f (x +1)-f (x ).(1)求利润函数P (x )及边际利润函数MP (x );(提示:利润=产值-成本) (2)问年造船量安排多少艘时,可使公司造船的年利润最大?(3)求边际利润函数MP (x )的单调递减区间,并说明单调递减在本题中的实际意义是什么?解 (1)P (x )=R (x )-C (x )=-10x 3+45x 2+3240x -5000(x ∈N *,且1≤x ≤20);MP (x )=P (x +1)-P (x )=-30x 2+60x +3275(x ∈N *,且1≤x ≤19).(2)P ′(x )=-30x 2+90x +3240=-30(x -12)(x +9), 因为x >0,所以P ′(x )=0时,x =12, 当0<x <12时,P ′(x )>0, 当x >12时,P ′(x )<0,所以x =12时,P (x )有极大值,也是最大值.即年造船量安排12艘时,可使公司造船的年利润最大. (3)MP (x )=-30x 2+60x +3275=-30(x -1)2+3305. 所以,当x ≥1时,MP (x )单调递减, 所以单调减区间为[1,19],且x ∈N *.MP (x )是减函数的实际意义是:随着产量的增加,每艘利润与前一艘比较,利润在减少.11.已知函数f (x )=x +a ln x -1. (1)当a ∈R 时,求函数f (x )的单调区间;(2)若f (x )+ln x 2x ≥0对于任意x ∈[1,+∞)恒成立,求a 的取值X 围.解 (1)由f (x )=x +a ln x -1,得f ′(x )=1+a x =x +ax,当a ≥0时,f ′(x )>0,f (x )在(0,+∞)上为增函数, 当a <0时,当0<x <-a 时,f ′(x )<0,当x >-a 时,f ′(x )>0, 所以f (x )在(0,-a )上为减函数,f (x )在(-a ,+∞)上为增函数. (2)由题意知x +a ln x -1+ln x2x≥0在x ∈[1,+∞)恒成立, 设g (x )=x +a ln x +ln x2x-1,x ∈[1,+∞),则g ′(x )=1+a x +1-ln x 2x 2=2x 2+2ax +1-ln x2x2,x ∈[1,+∞), 设h (x )=2x 2+2ax +1-ln x ,则h ′(x )=4x -1x+2a ,当a ≥0时,4x -1x 为增函数,所以h ′(x )≥32+a >0,所以g (x )在[1,+∞)上单调递增,g (x )≥g (1)=0,当-32≤a <0时,h ′(x )≥32+a ≥0,所以g (x )在[1,+∞)上单调递增,g (x )≥g (1)=0, 当a <-32时,当x ∈⎣⎢⎡⎦⎥⎤1,-2a +12时,2a +1<-2x ,由(1)知,当a =-1时,x -ln x -1≥0,ln x ≤x -1,-ln x ≤1x -1,h (x )=2x 2+2ax -ln x +1≤2x 2+2ax +1x≤2x 2+2ax +x =2x 2+(2a +1)x <0,此时g ′(x )<0,所以g (x )在⎣⎢⎡⎦⎥⎤1,-2a +12上单调递减,在⎣⎢⎡⎭⎪⎫1,-2a +12上,g (x )<g (1)=0,不符合题意.综上所述a ≥-32.12.[2016·某某模拟]已知函数f (x )=e x-ax -a (其中a ∈R ,e 是自然对数的底数,e =2.71828…).(1)当a =e 时,求函数f (x )的极值; (2)当0≤a ≤1时,求证f (x )≥0;(3)求证:对任意正整数n ,都有⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e. 解 (1)当a =e 时,f (x )=e x-e x -e ,f ′(x )=e x-e , 当x <1时,f ′(x )<0;当x >1时,f ′(x )>0.所以函数f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增, 所以函数f (x )在x =1处取得极小值f (1)=-e , 函数f (x )无极大值.(2)证明:由f (x )=e x-ax -a ,得f ′(x )=e x-a , ①当a =0时,f (x )=e x >0恒成立,满足条件. ②当0<a ≤1时,由f ′(x )=0,得x =ln a , 则当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0, 所以函数f (x )在(-∞,ln a )上单调递减, 在(ln a ,+∞)上单调递增,所以函数f (x )在x =ln a 处取得极小值即为最小值f (x )min =f (ln a )=e ln a -a lna -a =-a ln a因为0<a ≤1,所以ln a ≤0,所以-a ln a ≥0 所以f (x )min ≥0,所以当0≤a ≤1时,f (x )≥0; (3)证明:由(2)知,当a =1时,f (x )≥0恒成立, 所以f (x )=e x-x -1≥0恒成立, 即e x≥x +1,所以ln (x +1)≤x , 令x =12n (n ∈N *),得ln ⎝ ⎛⎭⎪⎫1+12n ≤12n ,所以ln ⎝ ⎛⎭⎪⎫1+12+ln ⎝ ⎛⎭⎪⎫1+122+…+ln ⎝ ⎛⎭⎪⎫1+12n ≤12+122+…+12n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1-⎝ ⎛⎭⎪⎫12n<1. 所以⎝ ⎛⎭⎪⎫1+12⎝ ⎛⎭⎪⎫1+122…⎝ ⎛⎭⎪⎫1+12n <e.典题例证[2016·全国卷Ⅲ]设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明当x ∈(0,1)时,1+(c -1)x >c x.审题过程切入点 求出导函数f (x )然后确定函数f (x )的单调性.关注点 利用(1)的结论证明不等式;构造新函数,通过研究新函数的单调性进行证明.[规X 解答] (1)由题设知,f (x )的定义域为(0,+∞),f ′(x )=x-1,令f ′(x )=0解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增; 当x >1时,f ′(x )<0,f (x )单调递减.(2)证明:由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x-1,所以x -1ln x >1且x ·ln x >x -1,即1<x -1ln x<x .(3)证明:由题设c >1,设g (x )=1+(c -1)x -c x, 则g ′(x )=c -1-c xln c ,令g ′(x )=0,解得x 0=ln c -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增;当x >x 0时,g ′(x )<0,g (x )单调递减.由(2)知1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0.所以当x ∈(0,1)时,1+(c -1)x >c x. 模型归纳利用导数证明不等式的模型示意图如下:。
2020版 江苏 步步高二轮数学板块二 专题一 第2讲

第2讲 三角函数的图象与性质[考情考向分析] 1.以图象为载体,考查三角函数的最值、单调性、对称性、周期性.2.题型以填空题为主;解答题中常与向量结合,中低档难度.热点一 三角函数的图象例1 (1)(2019·镇江模拟)若函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫0<ω<1,0<φ<π2的图象过点(0,3),且关于点(-2,0)对称,则f (-1)=________. 答案 1解析 函数f (x )=2sin(ωx +φ)的图象过点(0,3), ∴2sin φ=3,即sin φ=32, ∵0<φ<π2,∴φ=π3,又函数图象关于点(-2,0)对称,∴2sin ⎝⎛⎭⎫-2ω+π3=0,即-2ω+π3=k π,k ∈Z , ∴ω=-12k π+π6,k ∈Z ,∵0<ω<1, ∴ω=π6,∴f (x )=2sin ⎝⎛⎭⎫π6x +π3,∴f (-1)=2sin ⎝⎛⎭⎫-π6+π3=2sin π6=1. (2)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象如图所示,则f (2 019)=________.答案 -1解析 根据函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象, 可得A =2,2πω=2⎝⎛⎭⎫136-76,∴ω=π. 再根据图象经过点⎝⎛⎭⎫76,0, 可得π×76+φ=2k π,k ∈Z ,∴令k =1,可得φ=5π6,∴f (x )=2sin ⎝⎛⎭⎫πx +5π6, ∴f (2 019)=2sin ⎝⎛⎭⎫π×2 019+5π6=-2sin π6=-1. 思维升华 (1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置. (2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度数和方向.跟踪演练1 (1)(2019·南通、泰州、扬州、徐州、淮安、宿迁、连云港七市调研)将函数y =2sin 3x 的图象向左平移π12个单位长度得到y =f (x )的图象,则f ⎝⎛⎭⎫π3的值为________. 答案 - 2解析 f (x )=2sin 3⎝⎛⎭⎫x +π12=2sin ⎝⎛⎭⎫3x +π4, 则f ⎝⎛⎭⎫π3=2sin 5π4=- 2. (2)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则ω=________;函数f (x )在区间⎣⎡⎦⎤π3,π上的零点为________.答案 27π12解析 从题图中可以发现,相邻的两个最高点和最低点的横坐标分别为π3,-π6,从而求得函数的最小正周期为T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π,根据T =2πω可求得ω=2.再结合题中的条件可以求得函数的解析式为f (x )=2sin ⎝⎛⎭⎫2x -π6,令2x -π6=k π(k ∈Z ),解得x =k π2+π12(k ∈Z ),结合所给的区间,整理得出x =7π12.热点二 三角函数的性质例2 已知函数f (x )=(3cos x +sin x )2-23sin 2x .(1)求函数f (x )的最小值,并写出f (x )取得最小值时自变量x 的取值集合; (2)若x ∈⎣⎡⎦⎤-π2,π2,求函数f (x )的单调增区间.解 (1)f (x )=3cos 2x +23sin x cos x +sin 2x -23sin 2x =3(1+cos 2x )2+1-cos 2x2-3sin 2x =cos 2x -3sin 2x +2 =2cos ⎝⎛⎭⎫2x +π3+2, 当2x +π3=2k π+π,即x =k π+π3(k ∈Z )时,f (x )取最小值0,故函数f (x )的最小值是0,f (x )取得最小值时自变量x 的取值集合是⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π3,k ∈Z . (2)f (x )=2cos ⎝⎛⎭⎫2x +π3+2, 令π+2k π≤2x +π3≤2k π+2π(k ∈Z ),得π3+k π≤x ≤56π+k π(k ∈Z ), 又x ∈⎣⎡⎦⎤-π2,π2, ∴当k =-1时,-π2≤x ≤-π6;当k =0时,π3≤x ≤π2,故函数f (x )在⎣⎡⎦⎤-π2,π2上的单调增区间是⎣⎡⎦⎤-π2,-π6和⎣⎡⎦⎤π3,π2. 思维升华 (1)讨论三角函数的单调性,可先将函数化为y =A sin(ωx +φ)+B 的形式,设t =ωx +φ,然后利用y =sin t 的性质求解.(2)三角函数的最值问题,可利用y =A sin(ωx +φ)的有界性或化为关于sin x ,cos x 的二次函数求解.跟踪演练2 (1)将函数f (x )=cosωx 2⎝⎛⎭⎫2sin ωx 2-23cos ωx 2+3(ω>0)的图象向左平移π3ω个单位长度,得到函数y =g (x )的图象,若y =g (x )在⎣⎡⎦⎤0,π12上为增函数,则ω的最大值为________. 答案 6解析 ∵f (x )=sin ωx -3(1+cos ωx )+ 3 =2sin ⎝⎛⎭⎫ωx -π3, ∴g (x )=f ⎝⎛⎭⎫x +π3ω=2sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x +π3ω-π3=2sin ωx ,又g (x )在⎣⎡⎦⎤0,π12上为增函数, ∴ω×π12≤π2,∴ω≤6,故ω的最大值为6.(2)已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是__________________. 答案 ⎣⎡⎦⎤k π+π6,k π+23π(k ∈Z ) 解析 因为f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,即⎪⎪⎪⎪f ⎝⎛⎭⎫π6=⎪⎪⎪⎪sin ⎝⎛⎭⎫π3+φ=1,所以φ=k π+π6(k ∈Z ).因为f ⎝⎛⎭⎫π2>f (π),所以sin(π+φ)>sin(2π+φ), 即sin φ<0,所以φ=-56π+2k π(k ∈Z ),所以f (x )=sin ⎝⎛⎭⎫2x -56π, 令2k π-π2≤2x -56π≤2k π+π2(k ∈Z ),得k π+π6≤x ≤k π+23π(k ∈Z ),所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π+π6,k π+23π(k ∈Z ). 热点三 图象、性质的综合应用例3 (1)已知函数f (x )=3sin ⎝⎛⎭⎫ωx -π6(ω>0)和g (x )=3cos(2x +φ)的图象的对称中心完全相同,若x ∈⎣⎡⎦⎤0,π2,则f (x )的取值范围是________. 答案 ⎣⎡⎦⎤-32,3 解析 由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f (x )=3sin ⎝⎛⎭⎫2x -π6, 当x ∈⎣⎡⎦⎤0,π2时,-π6≤2x -π6≤5π6, 所以-12≤sin ⎝⎛⎭⎫2x -π6≤1,故f (x )∈⎣⎡⎦⎤-32,3. (2)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|≤π2的最小值为-3,若点⎝⎛⎭⎫-π6,0是函数y =f (x )图象的对称中心,直线x =π3是函数y =f (x )图象的对称轴,且f (x )在区间⎝⎛⎭⎫2π33,5π33上单调,则实数ω取最大值时,函数f (x )=__________________. 答案 3sin ⎝⎛⎭⎫11x -π6 解析 由题意得,A =3.又πω=T 2≥5π33-2π33=π11,可得0<ω≤11,① 又因为点⎝⎛⎭⎫-π6,0是函数y =f (x )图象的对称中心,直线x =π3是函数y =f (x )图象的对称轴, 所以π3-⎝⎛⎭⎫-π6=π2=T 4+k ·T 2=2k +14·2πω,即ω=2k +1(k ∈N ),②由①②得ω是小于或等于11的正奇数, 所以ω的最大值为11. 所以当ω=11时,f ⎝⎛⎭⎫-π6=0, 可得φ=-π6,故实数ω取最大值时,f (x )=3sin ⎝⎛⎭⎫11x -π6. 思维升华 三角函数的图象可以体现三角函数的所有性质,在解题中要灵活应用.如函数y =A sin(ωx +φ)的对称轴一定经过图象的最高或最低点,对称中心的横坐标一定是函数的零点. 跟踪演练3 (1)若函数f (x )=3sin(2x +θ)+cos(2x +θ)(0<θ<π)的图象关于⎝⎛⎭⎫π2,0对称,则函数f (x )在⎣⎡⎦⎤-π4,π6上的最小值是________. 答案 - 3解析 因为f (x )=3sin(2x +θ)+cos(2x +θ)=2sin ⎝⎛⎭⎫2x +θ+π6, 由题意,知f ⎝⎛⎭⎫π2=2sin ⎝⎛⎭⎫π+θ+π6=0,又0<θ<π,所以θ=5π6, 所以f (x )=-2sin 2x ,又f (x )在⎣⎡⎦⎤-π4,π4上是减函数,所以函数f (x )在⎣⎡⎦⎤-π4,π6上的最小值为 f ⎝⎛⎭⎫π6=-2sin π3=- 3.(2)已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2,f (x 1)=2,f (x 2)=0,若|x 1-x 2|的最小值为12,且f ⎝⎛⎭⎫12=1,则f (x )的单调递增区间为_______________________. 答案 ⎣⎡⎦⎤-56+2k ,16+2k ,k ∈Z 解析 由f (x 1)=2,f (x 2)=0,且|x 1-x 2|的最小值为12,可知T 4=12,∴T =2,∴ω=π,又f ⎝⎛⎭⎫12=1,则φ=±π3+2k π,k ∈Z , ∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫πx +π3. 令-π2+2k π≤πx +π3≤π2+2k π,k ∈Z ,得-56+2k ≤x ≤16+2k ,k ∈Z .故f (x )的单调递增区间为⎣⎡⎦⎤-56+2k ,16+2k ,k ∈Z .1.(2018·江苏,7)已知函数y =sin(2x +φ)⎝⎛⎭⎫-π2<φ<π2的图象关于直线x =π3对称,则φ的值为________. 答案 -π6解析 由题意得f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=±1, ∴2π3+φ=k π+π2,k ∈Z ,∴φ=k π-π6,k ∈Z . ∵φ∈⎝⎛⎭⎫-π2,π2,∴取k =0,得φ=-π6. 2.已知函数f (x )=sin(x +φ)+3cos(x +φ),0≤φ≤π.若f (x )是奇函数,则f ⎝⎛⎭⎫π6的值为________. 答案 -1解析 函数为奇函数,则f (0)=sin φ+3cos φ=2sin ⎝⎛⎭⎫φ+π3=0, 所以φ+π3=k π,φ=k π-π3(k ∈Z ),令k =1,可得φ=2π3,故f (x )=sin ⎝⎛⎭⎫x +2π3+3cos ⎝⎛⎭⎫x +2π3, f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π6+2π3+3cos ⎝⎛⎭⎫π6+2π3=-1. 3.(2018·北京,11)设函数f (x )=cos ⎝⎛⎭⎫ωx -π6(ω>0).若f (x )≤f ⎝⎛⎭⎫π4对任意的实数x 都成立,则ω的最小值为________. 答案 23解析 ∵f (x )≤f ⎝⎛⎭⎫π4对任意的实数x 都成立, ∴当x =π4时,f (x )取得最大值,即f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫π4ω-π6=1, ∴π4ω-π6=2k π,k ∈Z , ∴ω=8k +23,k ∈Z .∵ω>0,∴当k =0时,ω取得最小值23.4.(2019·全国Ⅰ理,11改编)关于函数f (x )=sin|x |+|sin x |有下述四个结论: ①f (x )是偶函数;②f (x )在区间⎝⎛⎭⎫π2,π上单调递增; ③f (x )在[-π,π]上有4个零点; ④f (x )的最大值为2.其中所有正确结论的编号是________. 答案 ①④解析 f (-x )=sin|-x |+|sin(-x )|=sin|x |+|sin x |=f (x ),∴f (x )为偶函数,故①正确;当π2<x <π时,f (x )=sin x +sin x =2sin x ,∴f (x )在⎝⎛⎭⎫π2,π上单调递减,故②不正确;f (x )在[-π,π]上的图象如图所示,由图可知函数f (x )在[-π,π]上只有3个零点,故③不正确;∵y =sin|x |与y =|sin x |的最大值都为1且可以同时取到,∴f (x )可以取到最大值2,故④正确.综上,正确结论的编号是①④.5.(2017·江苏,16)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. 解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0. 于是tan x =-33.又x ∈[0,π],所以x =5π6.(2)f (x )=a·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6, 从而-1≤cos ⎝⎛⎭⎫x +π6≤32, 于是,当x +π6=π6,即x =0时,f (x )取得最大值3;当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.A 组 专题通关1.已知函数f (x )=sin ⎝⎛⎭⎫2x -π3cos ⎝⎛⎭⎫2x +π6,则函数f (x )在⎣⎡⎦⎤0,π3上的值域为________. 答案 ⎣⎡⎦⎤-34,0 解析 ∵函数f (x )=sin ⎝⎛⎭⎫2x -π3cos ⎝⎛⎭⎫2x +π6 =sin ⎝⎛⎭⎫2x -π3·sin ⎝⎛⎭⎫π3-2x =-sin 2⎝⎛⎭⎫2x -π3=-1-cos ⎝⎛⎭⎫4x -2π32=12cos ⎝⎛⎭⎫4x -2π3-12, ∵x ∈⎣⎡⎦⎤0,π3,∴4x -2π3∈⎣⎡⎦⎤-2π3,2π3,f (x )∈⎣⎡⎦⎤-34,0, 故函数f (x )在⎣⎡⎦⎤0,π3的值域为⎣⎡⎦⎤-34,0. 2.(2019·江苏省如皋中学模拟)已知函数f (x )=a tan x -b sin x +1,且f ⎝⎛⎭⎫π4=7,则f ⎝⎛⎭⎫-π4=________. 答案 -5解析 设g (x )=a tan x -b sin x , 则g (x )为奇函数,且f (x )=g (x )+1. ∵f ⎝⎛⎭⎫π4=g ⎝⎛⎭⎫π4+1=7, ∴g ⎝⎛⎭⎫π4=6.∴f ⎝⎛⎭⎫-π4=g ⎝⎛⎭⎫-π4+1=-g ⎝⎛⎭⎫π4+1=-6+1=-5. 3.将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数单调增区间是____________.答案 ⎣⎡⎦⎤-π4+k π,π4+k π,k ∈Z 解析 把函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度得函数g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π10+π5=sin 2x 的图象,由-π2+2k π≤2x ≤π2+2k π(k ∈Z ),得-π4+k π≤x ≤π4+k π(k ∈Z ),故函数的单调增区间为⎣⎡⎦⎤-π4+k π,π4+k π,k ∈Z . 4.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调递增区间为________. 答案 ⎣⎡⎦⎤-14,34 解析 因为函数f (x )的最大值为2,所以最小正周期T =2=2π2ω,解得ω=π2,所以f (x )=2sin ⎝⎛⎭⎫πx -π4,当2k π-π2≤πx -π4≤2k π+π2,k ∈Z ,即2k -14≤x ≤2k +34,k ∈Z 时,函数f (x )单调递增,令k=0,得函数f (x )在[-1,1]上的单调递增区间是⎣⎡⎦⎤-14,34. 5.已知直线y =n 与函数f (x )=3m sin x +cos x 的图象相邻两个交点的横坐标分别为x 1=-π6,x 2=5π6,则m =________.答案 1解析 依题意f (x )=3m 2+1sin(x +φ),由已知x =x 1+x 22=π3为函数f (x )=3m sin x +cos x 的图象的一条对称轴,函数取得最大值或最小值,将x =π3代入函数解析式,得±3m 2+1=32m+12,解得m =1. 6.已知函数f (x )=sin 2x -3cos 2x ,将y =f (x )的图象向左平移π6个单位长度,再向上平移1个单位长度得到函数y =g (x )的图象,则g ⎝⎛⎭⎫-3π4的值为________. 答案 3解析 由题意得f (x )=sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3, 将y =f (x )的图象向左平移π6个单位长度得到函数y =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π3=2sin 2x , 再将函数y =2sin 2x 向上平移1个单位长度得到函数y =g (x )的图象, 即g (x )=2sin 2x +1,所以g ⎝⎛⎭⎫-3π4=2sin ⎝⎛⎭⎫-3π2+1=3. 7.已知函数f (x )=3sin ωx -2cos 2ωx2+1(ω>0),将f (x )的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度,所得函数g (x )的部分图象如图所示,则φ的值为________.答案π12解析 ∵f (x )=3sin ωx -2cos 2ωx 2+1 =3sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π6, 则g (x )=2sin ⎣⎡⎦⎤ω(x -φ)-π6=2sin ⎝⎛⎭⎫ωx -ωφ-π6. 由题图知T =2⎝⎛⎭⎫11π12-5π12=π, ∴ω=2,g (x )=2sin ⎝⎛⎭⎫2x -2φ-π6, 则g ⎝⎛⎭⎫5π12=2sin ⎝⎛⎭⎫5π6-π6-2φ=2sin ⎝⎛⎭⎫2π3-2φ=2, 即2π3-2φ=π2+2k π,k ∈Z , ∴φ=π12-k π,k ∈Z .又0<φ<π2,∴φ的值为π12.8.已知不等式32sin x 4cos x 4+6cos 2x 4-62-m ≤0对任意的-5π6≤x ≤π6恒成立,则实数m的取值范围是________. 答案 [3,+∞)解析 由32sin x 4cos x 4+6cos 2x 4-62-m ≤0,得322sin x 2+62cos x2-m ≤0,所以m ≥322sin x 2+62cos x 2=6sin ⎝⎛⎭⎫x 2+π6.令t =x 2+π6,因为-5π6≤x ≤π6,所以-π4≤t ≤π4,所以-3≤6sin t ≤3,所以m ≥ 3. 9.已知函数f (x )=22sin ⎝⎛⎭⎫x +π3(x ∈R ). (1)若α∈[0,π],且f (α)=2,求α的值;(2)先将y =f (x )的图象上所有点的横坐标缩短到原来的12(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x =3π4对称,求θ的最小值.解 (1)因为f (x )=22sin ⎝⎛⎭⎫x +π3,由f (α)=2,得sin ⎝⎛⎭⎫α+π3=22,即α+π3=2k π+π4或α+π3=2k π+3π4,k ∈Z .于是α=2k π-π12或α=2k π+5π12,k ∈Z ,又α∈[0,π],故α=5π12.(2)将y =f (x )图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到y =22sin ⎝⎛⎭⎫2x +π3的图象,再将y =22sin ⎝⎛⎭⎫2x +π3图象上所有点向右平移θ个单位长度,得到y =22sin ⎝⎛⎭⎫2x -2θ+π3的图象.由于y =sin x 的图象关于直线x =k π+π2(k ∈Z )对称,令2x -2θ+π3=k π+π2,k ∈Z ,解得x =k π2+θ+π12,k ∈Z .由于y =22sin ⎝⎛⎭⎫2x -2θ+π3的图象关于直线x =3π4对称,令k π2+θ+π12=3π4,k ∈Z ,解得θ=-k π2+2π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.10.已知函数f (x )=2sin x (sin x +cos x )-a 的图象经过点⎝⎛⎭⎫π2,1,a ∈R . (1)求实数a 的值及函数f (x )的单调递增区间;(2)若当x ∈⎣⎡⎦⎤0,π2时,不等式f (x )≥m 恒成立,求实数m 的取值范围. 解 (1)f (x )=2sin x (sin x +cos x )-a=2sin 2x +2sin x cos x -a =1-cos 2x +sin 2x -a=2sin ⎝⎛⎭⎫2x -π4+1-a . 因为函数f (x )的图象经过点⎝⎛⎭⎫π2,1, 所以2sin3π4+1-a =1, 解得a =1.由-π2+2k π≤2x -π4≤π2+2k π,k ∈Z ,得-π8+k π≤x ≤3π8+k π,k ∈Z ,所以f (x )的单调递增区间为⎣⎡⎦⎤-π8+k π,3π8+k π,k ∈Z . (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π4,因为x ∈⎣⎡⎦⎤0,π2, 所以2x -π4∈⎣⎡⎦⎤-π4,3π4. 当2x -π4=-π4,即x =0时,f (x )min =-1.因为f (x )≥m 恒成立,所以m ≤f (x )min ,即m ≤-1. 所以实数m 的取值范围是(-∞,-1].B 组 能力提高11.如图,已知A ,B 分别是函数f (x )=3sin ωx (ω>0)在y 轴右侧图象上的第一个最高点和第一个最低点,且∠AOB =π2,则该函数的周期是________.答案 4解析 设函数的周期为T ,由图象可得A ⎝⎛⎭⎫T 4,3,B ⎝⎛⎭⎫3T 4,-3,则OA →·OB →=3T 216-3=0,解得T =4.12.若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(其中0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝⎛⎭⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎡⎦⎤-π2,π6上的最小值是________. 答案 12解析 由题意得f (x )=sin ()2x +φ+3cos ()2x +φ=2sin ⎝⎛⎭⎫2x +φ+π3,将函数f (x ) 的图象向左平移π4个单位长度所得图象对应的解析式为y =2sin ⎣⎡⎭⎫2⎝⎛⎭⎫x +π4+φ+π3=2sin ⎝⎛⎭⎫2x +φ+5π6, 因为平移后的图象关于点⎝⎛⎭⎫π2,0对称, 所以2×π2+φ+5π6=φ+11π6=k π,k ∈Z ,故φ=-11π6+k π,k ∈Z ,又0<φ<π,所以φ=π6.所以g (x )=cos ⎝⎛⎭⎫x +π6, 由-π2≤x ≤π6得-π3≤x +π6≤π3,所以当x +π6=π3或x +π6=-π3,即x =π6或x =-π2时,函数g (x )取得最小值,且最小值为12.13.如图,函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫其中A >0,ω>0,|φ|≤π2与坐标轴的三个交点P ,Q ,R 满足P (2,0),∠PQR =π4,M 为QR 的中点,PM =25,则A 的值为______________.答案1633 解析 由题意设Q (a ,0),R (0,-a )(a >0). 则M ⎝⎛⎭⎫a 2,-a2,由两点间距离公式,得 PM =⎝⎛⎭⎫2-a 22+⎝⎛⎭⎫a 22=25, 解得a 1=8,a 2=-4(舍去),由此得T 2=8-2=6,即T =12,故ω=π6,由P (2,0)及|φ|≤π2,得φ=-π3,代入f (x )=A sin(ωx +φ),得f (x )=A sin ⎝⎛⎭⎫π6x -π3, 从而f (0)=A sin ⎝⎛⎭⎫-π3=-8,得A =1633. 14.已知函数f (x )=3sin ωx cos ωx +cos 2ωx +1+b .(1)若函数f (x )的图象关于直线x =π6对称,且当ω∈[0,3]时,求函数f (x )的单调增区间;(2)在(1)的条件下,当x ∈⎣⎡⎦⎤0,7π12时,函数f (x )有且只有一个零点,求实数b 的取值范围. 解 f (x )=32sin 2ωx +12cos 2ωx +32+b=sin ⎝⎛⎭⎫2ωx +π6+32+b . (1)∵函数f (x )的图象关于直线x =π6对称,∴2ω·π6+π6=k π+π2(k ∈Z ),解得ω=3k +1(k ∈Z ),∵ω∈[0,3],∴ω=1, ∴f (x )=sin ⎝⎛⎭⎫2x +π6+32+b , 由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ),∴函数f (x )的单调增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)由(1)知,f (x )=sin ⎝⎛⎭⎫2x +π6+32+b , ∵x ∈⎣⎡⎦⎤0,7π12,∴2x +π6∈⎣⎡⎦⎤π6,4π3, ∴当2x +π6∈⎣⎡⎦⎤π6,π2,即x ∈⎣⎡⎦⎤0,π6时,函数f (x )单调递增; 当2x +π6∈⎣⎡⎦⎤π2,4π3,即x ∈⎣⎡⎦⎤π6,7π12时,函数f (x )单调递减. 又f (0)=f ⎝⎛⎭⎫π3,∴当f ⎝⎛⎭⎫π3>0≥f ⎝⎛⎭⎫7π12或f ⎝⎛⎭⎫π6=0时,函数f (x )有且只有一个零点, 即sin4π3≤-b -32<sin 5π6或1+32+b =0, 解得-2<b ≤3-32或b =-52,∴b 的取值范围为⎝ ⎛⎦⎥⎤-2,3-32∪⎩⎨⎧⎭⎬⎫-52.。
【步步高】江苏专用2011高考数学二轮复习 第2讲函数课件 理 苏教版

10.已知函数 f(x),对任意 x,y∈R 都有 f(x+y)=f(x)+ f(y),且 x>0 时,f(x)<0,f(1)=-2. (1)证明:f(x)为奇函数; (2)证明:f(x)在 R 上是减函数; (3)求 f(x)在[-3,3]上的最大值和最小值.
(1)证明 ∵x,y∈R 时,f(x+y)=f(x)+f(y), ∴令 x=y=0 得,f(0)=2f(0),∴f(0)=0. 令 y=-x,则 f(x-x)=f(x)+f(-x)=0, ∴f(-x)=-f(x),∴f(x)为奇函数.
②(x1-x2)[f(x1)-f(x2)]>0(<0)⇔f(x)在[a,b]上是增函数 (减函数). 需要指出的是:①的几何意义是:增(减)函数的图象任 意两点(x1,f(x1)),(x2,f(x2))连线的斜率都大于(或小于)零. (2)复合函数的单调性:“同增异减”. 如函数y=log 1 (-x2+2x)的单调递增区间是________. (1,2)
①对数性质:logaa=1;loga1=0;0 和负数没有对数. 对数恒等式: a lo ga N=N(N>0). logbN ②对数换底公式:logaN= . logba n 1 推论: m N n = logaN;logab= . log a m logba (2)指数函数与对数函数的图象与性质 可从定义域、值域、单调性、函数值的变化情况考虑,特 别注意底数的取值对有关性质的影响,另外,指数函数 y =ax 的图象恒过定点(0,1), 对数函数 y=logax 的图象恒过 定点(1,0).
(2)证明
设 x1<x2,则 x2-x1>0,
∵当 x>0 时,f(x)<0,∴f(x2-x1)<0. 又∵y=f(x)是奇函数,∴f(x2-x1)=f(x2)+f(-x1) =f(x2)-f(x1). ∴f(x2)-f(x1)<0,即 f(x2)<f(x1). 所以 f(x)在 R 上是减函数. (3)解 ∵f(x)在 R 上为减函数, ∴f(x)在[-3,3]上的最大值为 f(-3),最小值为 f(3). ∵f(3)=f(2)+f(1)=3f(1)=-6, f(-3)=-f(3)=6, ∴函数 f(x)在[-3,3]上的最大值为 6,最小值为-6.
【步步高】高考数学(文,江苏专用)大二轮总复习练习:专题二第4讲导数的热点问题(含答案解析)

第 4 讲 导数的热门问题(2016 ·标全国乙课 )已知函数f(x)= (x - 2)e x + a(x -1) 2 有两个零点.(1) 求 a 的取值范围;(2) 设 x 1, x 2 是 f(x)的两个零点,证明: x 1+ x 2<2.(1) 解 f ′(x)= (x - 1)e x + 2a(x - 1)= (x -1)(e x + 2a).①设 a = 0,则 f(x)= (x - 2)e x , f(x)只有一个零点.②设 a>0,则当 x ∈(- ∞, 1) 时, f ′(x)<0 ;当 x ∈ (1,+ ∞)时, f ′(x)>0 ,所以 f( x)在 (-∞,1) 上单一递减,在 (1,+ ∞)上单一递加.又 f(1) =- e , f(2)= a ,取 b 知足 b<0 且 b<ln a,2a223则 f(b)>2(b - 2)+ a( b - 1) =a b - 2b >0, 故 f(x)存在两个零点. ③设 a<0,由 f ′(x)= 0 得 x =1 或 x = ln(- 2a).若 a ≥-e2,则 ln(- 2a) ≤1,故当 x ∈ (1,+ ∞)时, f ′(x)>0 ,所以 f(x)在 (1,+ ∞)上单一递加.又当 x ≤1时, f(x)<0 ,所以 f(x)不存在两个零点.若 a<- e2,则 ln( - 2a)>1,故当 x ∈ (1,ln(- 2a))时,f ′(x)<0 ;当 x ∈ (ln(- 2a),+ ∞)时,f ′(x)>0 ,所以 f( x)在 (1,ln( - 2a)) 上单一递减,在 (ln( - 2a),+ ∞)上单一递加.又当 x ≤1时, f(x)<0 ,所以 f(x)不存在两个零点.综上, a 的取值范围为 (0,+ ∞).(2) 证明 不如设 x 1<x 2,由 (1) 知, x 1∈ (- ∞, 1), x 2∈(1 ,+ ∞),2- x 2∈ (- ∞,1),f(x)在 (-∞, 1)上单一递减,所以 x 1+ x 2<2 等价于 f(x 1)>f(2- x 2),即 f(2 -x 2)<0.2x2因为 f(2- x 2) =x 2 e 2 + a(x 2- 1) ,而 f(x 2)= (x 2- 2) e x 2 + a(x 2- 1)2= 0, 所以 f(2- x 2) = x 2e 2 x 2( x 2 2)e x 2 .设 g(x) =- xe 2- x - (x - 2)e x ,则 g ′(x)= (x - 1)(e 2-x - e x ),所以当 x>1 时, g ′(x)<0 ,而 g(1)= 0,故当 x>1 时, g(x)<0,进而 g(x 2)= f(2- x 2)<0,故 x 1+ x 2<2.利用导数探究函数的极值、 最值是函数的基本问题, 高考取常与函数零点、 方程根及不等式相联合,难度较大.热门一利用导数证明不等式用导数证明不等式是导数的应用之一, 能够间接考察用导数判断函数的单一性或求函数的最值,以及结构函数解题的能力.例 1 已知函数 f(x)= e x - x 2+ a , x ∈R ,曲线 y = f(x) 的图象在点 (0,f(0)) 处的切线方程为 y= bx.(1) 求函数 y = f(x) 的分析式;(2) 2+ x ;当 x ∈R 时,求证: f(x) ≥- x(3) 若 f(x)>kx 对随意的 x ∈ (0,+ ∞)恒成立,务实数 k 的取值范围.(1) 解 依据题意,得 f ′(x)= e x -2x ,则 f ′(0)=1= b.由切线方程可得切点坐标为(0,0),将其代入 y = f(x),得 a =- 1,故 f(x)= e x - x 2- 1.(2) 证明 令 g(x)= f(x)+ x 2-x = e x - x - 1.由 g ′(x)= e x - 1= 0,得 x = 0,当 x ∈ (- ∞, 0)时, g ′(x)<0, g(x)单一递减;当 x ∈ (0,+ ∞)时, g ′(x)>0, g(x)单一递加. ∴ g(x)min = g(0) = 0,∴ f(x) ≥- x 2 +x.f(x)(3) 解f(x)>kx 对随意的 x ∈ (0,+ ∞)恒成立等价于 x >k 对随意的 x ∈ (0,+ ∞)恒成立.令 φ(x)= f(x), x>0,得 φ′(x)= xf ′(x)- f(x) x 2xx(e x - 2x) - (e x - x 2-1) (x - 1)(e x - x - 1) .=x 2 = x 2x由 (2) 可知,当 x ∈(0,+ ∞)时, e - x - 1>0 恒成立,∴ y = φ(x)的单一增区间为 (1,+ ∞),单一减区间为 (0,1),φ(x)min =φ(1) = e -2,∴ k<φ(x)min = e - 2,∴实数 k 的取值范围为 (- ∞, e - 2).思想升华 用导数证明不等式的方法(1) 利用单一性:若 f( x)在 [a ,b] 上是增函数,则① ? x ∈ [a , b] ,则 f(a) ≤f(x) ≤f(b),②对 ? x 1, x 2∈[ a ,b],且 x 1<x 2,则 f(x 1)< f(x 2) .对于减函数有近似结论.(2) 利用最值:若 f(x)在某个范围 D 内有最大值 M(或最小值 m),则对 ? x ∈ D ,则 f(x) ≤M(或f(x) ≥m) .(3) 证明 f(x)<g(x),可结构函数 F(x)= f(x)-g(x),证明 F(x)<0. 追踪操练 1 已知函数 f(x)= aln x +1(a>0) .(1) 当 x>0 时,求证: f( x)- 1≥a 1- 1;x (2) 在区间 (1, e)上 f(x)> x 恒成立,务实数 a 的取值范围.(1) 证明设 φ(x)= f(x)-1- a 1-1x1= aln x - a 1- x (x>0) ,a ax x 2.令 φ′(x)= 0,则 x = 1,当 0<x<1 时, φ′(x)<0 ,所以 φ(x)在 (0,1)上单一递减;当 x>1 时, φ′(x)>0,则φ′(x)=-所以 φ(x)在 (1,+ ∞)上单一递加, 故 φ(x)在 x = 1 处取到极小值也是最小值,故 φ(x) ≥φ(1)= 0,即 f(x)- 1≥a 1-1x .x - 1(2) 解 由 f(x)>x 得 aln x + 1>x ,即 a> ln x .x - 1 x - 1ln x - x 令 g(x) = ln x (1< x<e),则 g ′(x)= (ln x)2 .令 h(x) =ln x - x - 1 (1<x<e),则 h ′(x)= 1 - 1>0,x x 2x 故 h(x) 在区间 (1, e)上单一递加,所以 h(x)>h(1)= 0.因为 h(x)>0 ,所以 g ′(x)>0 ,即 g(x)在区间 (1, e)上单一递加,x -1则 g(x)<g(e)= e - 1,即 ln x <e - 1, 所以 a 的取值范围为 [e - 1,+ ∞).热门二利用导数议论方程根的个数方程的根、函数的零点、 函数图象与 x 轴的交点的横坐标是三个等价的观点,解决这种问题能够经过函数的单一性、极值与最值,画出函数图象的走势,经过数形联合思想直观求解.例 2 已知函数 f(x)= (ax 2+x - 1)e x ,此中 e 是自然对数的底数, a ∈R.(1) 若 a = 1,求曲线 y = f(x)在点 (1, f(1)) 处的切线方程;(2) 若 a=- 1,函数 y= f(x)的图象与函数g(x)=1x 3+1x2+ m 的图象有3 个不一样的交点,务实32数 m 的取值范围.解 (1)当 a= 1 时, f(x)= (x2+ x- 1)e x,所以 f′(x)= (x2+ x- 1)e x+ (2x+1)e x= (x2+ 3x)e x,所以曲线y= f( x)在点 (1,f(1)) 处的切线斜率为k= f′ (1)= 4e.又因为 f(1) = e,所以所求切线的方程为y- e=4e(x- 1),即 4ex- y-3e= 0.(2)当 a=- 1 时, f(x)= (- x2+ x- 1)e x,f ′(x)=( -x2- x)e x,所以 y= f(x)在 ( -∞,- 1)上单一递减,在 (-1,0)上单一递加,在 (0,+∞)上单一递减,故 f(x)在x=- 1 处获得极小值-3,在ex=0 处获得极大值- 1.而 g′(x)= x2+ x,所以 y=g(x)在 (-∞,- 1)上单一递加,在 (- 1,0)上单一递减,在 (0,+∞)上单一递加.故 g(x) 在 x=- 1 处获得极大值1+ m,在 x= 0 处获得极小值 m. 6因为函数y= f( x)与 y=g(x)的图象有 3 个不一样的交点,所以 f( -1)<g(- 1)且 f(0)> g(0) ,所以-3-1<m<- 1,即 m 的取值范围为 (-3-1,- 1).e 6e6思想升华(1) 函数 y= f(x)-k 的零点问题,可转变为函数y= f( x)和直线 y= k 的交点问题.(2) 研究函数y= f(x)的值域,不单要看最值,并且要察看随x 值的变化 y 值的变化趋向.追踪操练 2已知函数 f(x)= 2ln x-x2+ ax(a∈ R).(1)当 a= 2 时,求 f(x)的图象在 x= 1 处的切线方程;1, e上有两个零点,务实数m 的取值范围.(2) 若函数 g(x)= f(x)- ax+m 在e解 (1)当 a= 2 时, f(x)= 2ln x-x2+ 2x,2f ′(x)=x- 2x+ 2,切点坐标为 (1,1),切线的斜率k= f′(1)= 2,则切线方程为y- 1=2(x- 1),即 2x-y- 1= 0.(2) g(x)= 2ln x- x2+ m,2- 2(x+ 1)(x- 1)则 g′(x)=x-2x=x.1因为 x ∈, e ,所以当 g ′(x)= 0 时, x = 1.1当 e <x<1 时, g ′(x)>0;当 1<x<e 时, g ′(x)<0. 故 g(x) 在 x = 1 处获得极大值 g(1) = m - 1.又 g1e = m - 2-e12 ,g(e) =m +2- e2,g(e)- g1 21e = 4- e + 2<0,e则 g(e)<g 1e ,1所以 g(x)在 e ,e 上的最小值是g(e).1g(x)在 , e 上有两个零点的条件是g(1) = m -1>0 ,1= m - 2- 1g e e 2 ≤0,1解得 1<m ≤2+ e 2,1所以实数 m 的取值范围是1, 2+e 2 .热门三利用导数解决生活中的优化问题生活中的实质问题受某些主要变量的限制,解决生活中的优化问题就是把限制问题的主要变量找出来, 成立目标问题即对于这个变量的函数,而后经过研究这个函数的性质,进而找到变量在什么状况下能够达到目标最优.例 3某乡村拟修筑一个无盖的圆柱形蓄水池 (不计厚度 ).设该蓄水池的底面半径为 r 米,高为 h 米,体积为 V 立方米.假定建筑成本仅与表面积相关,侧面的建筑成本为100 元 / 平方米, 底面的建筑成本为 160 元 /平方米, 该蓄水池的总建筑成本为12 000 π元 ( π为圆周率 ).(1) 将 V 表示成 r 的函数 V(r ),并求该函数的定义域;(2) 议论函数 V( r)的单一性,并确立 r 和 h 为什么值时该蓄水池的体积最大.解 (1)因为蓄水池侧面的总成本为100·2πrh = 200πrh(元 ),底面的总成本为 160πr 2 元.所以蓄水池的总成本为(200 πrh + 160πr 2 )元.又依据题意得 200πrh + 160πr 2= 12 000 π,12所以 h = 5r (300- 4r ),π进而 V(r)= πr 2h =(300r - 4r 3).5因为 r>0 ,又由 h>0 可得 r<53,故函数 V(r )的定义域为 (0,5 3).π(2) 因为 V(r )= 5(300r - 4r 3),π 2),故 V ′(r)= (300- 12r 5令 V ′(r)= 0,解得 r 1= 5, r 2 =- 5( 因为 r 2=- 5 不在定义域内,舍去 ).当 r ∈ (0,5)时, V ′(r)>0,故 V( r)在 (0,5)上为增函数;当 r ∈ (5,5 3)时, V ′(r)<0 ,故 V(r )在 (5,5 3)上为减函数.由此可知, V(r )在 r = 5 处获得最大值,此时h = 8.即当 r = 5,h = 8 时,该蓄水池的体积最大.思想升华利用导数解决生活中的优化问题的一般步骤(1) 建模:剖析实质问题中各量之间的关系,列出实质问题的数学模型,写出实质问题中变量之间的函数关系式 y = f(x).(2) 求导:求函数的导数 f ′(x),解方程 f ′(x)= 0.(3) 求最值:比较函数在区间端点和使f ′(x)= 0 的点的函数值的大小,最大 (小 )者为最大 (小 )值.(4) 作答:回归实质问题作答.追踪操练3经市场检查,某商品每吨的价钱为x(1< x<14) 百元时,该商品的月供应量为y 1万吨,y 1= ax +7a 2- a(a>0) ;月需求量为2y 2万吨, y 2=-1 x 2-2241112x + 1.当该商品的需求量大于供应量时,销售量等于供应量; 当该商品的需求量不大于供应量时, 销售量等于需求量,该商品的月销售额等于月销售量与价钱的乘积.(1) 若 a =17,问商品的价钱为多少时,该商品的月销售额最大?(2) 记需求量与供应量相等时的价钱为平衡价钱,若该商品的平衡价钱不低于每吨 6 百元,务实数 a 的取值范围.1解(1) 若 a =7,由 y 2>y 1,得- 2241x 2- 1121x +1>17x + 72(17)2- 17.解得- 40<x<6.因为 1<x<14,所以 1<x<6.设该商品的月销售额为g(x),y 1·x , 1<x<6, 则 g(x) =y 2·x , 6≤x<14.1 133 当 1<x<6 时, g(x)=(x - )x<g(6)= . 727当 6≤x<14 时, g(x)= (- 1 x 2- 1 x +1)x ,224 112则 g ′(x)=- 1(3x 2+ 4x - 224)2241=- 224( x - 8)(3x +28),由 g ′(x)>0 ,得 x<8,所以 g(x)在 [6,8) 上是增函数,在 (8,14)上是减函数,当 x = 8 时, g(x)有最大值 g(8) =367.(2) 设 f(x)= y 1- y 2=1 217 2-1- a ,224x + (+ a)x + a1122因为 a>0,所以 f(x)在区间 (1,14) 上是增函数,若该商品的平衡价钱不低于 6 百元,即函数 f(x)在区间 [6,14) 上有零点,f(6) ≤0, 所以f(14)>0 ,7a 2+10a -11≤0,17解得即0<a ≤ .7a 2+13a>0,721 2已知函数 f(x)= 2x - (2a + 2)x + (2a +1)ln x.(1) 当 a = 0 时,求曲线 y =f(x)在 (1, f(1)) 处的切线方程;(2) 求 f(x)的单一区间;(3) 对随意的 a ∈ 3, 5,x 1, x 2∈[1,2] ,恒有 |f(x 1)- f(x 2)| ≤λ|1 - 1 |,求正实数 λ的取值范围.2 2x 1 x 2押题依照相关导数的综合应用试题多考察导数的几何意义、 导数与函数的单一性、 导数与不等式等基础知识和基本方法,考察分类整合思想、 转变与化归思想等数学思想方法.此题的命制正是依据这个要求进行的,全面考察了考生综合求解问题的能力.解 (1)当 a = 0 时, f(x)=12x 2- 2x + ln x ,f ′(x)=x - 2+ 1,且 f(1)=- 3, f ′(1)= 0,x 2故曲线 y = f(x)在 (1, f(1)) 处的切线方程为3y =- .2(2) f ′(x)= x - (2a +2)+ 2a + 1=[x -(2a +1)]( x -1),x>0.xx①当 2a +1≤0,即 a ≤-1时,函数 f(x)在 (0,1)上单一递减,在 (1,+ ∞)上单一递加;21f(x)在 (2a +1,1)上单一递减,在 (0,2a + 1), (1,+ ∞)②当 0<2a + 1<1,即- <a<0 时,函数2上单一递加;③当 2a +1= 1,即 a = 0 时,函数 f(x)在 (0,+ ∞) 上单一递加;④当 2a + 1>1,即 a>0 时,函数 f(x)在 (1,2a + 1)上单一递减,在 (0,1), (2a + 1,+ ∞)上单一递加.3, 5(3) 依据 (2) 知,当 a ∈ 2 2 时,函数 f( x)在 [1,2] 上单一递减.若 x 1= x 2,则不等式 |f(x 1 2)| ≤λ|1- 1)- f(x x 1 x 2|对随意正实数 λ恒成立,此时 λ∈ (0,+∞). 若 x 1≠x 2,不如设 1≤x 1<x 2≤2, 则 f(x 1)>f(x 2), 1> 1 ,x 1 x 2原不等式即 f(x 1)- f(x 2) ≤λ 1-1,x 1 x 2即 f(x λλ a ∈3 5, x , x ∈ [1,2] 恒成立,1)-对随意的 , 2xxλ3 5设 g(x) =f(x)- x ,则对随意的 a ∈ [ 2,2], x 1, x 2∈ [1,2] ,不等式 g(x 1) ≤g(x 2)恒成立, 即函数 g(x)在 [1,2] 上为增函数,故 g ′(x)≥0对随意的a ∈32,52 , x ∈ [1,2] 恒成立.2a + 1 λg ′(x)= x - (2a + 2)+ x +x 2≥0, 即 x 3- (2a + 2)x 2+ (2a + 1)x + λ≥0,即 (2x - 2x 2)a + x 3- 2x 2+ x + λ≥0对随意的 a ∈ 3, 5恒成立.2 2 因为 x ∈ [1,2] , 2x -2x 2≤0,253 - 2x 2故只需 (2x - 2x) ×+ x +x + λ≥0,2即 x 3- 7x 2+ 6x + λ≥0对随意的 x ∈ [1,2] 恒成立.令 h(x) =x 3- 7x 2+ 6x + λ,x ∈ [1,2] ,则 h ′(x)= 3x 2- 14x + 6<0 恒成立,故函数 h(x)在区间 [1,2] 上是减函数,所以 h(x)min= h(2)=λ- 8,只需λ- 8≥0即可,即λ≥8,故实数λ的取值范围是[8,+∞).A 组专题通关1.函数 f(x)的定义域为R,f(- 1)= 3,对随意 x∈R,f′(x)<3 ,则 f(x)>3x+ 6 的解集为 __________ .答案(-∞,- 1)分析设 g(x)= f(x)- (3x+ 6),则g′(x)= f′(x)- 3<0 ,所以g(x)为减函数,又g(- 1)= f(- 1)- 3= 0,所以依据单一性可知g(x)>0 的解集是{ x|x<- 1} .2.设 a>0,b>0 ,e 是自然对数的底数,若e a+2a=e b+3b,则a与b的大小关系为________.答案a>b分析由 e a+2a= e b+ 3b,有 e a+ 3a>e b+ 3b,令函数 f(x)= e x+ 3x,则 f(x)在 (0,+∞)上单一递加,因为 f( a)> f(b),所以 a>b.3.若不等式 2xln x≥- x2+ax- 3 恒成立,则实数 a 的取值范围为 __________.答案 (-∞, 4]分析条件可转变为 a≤2lnx+ x+3(x>0)恒成立.x设 f(x)= 2ln x+ x+3 x,则 f′(x)=(x+ 3)(x- 1)(x>0).x2当 x∈ (0,1) 时, f′(x)<0 ,函数 f(x)单一递减;当 x∈ (1,+∞)时, f′(x)>0 ,函数 f(x) 单一递加,所以 f( x)min= f(1)= 4.所以 a≤4.4.假如函数f(x)= ax2+ bx+ cln x(a,b,c 为常数, a>0)在区间 (0,1) 和 (2,+∞)上均单一递加,在 (1,2) 上单一递减,则函数 f(x)的零点个数为 ________.答案 1分析由题意可得 f′(x)=2ax+ b+c ,xf′(1)= 2a+ b+ c= 0,b=- 6a,所以 f(x)= a(x2- 6x+ 4ln x),则极大值 f(1)=-则c= 0,解得c=4a,f′(2)= 4a+ b+25a<0 ,极小值 f(2) =a(4ln2- 8)<0 ,又 f(10)= a(40+4ln 10)>0 ,联合函数图象 (图略 )可得该函数只有一个零点.5.做一个无盖的圆柱形水桶,若要使其体积是27π dm3,且用料最省,则圆柱的底面半径为 ________ dm.答案3227分析设圆柱的底面半径为 R dm,母线长为l dm,则 V=πR l =27π,所以 l =R2,要使用料最省,只需使圆柱形水桶的表面积最小.S表2227表54π表表=πR+ 2πRl=πR + 2π·,所以S′= 2πR-2 .令 S′= 0,得 R= 3,则当 R= 3 时, SR R最小.6.对于 x 的方程 x 3- 3x2- a=0 有三个不一样的实数解,则实数 a 的取值范围是 __________ .答案(- 4,0)分析由题意知使函数f( x)= x3- 3x2- a 的极大值大于0 且极小值小于 0 即可,又 f′(x)= 3x2-6x= 3x(x- 2),令 f ′(x)= 0,得 x1= 0,x2=2,当 x<0 时, f′(x)>0;当 0<x<2 时, f′(x)<0 ;当x>2 时, f′(x)>0 ,所以当x= 0 时, f(x)获得极大值,即f(x)极大值= f(0) =-a;当 x= 2 时, f(x)获得极小值,即f(x)极小值= f(2) =- 4- a,-a>0,所以解得- 4<a<0.-4- a<0,7.假如对定义在 R 上的函数 f(x),对随意两个不相等的实数x1,x2,都有 x1f(x1)+x2f(x2)> x1f(x2)+ x2f(x1),则称函数 f(x)为“H 函数”.给出以下函数:① y=- x3+ x+1;② y= 3x- 2(sin x- cos x) ;③ y= e x+1;④ f( x)=ln|x|, x≠0,以上函数是0, x= 0.“H 函数”的全部序号为 ________.答案②③分析因为 x1f(x1)+ x2f(x2)> x1f(x2)+ x2f(x1),即 (x1-x2)[f(x1)- f(x2)]>0 恒成立,所以函数 f(x)在 R 上是增函数.由 y′=- 3x2+ 1>0 得-33,即函数在区间-3, 33 <x< 333π上是增函数,故①不是“H 函数”;由 y′= 3-2(cos x+ sin x)=3- 2 2sin x+4≥3-22>0 恒x“H 函数”;因为④为偶函数,所以成立,所以②为“H 函数”;由 y′= e >0 恒成立,所以③为不行能在 R 上是增函数,所以不是“H 函数”.综上可知,是“H 函数”的有②③ .1324,直线 l: 9x+ 2y+ c=0,若当 x∈ [ - 2,2] 时,函数 y=f(x) 8.已知函数 f(x)= x - x - 3x+33的图象恒在直线l 下方,则 c 的取值范围是 ________.答案(-∞,- 6)分析依据题意知13249c在 x∈ [- 2,2]上恒成立,则-3x-x-3x+<- x-3221323423,设 g(x) = x - x +x+,则 g′(x)= x - 2x+3232则 g′(x)>0 恒成立,所以 g(x)在 [ - 2,2] 上单一递加,所以 g(x)max= g(2)= 3,则 c<- 6.9.如图,OA 是南北方向的一条公路,OB 是北偏东45°方向的一条公路,某景色区的一段界限为曲线C,为方便旅客参观,制定在曲线C 上某点P 处罚别修筑与公路 OA,OB 垂直的两条道路 PM , PN,且 PM, PN 的造价分别为 5 万元 /百米, 40 万元 /百米,成立以下图的平面直c 1 32342>3x - x +2x+3,42角坐标系xOy,则曲线 C 切合函数y= x+x2 (1 ≤x≤ 9)模型,设 PM =x,修筑两条道路PM ,PN 的总造价为f(x)万元,题中所波及长度单位均为百米.(1)求 f(x)的分析式;(2)当 x 为多少时,总造价 f(x)最低?并求出最低造价.解 (1)在以下图的平面直角坐标系中,因为曲线 C 的方程为y= x+422(1 ≤x≤ 9),PM= x,x所以点 P 的坐标为(x, x+422),直线 OB 的方程为 x-y= 0. x则点 P 到直线 x-y= 0 的距离为x- (x+4242x 2 )24=x=22x2.又 PM 的造价为 5 万元 /百米, PN 的造价为 40万元 /百米,则两条道路总造价为f(x)= 5x+432≤x≤ 9).40·= 5(x+2)(12x x(2) 因为 f(x)= 5(x+32 2 ),x645(x3- 64)所以 f′(x)= 5(1-x3 )=x3.令 f′(x)= 0,得 x= 4,列表以下:x(1,4)4(4,9)f′(x)-0+f(x)↘极小值↗所以当 x=4 时,函数 f(x)有最小值,最小值为32f(4) =5×(4+2 )= 30.4B 组 能力提升10.定义在0, π上的函数 f(x) ,f ′(x)是它的导函数,且恒有f(x)<f ′(x)tan x 成立,给出以下2四个关系式,此中正确的选项是________.πππ① 3f 4>2f 3 ; ② f(1)<2f 6 sin 1;π ππ π ③ 2f 6 >f 4 ; ④ 3f 6 <f 3 .答案 ④分析∵ f(x)<f ′(x)tan x ,即 f ′(x)sin x -f(x)cos x>0,∴f(x)′=f ′(x)sin x - f(x)cos xsin x 2>0,sin xf(x) π∴函数 sin x 在 0,2 上单一递加,π πf 6 f 3 π<fπ .进而 < ,即 3f 6 3π πsin6 sin 311.设函数 f(x)在 R 上存在导函数 f ′(x),对随意 x ∈ R ,都有 f(x)+ f(- x)=x 2,且 x ∈(0 ,+∞)时, f ′(x)>x ,若 f(2- a)- f(a) ≥2- 2a ,则实数 a 的取值范围是 ________.答案 (- ∞, 1]分析1 21 22令 g(x)= f(x)- x ,则 g(- x)= f(- x)-2x ,则 g(x)+ g(- x)= f(x) +f(- x)- x = 0,得2g(x)为 R 上的奇函数.当 x>0 时, g ′(x)= f ′(x)- x>0,故 g(x)在 (0,+ ∞)上单一递加,再联合2g(0) =0 及 g(x)为奇函数, 知 g(x)在 R 上为增函数. 又 g(2- a)- g(a)= f(2- a)-(2-a)- [f(a)22- a2 ] =f(2- a)-f(a)- 2+ 2a ≥ (2- 2a)- 2+2a = 0,则 g(2- a) ≥g(a)? 2-a ≥a? a ≤1,即 a ∈ (-∞, 1].12.直线 y = a 分别与直线 y = 2(x + 1),曲线 y = x + ln x 交于点 A ,B ,则 AB 的最小值为 ______.3 答案2分析解方程 2(x + 1)= a ,得 x =a2- 1.设方程 x + ln x =a 的根为 t(t>0) ,则 t + ln t = a ,则 AB = t - a + 1 = t - t + ln t + 1 = t - ln t + 1 .2 2 2 2设 g(t)= t -ln t+ 1(t>0) ,2 211 t - 1则 g ′(t)= 2- 2t = 2t (t>0) ,令 g ′(t)= 0,得 t = 1.当 t ∈ (0,1)时, g ′(t)<0 ;当 t ∈(1 ,+ ∞)时, g ′(t)>0 ,所以 g(t) min = g(1) = 3 2,3的最小值为 3所以 AB ≥ ,所以 AB2.21 3 1 2+ k( k ∈R) .13.已知函数 f(x)=x + kx32(1) 若曲线 y = f(x) 在点 (2, f(2)) 处的切线的斜率为 12,求函数 f(x)的极值;(2) 设 k<0, g(x)= f ′(x),求 F(x)= g(x 2)在区间 (0,2]上的最小值.1 312 2解 (1)函数 f(x)=x + kx+ k 的导数为 f ′(x)= x + kx.32由题意可得 f ′(2)= 4+ 2k =12,解得 k = 4,即 f(x)= 1x 3+ 2x 2+ 4, f ′(x)= x 2+4x. 3当 x>0 或 x<- 4 时, f ′(x)>0 ,f(x)单一递加;当- 4<x<0 时, f ′(x)<0, f(x)单一递减.可得 f( x)的极小值为 f(0)= 4,44f(x)的极大值为f( -4)= 3 .2(2) 由题意得 g(x)= x +kx.2设 t = x 2∈(0,2] ,可得 F(x)=h(t)= t 2 +kt = (t + k )2- k, k<0,- k>0.242①当- 4<k<0 时,- k ∈ (0,2), h(t)min = h(- k)=- k 2 ;2 2 4k②当 k ≤- 4 时,- ∈ [2,+ ∞), h(t)在 (0,2) 上单一递减, h(t)min = h(2) = 4+ 2k.2- k,- 4<k<0,综上可得, h(t)min =44+ 2k , k ≤- 4.。
【步步高高考数学总复习】第二编 函数与基本初等函数Ⅰ

第二编 函数与基本初等函数Ⅰ§2.1 函数及其表示基础自测1. 与函数f (x )=|x |是相同函数的是 ( ) A .y =2x B .y =xx2C .y =e ln xD .y =log 22x答案 A2.设M ={x |0≤x ≤2},N ={y |0≤y ≤3},给出下列四个图形(如图所示),其中能表示从集合M 到集合N 的函数关 系的有 ( )A .0个B .1个C .2个D .3个 答案 C3.若对应关系f :A →B 是从集合A 到集合B 的一个映射,则下面说法错误的是 ( ) A .A 中的每一个元素在集合B 中都有对应元素 B .A 中两个元素在B 中的对应元素必定不同C .B 中两个元素若在A 中有对应元素,则它们必定不同D .B 中的元素在A 中可能没有对应元素答案 B4.如图所示,①②③三个图象各表示两个变量x ,y 的对应关系,则有 ( )A .都表示映射,且①③表示y 为x 的函数B .都表示y 是x 的函数C .仅②③表示y 是x 的函数D .都不能表示y 是x 的函数答案 C 5.已知f (x1)=x 2+5x ,则f (x )= .答案251xx +(x ≠0)例1给出下列两个条件:(1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.解(1)令t =x +1,≨t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+≦). (2)设f (x )=ax 2+bx +c (a ≠0),≨f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2. ≨⎩⎨⎧=+=22444b a a , ≨⎩⎨⎧-==11b a ,又f (0)=3⇒c =3,≨f (x )=x 2-x +3.例2(1)求函数f (x )=229)2(g 1xx x --的定义域;(2)已知函数f (2x )的定义域是[-1,1],求f (log 2x )的定义域. 解 (1)要使函数有意义,则只需要:,3302,090222⎩⎨⎧<<-<>⎪⎩⎪⎨⎧>->-x x x x x x 或即 解得-3<x <0或2<x <3.故函数的定义域是(-3,0)∪(2,3).(2)≧y =f (2x )的定义域是[-1,1],即-1≤x ≤1,≨21≤2x ≤2.≨函数y =f (log 2x )中21≤log 2x ≤2.即log 22≤log 2x ≤log 24,≨2≤x ≤4.故函数f (log 2x )的定义域为[2,4]例3 (12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应提高的比例为0.75x , 同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)³年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?解 (1)依题意,本年度每辆摩托车的成本为1+x (万元),而出厂价为1.2(1+0.75x ) (万元), 销售量为1 000(1+0.6x )(辆).故利润y =[1.2×(1+0.75x )-(1+x )]×1 000×(1+0.6x ), 4分 整理得y =-60x 2+20x +200 (0<x <1). 6分 (2)要保证本年度利润比上一年有所增加,则y -(1.2-1)×1 000>0, 8分 即-60x 2+20x +200-200>0,即3x 2-x <0. 10分 解得0<x <31,适合0<x <1.故为保证本年度利润比上年有所增加,投入成本增加的比例x 的取值范围是0<x <31. 11分答 (1)函数关系式为y =-60x 2+20x +200 (0<x <1). (2)投入成本增加的比例x 的范围是(0,31) 12分例4 已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧<-=>.0,1,0,1,0,2x xx x x(1)画出函数的图象;(2)求f (1),f (-1),f [f (-1)]的值.解 (1)分别作出f (x )在x >0,x =0, x <0段上 的图象,如图所示,作法略. (2)f (1)=12=1, f (-1)=-11- =1,f [f (-1)]=f (1)=1.1.(1)已知f (12+x)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)已知f (x )满足2f (x )+f (x1)=3x ,求f (x ).解 (1)令x2+1=t ,则x =12-t ,≨f (t )=lg 12-t ,≨f (x )=lg 12-x ,x ∈(1,+≦).(2)设f (x )=ax +b ,则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,≨a =2,b =7,故f (x )=2x +7. (3)2f (x )+f (x 1)=3x , ①把①中的x 换成x1,得2f (x1)+f (x )=x 3 ② ①×2-②得3f (x )=6x -x3,≨f (x )=2x -x1.2. 求下列函数的定义域: (1)y =2)3(log 2+-x x +(2x -3)0;(2)y =log (2x +1)(32-4x ).解 (1)由⎪⎩⎪⎨⎧≠-><⎪⎩⎪⎨⎧≠->+>-.3log 2,303202032x ,x x x x x,得≨定义域为(-2,log 23)∪(log 23,3).(2)由⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-><⎪⎪⎩⎪⎪⎨⎧≠+>+>-021,251120120432x ,x x ,x x x 得≨定义域为(-21,0)∪(0,25).3.等腰梯形ABCD 的两底分别为AD =2a ,BC =a ,∠BAD =45°,作直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域. 解 作BH ⊥AD ,H 为垂足,CG ⊥AD ,G 为垂足, 依题意,则有AH =2a ,AG =23a .(1)当M 位于点H 的左侧时,N ∈AB ,≧AM =x ,∠BAD =45°. ≨MN =x .≨y =S △AMN =21x 2(0≤x ≤2a ).(2)当M 位于HG 之间时, 由于AM =x ,≨MN =2a ,BN =x -2a .≨y =S 直角梯形AMNB =221a ∙[x +(x -2a )]=21ax -).232(82a x a a≤<(3)当M 位于点G 的右侧时,≧AM =x ,MN =MD =2a -x . ≨y =S 梯形ABCD -S △MDN =).223(45221)44(2143)2(21)2(221222222a x a a ax xx ax aa x a a a a ≤<-+-=+--=--+∙综上:y =⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈-+-⎥⎦⎤ ⎝⎛∈-⎢⎣⎡⎥⎦⎤∈a a x a ax x a a x aax a x x2,2345221.23,28212,02122224.如右图所示,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形。
【步步高】高中数学 第2章 函数第二章章末复习课配套名师课件 苏教版必修1

研一研·题型解法、解题更高效
例 3 设函数 f(x)=x2-2|x|-1 (-3≤x≤3). (1)证明 f(x)是偶函数; (2)画出这个函数的图象; (3)指出函数 f(x)的单调区间,并说明在各个单调区间上 f(x)是增函 数还是减函数; (4)求函数的值域. (1)证明 f(-x)=(-x)2-2|-x|-1 =x2-2|x|-1=f(x), 即 f(-x)=f(x),∴f(x)是偶函数.
2
-a+34,
∵a≥-12,故函数 f(x)在[a,+∞)上单调递增,
从而函数 f(x)在[a,+∞)上的最小值为 f(a)=a2+1. 综上得,当-12≤a≤12时,函数 f(x)的最小值为 a2+1.
研一研·题型解法、解题更高效
跟踪训练 4 已知函数 f(x)对于任意 x,y∈R,总有 f(x)+f(y)=f(x+y), 且当 x>0 时,f(x)<0,f(1)=-23. (1)求证:f(x)在 R 上是减函数; (2)求 f(x)在[-3,3]上的最大值和最小值.
研一研·题型解法、解题更高效
例 4 已知函数 f(x)=x2+|x-a|+1,a∈R. (1)试判断 f(x)的奇偶性; (2)若-12≤a≤12,求 f(x)的最小值. 解 (1)当 a=0 时, 函数 f(-x)=(-x)2+|-x|+1=f(x), 此时,f(x)为偶函数.
当 a≠0 时, f(a)=a2+1,f(-a)=a2+2|a|+1, f(a)≠f(-a),f(a)≠-f(-a), 此时,f(x)为非奇非偶函数.
(1)证明 方法一 ∵函数 f(x)对于任意 x,y∈R 总有 f(x)+f(y)=f(x+y), ∴令 x=y=0,得 f(0)=0. 再令 y=-x,得 f(-x)=-f(x). 在 R 上任取 x1>x2,则 x1-x2>0, f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2). 又∵x>0 时,f(x)<0,而 x1-x2>0, ∴f(x1-x2)<0,即 f(x1)<f(x2). 因此 f(x)在 R 上是减函数.
【步步高】(江苏专用)高考数学二轮专题突破 专题二 第1讲 三角函数的图象与性质 文

第1讲 三角函数的图象与性质【高考考情解读】 1.对三角函数的图象和性质的考查中,以图象的变换,函数的单调性、奇偶性、周期性、对称性、最值等作为热点内容,并且往往与三角变换公式相互联系,有时也与平面向量,解三角形或不等式内容相互交汇.2.题型多以客观题来呈现,如果设置解答题一般与三角变换、解三角形、平面向量等知识进行综合考查,题目难度为中、低档.1. 三角函数定义、同角关系与诱导公式(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=y x.各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦. (2)同角关系:sin 2α+cos 2α=1,sin αcos α=tan α.(3)诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.2. 三角函数的图象及常用性质3. 三角函数的两种常见变换考点一 三角函数的概念、诱导公式及同角三角函数的基本关系问题例1 (1)如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针针尖位置P (x ,y ).若初始位置为P 0⎝⎛⎭⎪⎫32,12,当秒针从P 0(此时t =0)正常开始走时,那么点P 的纵坐标y 与时间t 的函数关系为________.(2)(2012·山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________.答案 (1)y =sin ⎝ ⎛⎭⎪⎫-π30t +π6 (2)(2-sin 2,1-cos 2)解析 (1)由三角函数的定义可知,初始位置点P 0的弧度为π6,由于秒针每秒转过的弧度为-π30,针尖位置P 到坐标原点的距离为1,故点P 的纵坐标y 与时间t 的函数关系可能为y =sin ⎝ ⎛⎭⎪⎫-π30t +π6.(2)利用平面向量的坐标定义、解三角形知识以及数形结合思想求解.设A (2,0),B (2,1),由题意知劣弧PA 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎪⎫2-π2=2-sin 2,y =1+1×sin ⎝⎛⎭⎪⎫2-π2=1-cos 2,∴OP →的坐标为(2-sin 2,1-cos 2).(1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关.(2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如化切为弦、化异为同、化高为低、化繁为简等.(1)若sin ⎝⎛⎭⎪⎫π6-α=a ,则cos ⎝ ⎛⎭⎪⎫2π3-α=________.答案 -a 解析 cos ⎝⎛⎭⎪⎫2π3-α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3+α =-cos ⎝ ⎛⎭⎪⎫π3+α =-sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=-sin ⎝ ⎛⎭⎪⎫π6-α=-a .(2)如图,以Ox 为始边作角α(0<α<π),终边与单位圆相交于点P ,已知点P 的坐标为⎝ ⎛⎭⎪⎫-35,45.求sin 2α+cos 2α+11+tan α的值.解 由三角函数定义, 得cos α=-35,sin α=45,∴原式=2sin αcos α+2cos 2α1+sin αcos α=2cos αα+cosαsin α+cos αcos α=2cos 2α=2×⎝ ⎛⎭⎪⎫-352=1825.考点二 三角函数y =A sin(ωx +φ)的图象及解析式例2 如图,它是函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的部分图象,由图中条件,写出该函数的解析式.本题考查已知图象上的点,求三角函数的解析式,解题的关键是正确理解参数A ,ω,φ的含义,以及它们对函数图象的作 用,抓住两者联系解决问题. 解 由图知A =5,由T 2=5π2-π=3π2,得T =3π, ∴ω=2πT =23,此时y =5sin ⎝ ⎛⎭⎪⎫2x 3+φ.下面求初相φ. 方法一 (单调性法):∵点(π,0)在递减的那段曲线上, ∴2π3+φ∈⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ).由sin ⎝⎛⎭⎪⎫2π3+φ=0得2π3+φ=2k π+π(k ∈Z ), ∴φ=2k π+π3(k ∈Z ).∵|φ|<π,∴φ=π3.∴该函数的解析式为y =5sin ⎝ ⎛⎭⎪⎫2x 3+π3.方法二 (最值点法):将最高点坐标⎝ ⎛⎭⎪⎫π4,5代入y =5sin ⎝ ⎛⎭⎪⎫2x 3+φ,得5sin ⎝ ⎛⎭⎪⎫π6+φ=5, ∴π6+φ=2k π+π2(k ∈Z ), ∴φ=2k π+π3(k ∈Z ).又|φ|<π,∴φ=π3.∴该函数的解析式为y =5sin ⎝⎛⎭⎪⎫2x 3+π3.(1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.(1)(2013·四川改编)函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2) 的部分图象如图所示,则ω,φ的值分别是________. 答案 2,-π3解析 ∵34T =5π12-⎝ ⎛⎭⎪⎫-π3,T =π,∴ω=2,又2×5π12+φ=2k π+π2,k ∈Z ,∴φ=2k π-π3,又φ∈⎝ ⎛⎭⎪⎫-π2,π2,∴φ=-π3.(2)(2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2, cos B =79.①求a ,c 的值; ②求sin(A -B )的值. 解 ①由余弦定理得:cos B =a 2+c 2-b 22ac =a 2+c 2-42ac =79,即a 2+c 2-4=149ac .∴(a +c )2-2ac -4=149ac ,∴ac =9.由⎩⎪⎨⎪⎧a +c =6,ac =9得a =c =3.②在△ABC 中,cos B =79,∴sin B =1-cos 2B =1-⎝ ⎛⎭⎪⎫792=429. 由正弦定理得:asin A =bsin B ,∴sin A =a sin B b =3×4292=223.又A =C ,∴0<A <π2,∴cos A =1-sin 2A =13,∴sin (A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.考点三 三角函数的性质例3 (2012·北京)已知函数f (x )=x -cos x xsin x.(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.先化简函数解析式,再求函数的性质.解 (1)由sin x ≠0得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }. 因为f (x )=x -cos x xsin x=2cos x (sin x -cos x ) =sin 2x -cos 2x -1 =2sin ⎝ ⎛⎭⎪⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ).由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ),得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ).所以f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫k π-π8,k π和⎝ ⎛⎦⎥⎤k π,k π+3π8(k ∈Z ).函数y =A sin(ωx +φ)的性质及应用的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.(1)已知函数f (x )=sin x +cos x ,g (x )=sin x -cos x ,有下列四个命题:①将f (x )的图象向右平移π2个单位可得到g (x )的图象;②y =f (x )g (x )是偶函数;③f (x )与g (x )均在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增; ④y =f xg x的最小正周期为2π. 其中真命题是________.(填序号) 答案 ①②③解析 f (x )=2sin(x +π4),g (x )=sin x -cos x =2sin(x -π4),显然①正确;函数y =f (x )g (x )=sin 2x -cos 2x =-cos 2x , 其为偶函数,故②正确;由0≤x +π4≤π2及-π2≤x -π4≤0都可得-π4≤x ≤π4,所以由图象可判断函数f (x )=2sin(x +π4)和函数g (x )=2sin(x -π4)在[-π4,π4]上都为增函数,故③正确; 函数y =f xg x =sin x +cos x sin x -cos x =1+tan x tan x -1=-tan(x +π4),由周期性定义可判断其周期为π,故④不正确.(2)(2013·安徽)已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π. ①求ω的值;②讨论f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的单调性.解 ①f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π4=22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎪⎫2ωx +π4+ 2.因为f (x )的最小正周期为π,且ω>0. 从而有2π2ω=π,故ω=1.②由①知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4. 当π4≤2x +π4≤π2, 即0≤x ≤π8时,f (x )单调递增;当π2≤2x +π4≤5π4, 即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎢⎡⎦⎥⎤0,π8上单调递增,在区间⎣⎢⎡⎦⎥⎤π8,π2上单调递减.1. 求函数y =A sin(ωx +φ)(或y =A cos(ωx +φ),或y =A tan(ωx +φ))的单调区间(1)将ω化为正.(2)将ωx +φ看成一个整体,由三角函数的单调性求解. 2. 已知函数y =A sin(ωx +φ)+B (A >0,ω>0)的图象求解析式(1)A =y max -y min2,B =y max +y min2.(2)由函数的周期T 求ω,ω=2πT.(3)利用与“五点法”中相对应的特殊点求φ.3. 函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点. 4. 求三角函数式最值的方法(1)将三角函数式化为y =A sin(ωx +φ)+B 的形式,进而结合三角函数的性质求解. (2)将三角函数式化为关于sin x ,cos x 的二次函数的形式,进而借助二次函数的性质求解. 5. 特别提醒:进行三角函数的图象变换时,要注意无论进行什么样的变换都是变换变量本身.1. 假设若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”.给出下列函数:①f (x )=sin x -cos x ;②f (x )=2(sin x +cos x ); ③f (x )=2sin x +2;④f (x )=sin x .则其中属于“互为生成函数”的是________.(填序号) 答案 ①②2. 已知函数f (x )=sin ωx ·cos ωx +3cos 2ωx -32(ω>0),直线x =x 1,x =x 2是y =f (x )图象的任意两条对称轴,且|x 1-x 2|的最小值为π4.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围.解 (1)f (x )=12sin 2ωx +3×1+cos 2ωx 2-32=12sin 2ωx +32cos 2ωx =sin(2ωx +π3),由题意知,最小正周期T =2×π4=π2,T =2π2ω=πω=π2,所以ω=2, ∴f (x )=sin ⎝ ⎛⎭⎪⎫4x +π3. (2)将f (x )的图象向右平移π8个单位后, 得到y =sin(4x -π6)的图象,再将所得图象所有点的横坐标伸长到原来的2倍, 纵坐标不变,得到y =sin(2x -π6)的图象.所以g (x )=sin(2x -π6).令2x -π6=t ,∵0≤x ≤π2,∴-π6≤t ≤5π6.g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数g (t )=sin t 与y =-k 在区间[-π6,5π6]上有且只有一个交点.如图,由正弦函数的图象可知-12≤-k <12或-k =1.∴-12<k ≤12或k =-1.(推荐时间:60分钟)一、填空题1. 点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________. 答案 ⎝ ⎛⎭⎪⎫-12,32解析 记α=∠POQ ,由三角函数的定义可知,Q 点的坐标(x ,y )满足x =cos α=cos 2π3=-12, y =sin α=sin2π3=32. 2. 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.答案 -8解析 因为sin θ=y42+y2=-255, 所以y <0,且y 2=64,所以y =-8. 3. 已知α为第二象限角,sin α+cos α=33,则cos 2α等于________. 答案 -53解析 因为sin α+cos α=33, 两边平方得1+2sin αcos α=13,所以sin 2α=-23.由于sin α+cos α=2sin ⎝ ⎛⎭⎪⎫α+π4=33>0, 且α为第二象限角,所以2k π+π2<α<2k π+3π4,k ∈Z ,所以4k π+π<2α<4k π+3π2,k ∈Z , 所以cos 2α=-1-sin 22α=-1-49=-53. 4. 将函数y =cos ⎝⎛⎭⎪⎫x -π3的图象上各点横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数的解析式为________. 答案 y =cos ⎝ ⎛⎭⎪⎫12x -π4解析 y =cos ⎝⎛⎭⎪⎫x -π3―――――――――→横坐标伸长到原来的2倍纵坐标不变5. 若函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点与最低点,且OM →·ON →=0,则A ·ω 等于________. 答案7π6解析 由题中图象知T 4=π3-π12,所以T =π,所以ω=2.则M ⎝ ⎛⎭⎪⎫π12,A ,N ⎝ ⎛⎭⎪⎫7π12,-A 由OM →·ON →=0,得7π2122=A 2,所以A =7π12,所以A ·ω=7π6. 6. 已知函数f (x )=2sin(ωx +φ) (ω>0)的图象关于直线x =π3对称,且f ⎝ ⎛⎭⎪⎫π12=0,则ω的最小值为________. 答案 2解析 由f ⎝ ⎛⎭⎪⎫π12=0知⎝ ⎛⎭⎪⎫π12,0是f (x )图象的一个对称中心,又x =π3是一条对称轴,所以应有⎩⎪⎨⎪⎧ω>02πω≤4⎝ ⎛⎭⎪⎫π3-π12,解得ω≥2,即ω的最小值为2.7. (2012·课标全国改编)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤12,54解析 由π2<x <π,ω>0得ωπ2+π4<ωx +π4<ωπ+π4,又y =sin x 在⎝ ⎛⎭⎪⎫π2,3π2上递减,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2ωπ+π4≤3π2,解得12≤ωπ≤54.8. 函数f (x )=sin πx +cos πx +|sin πx -cos πx |对任意的x ∈R 都有f (x 1)≤f (x )≤f (x 2)成立,则|x 2-x 1|的最小值为________.答案 34解析 依题意得,当sin πx -cos πx ≥0, 即sin πx ≥cos πx 时,f (x )=2sin πx ; 当sin πx -cos πx <0,即sin πx <cos πx 时,f (x )=2cos πx .令f (x 1)、f (x 2)分别是函数f (x )的最小值与最大值, 结合函数y =f (x )的图象可知,|x 2-x 1|的最小值是34.9.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,则m 的取值范围为________. 答案 [1,2)解析 函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π6-m 在x ∈[0,π2]上有两个不同的零点,等价于方程m =2sin ⎝ ⎛⎭⎪⎫2x -π6在区间[0,π2]上有两解. 作出如图的图象,由于右端点的坐标是⎝⎛⎭⎪⎫π2,1,由图可知,m ∈[1,2).10.关于函数f (x )=sin 2x -cos 2x 有下列命题:①y =f (x )的周期为π;②x =π4是y =f (x )的一条对称轴;③⎝ ⎛⎭⎪⎫π8,0是y =f (x )的一个对称中心;④将y =f (x )的图象向左平移π4个单位,可得到y =2sin 2x 的图象,其中正确命题的序号是______(把你认为正确命题的序号都写上). 答案 ①③解析 由f (x )=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4, 得T =2π2=π,故①对;f ⎝ ⎛⎭⎪⎫π4=2sin π4≠±2,故②错; f ⎝ ⎛⎭⎪⎫π8=2sin 0=0,故③对; y =f (x )的图象向左平移π4个单位,得y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π4-π4=2sin ⎝ ⎛⎭⎪⎫2x +π4,故④错.故填①③. 二、解答题11.已知函数f (x )=12sin 2x sin φ+cos 2x cos φ-12·sin ⎝ ⎛⎭⎪⎫π2+φ(0<φ<π),其图象过点⎝⎛⎭⎪⎫π6,12.(1)求φ的值;(2)将函数y =f (x )的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在⎣⎢⎡⎦⎥⎤0,π4上的最大值和最小值.解 (1)∵f (x )的图象过点⎝ ⎛⎭⎪⎫π6,12, ∴12=12sin π3sin φ+cos 2π6cos φ-12sin ⎝ ⎛⎭⎪⎫π2+φ.化简得32sin φ+12cos φ=1,即sin ⎝⎛⎭⎪⎫φ+π6=1. ∵0<φ<π,∴π6<φ+π6<7π6.因此φ=π3.(2)由(1)知f (x )=34sin 2x +12cos 2x -14=34sin 2x +14cos 2x =12sin ⎝⎛⎭⎪⎫2x +π6.将f (x )图象上所有点的横坐标缩短为原来的12,得函数y =g (x )的图象,∴g (x )=12sin ⎝⎛⎭⎪⎫4x +π6.∵0≤x ≤π4,∴π6≤4x +π6≤76π.因此当4x +π6=π2时,g (x )有最大值12;当4x +π6=76π时,g (x )有最小值-14.故g (x )的最大值、最小值分别为12与-14.12. (2012·湖南)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫x ∈R ,ω>0,0<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)求函数g (x )=f ⎝ ⎛⎭⎪⎫x -π12-f ⎝ ⎛⎭⎪⎫x +π12的单调递增区间.解 (1)由题设图象知,周期T =2⎝ ⎛⎭⎪⎫11π12-5π12=π,所以ω=2πT=2.因为点⎝⎛⎭⎪⎫5π12,0在函数图象上,所以A sin ⎝ ⎛⎭⎪⎫2×5π12+φ=0,即sin ⎝⎛⎭⎪⎫5π6+φ=0. 又因为0<φ<π2,所以5π6<5π6+φ<4π3.从而5π6+φ=π,即φ=π6.又点(0,1)在函数图象上,所以A sin π6=1,解得A =2.故函数f (x )的解析式为f (x )=2sin ⎝⎛⎭⎪⎫2x +π6. (2)g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6-2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π12+π6=2sin 2x -2sin ⎝ ⎛⎭⎪⎫2x +π3=2sin 2x -2⎝ ⎛⎭⎪⎫12sin 2x +32cos 2x=sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以函数g (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .13.已知函数f (x )=3sin 2x -2sin 2x +2,x ∈R .(1)求函数f (x )的最大值及对应的x 的取值集合; (2)画出函数y =f (x )在[0,π]上的图象.解 (1)f (x )=3sin 2x +cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π6+1,当2x +π6=2k π+π2 (k ∈Z )时,f (x )取最大值3,此时x 的取值集合为{x |x =k π+π6,k ∈Z }.(2)列表如下:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 函数的应用1.(2016·天津改编)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0,x ∈R).若f (x )在区间(π,2π)内没有零点,则ω的取值范围是__________. 答案 ⎝⎛⎦⎤0,18∪⎣⎡⎦⎤14,58 解析 f (x )=1-cos ωx 2+12sin ωx -12=12(sin ωx -cos ωx )=22sin ⎝⎛⎭⎫ωx -π4. 因为函数f (x )在区间(π,2π)内没有零点, 所以T 2>2π-π,所以πω>π,所以0<ω<1.当x ∈(π,2π)时,ωx -π4∈⎝⎛⎭⎫ωπ-π4,2ωπ-π4,若函数f (x )在区间(π,2π)内有零点,则ωπ-π4<k π<2ωπ-π4 (k ∈Z),即k 2+18<ω<k +14(k ∈Z). 当k =0时,18<ω<14;当k =1时,58<ω<54.所以函数f (x )在区间(π,2π)内没有零点时,0<ω≤18或14≤ω≤58.2.(2016·天津改编)已知函数f (x )=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x <0,log a (x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰有两个不相等的实数解,则a 的取值范围是____________. 答案 ⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34解析 由y =log a (x +1)+1在[0,+∞)上递减,得0<a <1. 又由f (x )在R 上单调递减,则⎩⎪⎨⎪⎧02+(4a -3)·0+3a ≥f (0)=1,3-4a 2≥0,⇒13≤a ≤34. 如图所示,在同一坐标系中作出函数y =|f (x )|和y =2-x 的图象.由图象可知,在[0,+∞)上,|f (x )|=2-x 有且仅有一个解.故在(-∞,0)上,|f (x )|=2-x 同样有且仅有一个解.当3a >2,即a >23时,由x 2+(4a -3)x +3a =2-x (其中x <0),得x 2+(4a-2)x +3a -2=0(其中x <0),则Δ=(4a -2)2-4(3a -2)=0,解得a =34或a =1(舍去);当1≤3a ≤2,即13≤a ≤23时,由图象可知,符合条件.综上所述,a ∈⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34.3.(2016·山东)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 答案 (3,+∞)解析 如图,当x ≤m 时,f (x )=|x |;当x >m 时,f (x )=x 2-2mx +4m ,在(m ,+∞)为增函数,若存在实数b ,使方程f (x )=b 有三个不同的根,则m 2-2m ·m +4m <|m |.∵m >0,∴m 2-3m >0,解得m >3.4.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒),平均车长l (单位:米)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为________辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 答案 (1)1 900 (2)100 解析 (1)当l =6.05时,F =76 000vv 2+18v +121=76 000v +121v+18≤76 0002v ·121v+18=76 00022+18=1 900. 当且仅当v =11 米/秒时等号成立,此时车流量最大为1 900辆/时. (2)当l =5时,F =76 000v v 2+18v +100=76 000v +100v +18≤76 0002v ·100v+18=76 00020+18=2 000. 当且仅当v =10 米/秒时等号成立,此时车流量最大为2 000 辆/时. 比(1)中的最大车流量增加100 辆/时.1.求函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.2.函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题.热点一 函数的零点 1.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b )使得f (c )=0,这个c 也就是方程f (x )=0的根.2.函数的零点与方程根的关系函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.例1 (1)函数f (x )=log 2()x +2-x 2的零点个数为________. (2)函数f (x )=3-x +x 2-4的零点个数是________.答案 (1)2 (2)2解析 (1)令f ()x =log 2()x +2-x 2=0,log 2()x +2=x 2,分别画出左右两个图象如图所示,由此可知这两个图象有两个交点,也即原函数有两个零点.(2)f (x )=3-x +x 2-4的零点个数,即方程3-x =4-x 2的根的个数,即函数y =3-x =(13)x 与y =4-x 2图象的交点个数.作出函数y =(13)x 与y =4-x 2的图象,如图所示,可得函数f (x )的零点个数为2.思维升华 函数零点(即方程的根)的确定问题,常见的有:(1)函数零点值大致存在区间的确定;(2)零点个数的确定;(3)两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同的方程多以数形结合法求解.跟踪演练1 (1)函数f (x )=x 2-4x +5-2ln x 的零点个数为________.(2)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为________.答案 (1)2 (2)3解析 (1)由题意可得x >0,求函数f (x )=x 2-4x +5-2ln x 的零点个数,即求方程ln x =12(x-2)2+12的解的个数,数形结合(图略)可得,函数y =ln x 的图象和函数y =12(x -2)2+12的图象有2个交点,则f (x )=x 2-4x +5-2ln x 有2个零点.(2)函数g (x )的零点个数,即函数y =f (1-x )的图象与直线y =1的交点个数.令t =1-x ,则f (t )=⎩⎪⎨⎪⎧(1-t )2+2(1-t ),t ≥1,|lg(1-t )|,t <1.作出函数y =f (t )的图象,与直线y =1有3个交点, 故g (x )有3个零点.热点二 函数的零点与参数的范围解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.例2 (1)已知函数f (x )=⎩⎪⎨⎪⎧a -|x +1|,x ≤1,(x -a )2,x >1,函数g (x )=2-f (x ) ,若函数y =f (x )-g (x )恰有4个零点,则实数a 的取值范围是________.(2)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤1,f (x -1),x >1,g (x )=kx +1,若方程f (x )-g (x )=0有两个不同的实根,则实数k 的取值范围是________. 答案 (1)(2,3] (2)(e -12,1)∪(1,e -1]解析 (1)由题意当y =f (x )-g (x )=2[]f (x )-1=0时,即方程f (x )=1有4个解. 又由函数y =a -||x +1与函数y =(x -a )2的大致形状可知,直线y =1与函数f (x )=⎩⎪⎨⎪⎧a -|x +1|,x ≤1,(x -a )2,x >1的左右两支曲线都有两个交点,如图所示.那么,有⎩⎪⎨⎪⎧(1-a )2>1,f (-1)>1,f (1)≤1,即⎩⎪⎨⎪⎧a >2或a <0,a >1,a -2≤1,解得2<a ≤3.(2)画出函数f (x )的大致图象如下:则考虑临界情况,可知当函数g (x )=kx +1的图象过A (1,e),B (2,e)时直线斜率k 1=e -1,k 2=e -12,并且当k =1时,直线y =x +1与曲线y =e x 相切于点(0,1),则得到当函数f (x )与g (x )图象有两个交点时,实数k 的取值范围是(e -12,1)∪(1,e -1].思维升华 (1)方程f (x )=g (x )根的个数即为函数y =f (x )和y =g (x )图象交点的个数;(2)关于x 的方程f (x )-m =0有解,m 的范围就是函数y =f (x )的值域.跟踪演练2 (1)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是______________________.(2)已知函数f (x )=⎩⎪⎨⎪⎧2x -a ,x ≥3,ln|x -1|,x <3,若函数f (x )在R 上有三个不同的零点,则a 的取值范围是__________.答案 (1)(-∞,2ln 2-2] (2)[8,+∞)解析 (1)f ′(x )=e x -2,当x ∈(-∞,ln 2)时,f ′(x )<0;当x ∈(ln 2,+∞)时,f ′(x )>0,所以f (x )min =f (ln 2)=2-2ln 2+a .由于2()0,2aaf e =>所以f (x )有零点当且仅当2-2ln 2+a ≤0,所以a ≤2ln 2-2.(2)当x <3时,令ln|x -1|=0,求得x =0或x =2, 即f (x )在(-∞,3)上有两个不同的零点.由题意,知f (x )=2x -a 在[3,+∞)上有且仅有一个零点,则由f (x )=0,得a =2x ∈[8,+∞).热点三 函数的实际应用问题解决函数模型的实际应用问题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是:(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.例3 某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x (单位:元,x >0)时,销售量q (x )(单位:百台)与x 的关系满足:若x 不超过20,则q (x )=1 260x +1;若x 大于或等于180,则销售量为零;当20<x <180时,q (x )=a -b x (a ,b为实常数).(1)求函数q (x )的表达式;(2)当x 为多少时,总利润(单位:元)取得最大值,并求出该最大值. 解 (1)当20<x <180时,由⎩⎨⎧ a -b ·20=60,a -b ·180=0,得⎩⎨⎧a =90,b =3 5.故q (x )=⎩⎪⎨⎪⎧1 260x +1, 0<x ≤20,90-35·x , 20<x <180,0, x ≥180.(2)设总利润f (x )=x ·q (x ),由(1)得,f (x )=⎩⎪⎨⎪⎧126 000xx +1, 0<x ≤20,9 000x -3005·x x , 20<x <180,0, x ≥180.当0<x ≤20时,f (x )=126 000x x +1=126 000-126 000x +1,f (x )在(0,20]上单调递增,所以当x =20时,f (x )有最大值120 000. 当20<x <180时,f (x )=9 000x -3005·x x , f ′(x )=9 000-4505·x , 令f ′(x )=0,得x =80.当20<x <80时,f ′(x )>0,f (x )单调递增, 当80<x <180时,f ′(x )<0,f (x )单调递减, 所以当x =80时,f (x )有最大值240 000. 当x >180时,f (x )=0.答 当x 等于80元时,总利润取得最大值240 000元.思维升华 (1)关于解决函数的实际应用问题,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去. (2)对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.跟踪演练3 (1)国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超过部分的14%纳税;超过4 000元的按全稿酬的11%纳税.某人出版了一本书共纳税420元,则他的稿费为________元.(2)某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元. 答案 (1)3 800 (2)4 050解析 (1)假设个人稿费为x 元,所缴纳税费为y 元,由已知条件可知y 为x 的函数,且满足 y =错误! 共纳税420元,所以有0.14(x -800)=420⇒x =3 800.(2)设每辆车的月租金为x (x >3 000)元,则租赁公司月收益为y =(100-x -3 00050)·(x -150)-x -3 00050×50,整理得y =-x 250+162x -21 000=-150(x -4 050)2+307 050. 所以当x =4 050时,y 取最大值为307 050,即当每辆车的月租金定为4 050元时,租赁公司的月收益最大为307 050元.1.函数f (x )=2sin πx -x +1的零点个数为________.押题依据 函数的零点是高考的一个热点,利用函数图象的交点确定零点个数是一种常用方法. 答案 5解析 令2sin πx -x +1=0,则2sin πx =x -1,令h (x )=2sin πx ,g (x )=x -1,则f (x )=2sin πx -x +1的零点个数问题就转化为两个函数h (x )与g (x )图象的交点个数问题.h (x )=2sin πx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,因为h (1)=g (1),h (52)>g (52),g (4)=3>2,g (-1)=-2,所以两个函数图象的交点一共有5个,所以f (x )=2sin πx -x +1的零点个数为5.2.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,若函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是____________.押题依据 利用函数零点个数可以得到函数图象的交点个数,进而确定参数范围,较好地体现了数形结合思想. 答案 [-1,2)解析 g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2,x >a ,x 2+3x +2,x ≤a ,要使函数g (x )恰有三个不同的零点,只需g (x )=0恰有三个不同的实数根,所以⎩⎪⎨⎪⎧ x >a ,-x +2=0或⎩⎪⎨⎪⎧x ≤a ,x 2+3x +2=0,所以g (x )=0的三个不同的实数根为x =2(x >a ),x =-1(x ≤a ),x =-2(x ≤a ). 再借助数轴,可得-1≤a <2. 所以实数a 的取值范围是[-1,2).3.已知f ()x 是定义在R 上的偶函数,且对于任意的x ∈[)0,+∞,满足f ()x +2=f ()x ,若当x ∈[)0,2,f ()x =||x 2-x -1,则函数 y =f ()x -1在区间[]-2,4上的零点个数为________.押题依据 结合函数的奇偶性、周期性等性质考查函数的零点问题,利用数形结合思想解决此类问题是关键. 答案 7解析 ∵偶函数f ()x 满足f ()x +2=f ()x ,∴函数f ()x 的周期为 2.又当x ∈[)0,2,f ()x =||x 2-x -1,∴f ()2=f ()0=1,f ()1=1,∴f ()2=f ()0=f ()-2=f ()4=f ()-1=f ()0=f ()3=1.函数y =f ()x -1的零点的个数等于方程f ()x -1=0解的个数.在区间[]-2,4上,方程f ()x -1=0的解有:-2,-1,0,1,2,3,4共7个.4.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________m.押题依据 函数的实际应用是高考的必考点,函数的最值问题是应用问题考查的热点. 答案 20解析 如图,过A 作AH ⊥BC 交于点H ,交DE 于点F ,易知DE BC =x40=AD AB =AF AH ⇒AF =x ⇒FH =40-x ,则S =x (40-x )≤(402)2,当且仅当40-x =x ,即x =20时取等号,所以满足题意的边长x 为20 m.A 组 专题通关1.(教材改编)若函数f (x )=x 2-mx +3在R 上存在零点,则实数m 的取值范围是________________.答案 (-∞,-23]∪[23,+∞)解析 ∵函数f (x )=x 2-mx +3在R 上存在零点, ∴x 2-mx +3=0有解,∴Δ=m 2-4×3≥0, 解得,m ≥23或m ≤-2 3.2.已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y =f (x )在区间[1,6]上的零点至少有______个. 答案 3解析 依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点的存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个. 3.已知x 0(x 0>1)是函数f (x )=ln x -1x -1的一个零点,若a ∈(1,x 0),b ∈(x 0,+∞),则f (a )________0,f (b )________0. 答案 < >解析 由题意得f (x 0)=0,又y =ln x 在(1,+∞)上单调递增,y =-1x -1在(1,+∞)上单调递增,故f (x )在(1,+∞)上单调递增.又1<a <x 0<b ,所以f (a )<f (x 0)<f (b ),即f (a )<0<f (b ).4.函数f (x )=⎩⎪⎨⎪⎧|ln x |-1,x >0,-x 2+2x +3,x ≤0的零点的个数为________.答案 3解析 当x >0时,令f (x )=|ln x |-1=0,解得x =e 或1e,均满足题意;当x ≤0时,令f (x )=-x 2+2x +3=0,解得x =-1(x =3舍去).所以函数y =f (x )的零点的个数为3.5.已知定义域为R 的函数f (x )=⎩⎪⎨⎪⎧1|x -1| (x ≠1),1 (x =1),若关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实根x 1,x 2,x 3,则x 21+x 22+x 23=________.答案 5解析 作出f (x )的图象,如图所示.由图象知,只有当f (x )=1时有3个不同的实根;∵关于x 的方程f 2(x )+bf (x )+c =0有3个不同的实根x 1,x 2,x 3, ∴必有f (x )=1,从而x 1=1,x 2=2,x 3=0,故可得x 21+x 22+x 23=5.6.若函数f (x )=⎩⎪⎨⎪⎧2x-a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.答案 (0,1]解析 当x >0时,由f (x )=ln x =0,得x =1. 因为函数f (x )有两个不同的零点,则当x ≤0时,函数f (x )=2x -a 有一个零点, 令f (x )=0得a =2x ,因为0<2x ≤20=1,所以0<a ≤1, 所以实数a 的取值范围是0<a ≤1.7.已知定义在R上的函数f(x)满足:①图象关于(1,0)点对称;②f(-1+x)=f(-1-x);③当x∈[-1,1]时,f(x)=错误!则函数1()()2xy f x=-在区间[-3,3]上的零点的个数为________.答案 5解析因为f(-1+x)=f(-1-x),所以函数f(x)的图象关于直线x=-1对称,又函数f(x)的图象关于点(1,0)对称,如图所示,画出f(x)以及1()()2xg x=在[-3,3]上的图象,由图可知,两函数图象的交点个数为5,所以函数1()()2xy f x=-在区间[-3,3]上的零点的个数为5. 8.我们把形如y=b|x|-a(a>0,b>0)的函数因其图象类似于汉字中的“囧”字,故生动地称为“囧函数”,若当a=1,b=1时的“囧函数”与函数y=lg|x|的交点个数为n,则n=________.答案 4解析由题意知,当a=1,b=1时,y=1|x|-1=⎩⎨⎧1x-1(x≥0且x≠1),-1x+1(x<0且x≠-1).在同一坐标系中画出“囧函数”与函数y=lg|x|的图象如图所示,易知它们有4个交点.9.某驾驶员喝了m升酒后,血液中的酒精含量f(x)(毫克/毫升)随时间x(小时)变化的规律近似满足表达式25,01,()31.(),1,53xxxf xx-⎧≤≤⎪=⎨>⎪⎩《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量不超过0.02毫克/毫升.此驾驶员至少要过______小时后才能开车.(不足1小时部分算1小时,结果精确到1小时)答案 4解析 因为0≤x ≤1,所以-2≤x -2≤-1, 所以5-2≤5x -2≤5-1,而5-2>0.02,又由x >1,得35·⎝⎛⎭⎫13x ≤150,得⎝⎛⎭⎫13x ≤130,所以x ≥4.故至少要过4小时后才能开车.10.随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a 人(140<2a <420,且a 为偶数),每人每年可创利b 万元.据评估,在经营条件不变的前提下,每裁员1人,则留岗职员每人每年多创利0.01b 万元,但公司需付下岗职员每人每年0.4b 万元的生活费,并且该公司正常运转所需人数不得小于现有职员的34,为获得最大的经济效益,该公司应裁员多少人?解 设裁员x 人,可获得的经济效益为y 万元,则 y =(2a -x )(b +0.01bx )-0.4bx =-b100[x 2-2(a -70)x ]+2ab .依题意得2a -x ≥34·2a ,所以0<x ≤a2.又140<2a <420,即70<a <210.①当0<a -70≤a2,即70<a ≤140时,x =a -70,y 取到最大值;②当a -70>a 2,即140<a <210时,x =a2,y 取到最大值.故当70<a ≤140时,公司应裁员(a -70)人,经济效益取到最大; 当140<a <210时,公司应裁员a2人,经济效益取到最大.B 组 能力提高11.设定义在R 上的函数f (x )满足: (1)对任意的实数x ,都有f (-x )-f (x )=0; (2)对任意的实数x ,都有f (x +π)+f (x )=1; (3)当x ∈[0,π]时,0≤f (x )≤1;(4)当x ∈⎝⎛⎭⎫0,π2∪⎝⎛⎭⎫π2,π时,有⎝⎛⎭⎫x -π2f ′(x )>0(其中f ′(x )为函数f (x )的导函数).则方程f (x )=|sin x |在[-2π,2π]上的根的个数为________. 答案 8解析 由(1)知,函数f (x )为偶函数; 由(2)知,f (x +π)=1-f (x ),故f (x +2π)=1-f (x +π)=1-[1-f (x )]=f (x ), 所以f (x )是周期函数,其周期为2π.由(3)知,函数f (x )的图象在y =0与y =1之间. 由(4)知,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )<0, 故函数f (x )在⎝⎛⎭⎫0,π2上单调递减; 当x ∈⎝⎛⎭⎫π2,π时,f ′(x )>0, 故函数f (x )在⎝⎛⎭⎫π2,π上单调递增.综上,当x ∈[0,π]时,f (x )=|1-2πx |,画出函数f (x )和y =|sin x |在[-2π,2π]上的图象,如图所示,两函数在[-2π,2π]上共有8个交点,所以方程f (x )=|sin x |在[-2π,2π]上共有8个零点.12.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示.请根据以上数据分析,这个经营部定价在_________元/桶才能获得最大利润. 答案 11.5解析 设每桶水的价格为()6+x 元,公司日利润y 元,则:y =()6+x -5()480-40x -200=-40x 2+440x +280,∵-40<0,∴当x =-b2a =5.5时函数有最大值,因此,每桶水的价格为11.5元,公司日利润最大.13.已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________. 答案 4解析 令h (x )=f (x )+g (x ),则h (x )= ⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2,当1<x <2时,h ′(x )=-2x +1x =1-2x2x<0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4.14.已知函数f (x )=|x 2-2ax +b |(x ∈R),给出下列命题: ①∃a ∈R ,使f (x )为偶函数;②若f (0)=f (2),则f (x )的图象关于直线x =1对称; ③若a 2-b ≤0,则f (x )在区间[a ,+∞)上是增函数; ④若a 2-b -2>0,则函数h (x )=f (x )-2有2个零点. 其中正确命题的序号为________. 答案 ①③解析 ①当a =0时,f (x )=|x 2+b |显然是偶函数,故①正确.②由f (0)=f (2),得|b |=|4-4a +b |,而f (x +1)=|(x +1)2-2a (x +1)+b |=|x 2+(2-2a )x +1-2a +b |,f (1-x )=|(1-x )2-2a (1-x )+b |=|1-2x +x 2-2a +2ax +b | =|x 2+(2a -2)x +1-2a +b |. f (x +1)≠f (1-x ),∵|b |=|4-4a +b |不能判定a =1,∴f (x )的图象不关于直线x =1对称,故②错误.③f (x )=|(x -a )2+b -a 2|=(x -a )2+b -a 2在区间[a ,+∞)上是增函数,故③正确.④如图所示,当a 2-b -2>0时,函数f (x )的图象与直线y =2有4个交点,故h (x )=|(x -a )2+b -a 2|-2有4个零点,故④错误.。