2020届高考文科数学复习练习题(二):函数 专题训练

合集下载

2020高考数学(文科)专题复习课标通用版(跟踪检测): 专题2 三角函数、解三角形和平面向量 专题2 第3讲

2020高考数学(文科)专题复习课标通用版(跟踪检测): 专题2 三角函数、解三角形和平面向量 专题2 第3讲

第一部分 专题二 第3讲题型对应题号 1.向量的概念及线性运算 3,6,11 2.平面向量基本定理 2,7,103.向量的数量积及应用1,4,5,8,9,12,13,14,15,16基础热身(建议用时:40分钟)1.已知向量BA →=⎝⎛⎭⎫12,32,BC →=⎝⎛⎭⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°A 解析 |BA →|=1,|BC →|=1,cos ∠ABC =BA →·BC →|BA →|·|BC →|=32.因为0°≤∠ABC ≤180°,所以∠ABC =30°.故选A 项.2.(2019·辽宁东北育才学校模拟)向量a ,b ,c 在正方形网格中的位置如图所示.若向量c =λa +b ,则实数λ=( )A .-2B .-1C .1D .2D 解析 由题中所给图象可得2a +b =c ,又c =λa +b ,所以λ=2.故选D 项. 3.(2019·江西七校联考)已知平面向量a =(-1,2),b =(2,y ),且a ∥b ,则3a +2b =( ) A .(-1,7) B .(-1,2) C .(1,2)D .(1,-2)D 解析 因为a =(-1,2),b =(2,y ),且a ∥b ,所以-1×y -2×2=0,解得y =-4,故可得3a +2b =3(-1,2)+2(2,-4)=(1,-2).故选D 项.4.设向量a ,b 满足|a +b|=10,|a -b|=6,则a·b =( ) A .1 B .2 C .3D .5A 解析 由|a +b |=10得|a +b |2=10, 即a 2+2a·b +b 2=10,①又|a -b |=6,所以a 2-2a·b +b 2=6,② 由①-②得4a·b =4,则a·b =1.故选A 项.5.已知向量a =(2,-4),b =(-3,x ),c =(1,-1),若(2a +b )⊥c ,则|b|=( ) A .9 B .3 C .109D .310 D 解析 向量a =(2,-4),b =(-3,x ),c =(1,-1),所以2a +b =(1,x -8),由(2a +b )⊥c ,可得1+8-x =0,解得x =9,则|b |=(-3)2+92=310.故选D 项.6.(2019·广东东莞统考)如图所示,△ABC 中,BD →=2DC →,点E 是线段AD 的中点,则AC→=( )A .34AD →+12BE →B .34AB →+BE →C .54AD →+12BE →D .54AD →+BE →C 解析 由题意和图可知,AC →=AD →+DC →,DC →=12BD →,BD →=BE →+ED →,ED →=12AD →,所以AC →=54AD →+12BE →.故选C 项.7.(2019·湖南师大附中月考)如图,已知|OA →|=|OB →|=1,|OC →|=2,tan ∠AOB =-43,∠BOC =45°,OC →=mOA →+nOB →,则m n=( )A .57B .75C .37D .73A 解析 以OA 所在的直线为x 轴,过O 作与OA 垂直的直线为y 轴,建立平面直角坐标系如图所示.因为|OA →|=|OB →|=1,且tan ∠AOB =-43,所以cos ∠AOB =-35,sin ∠AOB =45,所以A (1,0),B ⎝⎛⎭⎫-35,45,又令∠AOC =θ,则θ=∠AOB -∠BOC ,所以tan θ=tan(∠AOB -∠BOC )=-43-11-43=7,又因为点C 在∠AOB 内,所以cos θ=210,sin θ=7210,又|OC →|=2,所以C ⎝⎛⎭⎫15,75,因为OC →=mOA →+nOB →(m ,n ∈R ),所以⎝⎛⎭⎫15,75=(m,0)+⎝⎛⎭⎫-35n ,45n =⎝⎛⎭⎫m -35n ,45n ,即⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧n =74,m =54,所以m n =57.故选A 项.8.(2017·山东卷)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________.解析 cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3-λ3+11+λ2=12,解得λ=33.答案339.(2019·四川攀枝花统考)已知向量a ,b 的夹角为120°,且|a|=2,|b|=4,则b 在a 方向上的投影等于________.解析 因为a·b =2×4cos 120°=-4,所以b 在a 方向上的投影为a·b |a|=-42=-2.答案 -210.(2019·山东两校诊断)已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m 使得AB →+AC →=mAM →成立,则m =__________.解析 由条件知M 是△ABC 的重心,设D 是BC 边的中点,则AB →+AC →=2AD →,而AM →=23AD →,所以2AD →=m ·23AD →,所以m =3.答案 311.在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →,且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.解析 如图,△ABC 中,∠ACB 为钝角,AC =BC =1,记NA →=CA →-mCB →,则当N 在D 处,即AD ⊥BC 时,f (m )取得最小值32,因此|AD →|=32,容易得到∠ACB =120°.因为CO →=xCA →+yCB →,且x +y =1,所以O 在边AB 上,所以当CO ⊥AB 时,|CO →|最小,|CO →|min =12.答案 1212.(2019·江西上饶模拟)平行四边形ABCD 中,AB =4,AD =2,AB →·AD →=4,点P 在边CD 上,则P A →·PC →的取值范围是________.解析 设|PD →|=x ,x ∈[0,4],则P A →·PC →=(PD →+DA →)·PC →=⎝⎛⎭⎫-x 4AB →-AD →·4-x 4AB →=-x 4×4-x 4AB →2-4-x 4AD →·AB →=-x 4×4-x 4×16-4-x 4×4=x 2-3x -4=⎝⎛⎭⎫x -322-254,所以当x =32时,取最小值-254,当x =4时,取最大值0,即P A →·PC →的取值范围是⎣⎡⎦⎤-254,0. 答案 ⎣⎡⎦⎤-254,0 能力提升(建议用时:25分钟)13.设平面向量a =(-2,1),b =(1,λ),若a 与b 的夹角为钝角,则λ的取值范围是____________.解析 因为a 与b 的夹角为钝角,所以a ·b <0,且a 与b 不平行,所以有⎩⎪⎨⎪⎧-2+λ<0,-2λ≠1,即λ<2且λ≠-12,所以λ的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2. 答案 ⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,2 14.(2019·湖南湘潭质检)已知A B →与A C →的夹角为90°,|A B →|=2,|A C →|=1,AM →=λA B →+μA C →(λ,μ∈R ),且AM →·B C →=0,则λμ的值为________.解析 根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB →=(0,2),AC →=(1,0),BC →=(1,-2).设M (x ,y ),则AM →=(x ,y ),所以AM →·BC →=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM →=λAB →+μAC →,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y x =14.答案 1415.如图,△ABC 是边长为23的正三角形,P 是以C 为圆心,1为半径的圆上任意一点,则AP →·BP →的取值范围是________.解析 取AB 的中点D ,连接CD ,CP ,则CA →+CB →=2CD →,所以AP →·BP →=(CP →-CA →)·(CP →-CB →)=CP →2-CP →·(CA →+CB →)+CA →·CB →=CP →2-2CD →·CP →+CA →·CB →=1-2×3×1×cos CD →,CP→+(23)2cos π3=7-6cos CD →,CP →,所以当cos CD →,CP →=1时,AP →·BP →取得最小值为1;当cos CD →,CP →=-1时,AP →·BP →取得最大值为13. 因此AP →·BP →的取值范围是[1,13]. 答案 [1,13]16.已知向量a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求向量a 在b 上的投影; (2)设c =(0,1),若a +b =c ,求α,β的值.解析 (1)a -b =(cos α-cos β,sin α-sin β),则|a -b |=2-2cos (α-β)=2,所以cos(α-β)=0,而0<β<α<π,所以0<α-β<π,所以α-β=π2.所以向量a 在b 上的投影为|a |cos a ,b =a ·b|b |=cos(α-β)=0.(2)由a +b =c 得⎩⎪⎨⎪⎧cos α+cos β=0, ①sin α+sin β=1, ②①2+②2得cos(α-β)=-12,而0<α-β<π,故α-β=2π3,而由①得α+β=π,解得α=5π6,β=π6.。

2020年全国各地高考数学试题分类汇编2 函数 文

2020年全国各地高考数学试题分类汇编2 函数 文

2020年全国各地高考文科数学试题分类汇编2:函数一、选择题1 .(2020年高考重庆卷(文))函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞UD .(2,4)(4,)+∞U【答案】C2 .(2020年高考重庆卷(文))已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4【答案】C3 .(2020年高考大纲卷(文))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 ( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A4 .(2020年高考辽宁卷(文))已知函数())()21ln1931,.lg 2lg 2f x x x f f ⎛⎫=+++=⎪⎝⎭则( )A .1-B .0C .1D .2【答案】D5 .(2020年高考天津卷(文))设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==,则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A6 .(2020年高考陕西卷(文))设全集为R , 函数()1f x x =-M , 则C M R 为 ( )A .(-∞,1)B .(1, + ∞)C .(,1]-∞D .[1,)+∞【答案】B7 .(2020年上海高考数学试题(文科))函数()()211f x x x =-≥的反函数为()1fx -,则()12f -的值是( )A 3B .3C .12D .12-【答案】A 8 .(2020年高考湖北卷(文))x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )A .奇函数B .偶函数C .增函数D .周期函数【答案】D9 .(2020年高考四川卷(文))设函数()x f x e x a =+-(a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是( )A .[1,]eB .[1,1]e +C .[,1]e e +D .[0,1]【答案】A10.(2020年高考辽宁卷(文))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=( )A .2216a a --B .2216a a +-C .16-D .16【答案】C 11.(2020年高考北京卷(文))下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是 ( )A .1y x=B .x y e-=C .21y x =-+D .lg ||y x =【答案】C12.(2020年高考福建卷(文))函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .【答案】A13.(2020年高考浙江卷(文))已知a.b.c ∈R,函数f(x)=ax 2+bx+c .若f(0)=f(4)>f(1),则 ( )A .a>0,4a+b=0B .a<0,4a+b=0C .a>0,2a+b=0D .a<0,2a+b=0【答案】A 14.(2020年高考山东卷(文))已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f( )A .2B .1C .0D .-2【答案】D15.(2020年高考广东卷(文))函数lg(1)()1x f x x +=-的定义域是( )A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞UD .[1,1)(1,)-+∞U【答案】C 16.(2020年高考陕西卷(文))设a , b , c 均为不等于1的正实数, 则下列等式中恒成立的是 ( )A .·log log log a c c b a b =B .·log lo log g a a a b a b =C .()log ?l g o lo g a a a b c bc =D .()log g og o l l a a a b b c c +=+【答案】B17.(2020年高考山东卷(文))函数1()123xf x x =-++的定义域为 ( )A .(-3,0]B .(-3,1]C .(,3)(3,0]-∞--UD .(,3)(3,1]-∞--U【答案】A 18.(2020年高考天津卷(文))已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]【答案】C19.(2020年高考湖南(文))函数f(x)=㏑x 的图像与函数g(x)=x 2-4x+4的图像的交点个数为______( ) A .0 B .1 C .2 D .3 【答案】C20.(2020年高考课标Ⅰ卷(文))已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D;21.(2020年高考陕西卷(文))设[x ]表示不大于x 的最大整数, 则对任意实数x , y , 有 ( )A .[-x ] = -[x ]B .[x + 12] = [x ] C .[2x ] = 2[x ]D .1[][][2]2x x x ++=【答案】D22.(2020年高考安徽(文))函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,,,n x x x L ,使得1212()()()n nf x f x f x x x x ===L ,则n 的取值范围为 ( )A .{}2,3B .{}2,3,4C .{}3,4D .{}3,4,5【答案】B 23.(2020年高考湖北卷(文))小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是【答案】C 24.(2020年高考湖南(文))已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于____ ( ) A .4 B .3 C .2 D .1 【答案】B 二、填空题25.(2020年高考安徽(文))定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________.距学校的距离距学校的距离距学校的距离时间时间时间时间OOOO距学校的距离【答案】(1)()2x x f x +=-26.(2020年高考大纲卷(文))设()[)()21,3=f x x f x ∈是以为周期的函数,且当时,____________.【答案】-127.(2020年高考北京卷(文))函数f(x)=12log ,12,1x x x x ≥⎧⎪⎨⎪<⎩的值域为_________.【答案】(-∞,2)28.(2020年高考安徽(文))函数21ln(1)1y x x=++-的定义域为_____________.【答案】(]0,129.(2020年高考浙江卷(文))已知函数f(x)=x-1 若f(a)=3,则实数a= ____________.【答案】1030.(2020年高考福建卷(文))已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f ________ 【答案】2- .31.(2020年高考四川卷(文))lg 5lg 20+的值是___________.【答案】132.(2020年上海高考数学试题(文科))方程91331xx+=-的实数解为_______. 【答案】3log 4 三、解答题33.(2020年高考江西卷(文))设函数1,0()1(1),11x x a af x x a x a⎧≤≤⎪⎪=⎨⎪-<≤⎪-⎩ a 为 常数且a ∈(0,1).(1) 当a=12时,求f(f(13)); (2) 若x 0满足f(f(x 0))= x 0,但f(x 0)≠x 0,则称x 0为f(x)的二阶周期点,证明函数()f x 有且仅有两个二阶周期点,并求二阶周期点x 1,x 2;(3) 对于(2)中x 1,x 2,设A(x 1,f(f(x 1))),B(x 2,f(f(x 2))),C(a 2,0),记△ABC 的面积为s(a),求s(a)在区间[13,12]上的最大值和最小值. 【答案】解:(1)当12a=时,121222(),(())()2(1)333333f f f f ==-==(2222221,01(),(1)2)(())1(),1(1)1(1),11(1)x x a a a x a x a a a f f x x a a x a a a x a a x a a ⎧≤≤⎪⎪⎪-<≤⎪-⎪=⎨⎪-<<-+-⎪⎪⎪--+≤≤⎪-⎩当20x a ≤≤时,由21x x a=解得x=0,由于f(0)=0,故x=0不是f(x)的二阶周期点; 当2a x a <≤时由1()(1)a x x a a -=-解得21ax a a =-++2(,),a a ∈ 因222211()1111a a af a a a a a a a a a =•=≠-++-++-++-++ 故21ax a a =-++是f(x)的二阶周期点; 当21a x a a <<-+时,由21()(1)x a x a -=-解得12x a=-2(,1)a a a ∈-+ 因1111()(1)2122f a a a a =•-=----故12x a=-不是f(x)的二阶周期点; 当211a a x -+≤≤时,1(1)(1)x x a a -=-解得211x a a =-++ 2(1,1)a a ∈-+因22221111()(1)11111a f a a a a a a a a a =•-=≠-++--++-++-++ 故211x a a =-++是f(x)的二阶周期点.因此,函数()f x 有且仅有两个二阶周期点,121a x a a =-++,2211x a a =-++. (3)由(2)得222211(,),(,)1111a a A B a a a a a a a a -++-++-++-++则2322221(1)1(222)(),()212(1)a a a a a a s a s a a a a a ---+'=•=•-++-++ 因为a 在[13,12]内,故()0s a '>,则11()[]32s a 在区间,上单调递增, 故111111()[]32333220s a 在区间,上最小值为s()=,最大值为s()=34.(2020年高考安徽(文))设函数22()(1)f x ax a x =-+,其中0a >,区间{}|()0I x f x =>.(Ⅰ)求I 的长度(注:区间(,)αβ的长度定义为βα-;(Ⅱ)给定常数()0,1k ∈,当11k a k -≤≤+时,求I 长度的最小值.【答案】解:(1)令2()-10f x x a a x ⎡⎤=+=⎣⎦()解得 10x = 221ax a =+ 2|01a I x x a ⎧⎫∴=<<⎨⎬+⎩⎭ I ∴的长度212-1a x x a=+ (2) ()0,1k ∈ 则0112k a k <-≤≤+< 由 (1)21aI a =+ 2221'0(1)a I a -=>+,则01a << 故I 关于a 在(1,1)k -上单调递增,在(1,1)k +上单调递减.()1221-1-2211-k kI k kk ==+++ 22111kI k +=++()min21-22kI k k =++。

2020版高考数学总复习 第二章 函数 第8讲 函数的奇偶性、周期性与对称性练习 理(含解析)新人教A版

2020版高考数学总复习 第二章 函数 第8讲 函数的奇偶性、周期性与对称性练习 理(含解析)新人教A版

第8讲 函数的奇偶性、周期性与对称性夯实基础 【p 17】【学习目标】1. 理解函数奇偶性的概念,了解函数周期性的定义,判断函数的奇偶性.2.利用函数奇偶性、周期性求函数值及参数值.3.掌握函数的单调性与奇偶性的综合应用.【基础检测】1.下列函数中,是偶函数的是( )A .y =|x 2+x|B .y =2|x|C .y =x 3+xD .y =lg x【解析】A 项代入-x ,得y =|x 2-x|,与原函数不相等,所以不是偶函数. B 项代入-x ,得y =2|x|,与原函数相等,所以是偶函数.C 项代入-x ,得y =-x 3-x ,与原函数不相等,所以不是偶函数.D 项定义域没有关于原点对称,所以不是偶函数.【答案】B2.设函数y =f(x)定义在实数集R 上,则函数y =f (a -x )与y =f (x -a )的图象( )A .关于直线y =0对称B .关于直线x =0对称C .关于直线y =a 对称D .关于直线x =a 对称【解析】令t =x -a ,因为函数y =f ()-t 与y =f ()t 的图象关于直线t =0对称,所以函数y =f ()a -x 与y =f ()x -a 的图象关于直线x =a 对称.【答案】D3.若函数f (x )为奇函数,且在(0,+∞)上是增函数,又f (2)=0,则f (x )-f (-x )x<0的解集为( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(2,+∞)【解析】由奇函数的性质以及特殊点可作出如下简图:由奇函数定义化简解析式:f (x )-f (-x )x =2f (x )x<0, 即f (x )与x 异号即可,由图象可知当-2<x <0或0<x <2时f (x )与x 异号.【答案】A4.已知f (x )是定义在R 上的偶函数,且f (x +2)=1f (x )对x ∈R 恒成立,当x ∈[0,2]时,f (x )=2x ,则f ⎝ ⎛⎭⎪⎫-92=( ) A.12 B. 2 C.22D .-1 【解析】∵f (x +2)=1f (x ),∴f (x +4)=1f (x +2)=f (x )对x ∈R 恒成立, ∴f (x )的周期为4,又因为f (x )是定义在R 上的偶函数, ∴f ⎝ ⎛⎭⎪⎫-92=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12, ∵当x ∈[0,2]时,f (x )=2x ,∴f ⎝ ⎛⎭⎪⎫12= 2. 【答案】B5.设f (x )是定义在R 上的奇函数,在⎝ ⎛⎭⎪⎫0,12上单调递减,且f (x -1)=f (-x ),给出下列四个结论:①f (1)=0;②f (x )是以2为周期的函数;③f (x )在⎝ ⎛⎭⎪⎫12,1上单调递减; ④f (x +1)为奇函数.其中正确命题序号为__________.【解析】①∵函数f (x )是定义在R 上的奇函数,∴f (0)=0,f (-x )=-f (x ),又∵f (-x )=f (x -1),∴f (1)=-f (-1)=-f (0)=0,正确.②∵f (x )是奇函数,且f (-x )=f (x -1),∴f (x -1)=-f (x ),∴f (x +2)=f (x ),∴函数f (x )的周期是2,正确.③∵f (x )是奇函数,f (x -1)=-f (x ),∴f (1-x )=f (x ),即函数f (x )关于x =12对称, ∵f (x )在⎝ ⎛⎭⎪⎫0,12上单调递减, ∴f (x )在⎝ ⎛⎭⎪⎫12,1上单调递增,不正确. ④∵f (x )是奇函数,函数f (x )的周期是2,∴f (-x +1)=f (-x -1)=-f (x +1),∴f (x +1)是奇函数,正确.【答案】①②④【知识要点】1.函数奇偶性的定义一般地,如果__对于函数f(x)的定义域内任意一个x__:(1)都有__f(-x)=-f(x)__,那么函数f(x)就叫做奇函数;(2)都有__f(-x)=f(x)__,那么函数f(x)就叫做偶函数.2.奇函数的图象是关于__原点__成__中心__对称图形,若奇函数的定义域含有数0,则必有__f(0)=0__;偶函数的图象是关于__y 轴__成__轴__对称图形,对定义域内的任意x 的值,必有__f(-x)=f(x)=f(|x|)__.3.奇、偶函数的性质(1)奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.(2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数;②两个偶函数的和、积都是偶函数;③一个奇函数与一个偶函数的积是奇函数.4.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中有最小的正数,那么这个最小正数就叫做f(x)的最小正周期.5.三个重要结论(1)若对于R上的任意的x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.(2)若对于R上的任意x都有f(2a-x)=f(x),且f(2b-x)=f(x)(其中a<b),则y=f(x)是以2(b-a)为周期的周期函数.(3)若f(x+a)=f(x+b)(a≠b),那么函数f(x)是周期函数,其中一个周期为T=|a-b|.典例剖析【p17】考点1函数奇偶性的判断例1(1)下列函数为奇函数的是( )A.y=ln x B.y=e xC.y=xsin x D.y=e x-e-x【解析】对于选项A,定义域为(0,+∞),不关于原点对称,故不是奇函数.所以选项A错;对于选项B,f(-x)=e-x=1e x≠-f(x),故选项B错;对于选项C,f(-x)=-xsin(-x)=-x(-sin x)=xsin x=f(x),所以y=xsin x 为偶函数,故选项C错;对于选项D,f(-x)=e-x-e x=-(e x-e-x)=-f(x),所以函数y=e x-e-x为奇函数,故选项D正确.【答案】D(2)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( )A .f (x )g (x )是偶函数B .|f (x )|g (x )是奇函数C .f (x )|g (x )|是奇函数D .|f (x )g (x )|是奇函数【解析】因为f (-x )g (-x )=-f (x )g (x ),所以f (x )g (x )是奇函数;因为|f (-x )|g (-x )=|f (x )|g (x ),所以|f (x )|g (x )是偶函数;因为f (-x )|g (-x )|=-f (x )|g (x )|,所以f (x )|g (x )|是奇函数;因为|f (-x )g (-x )|=|f (x )g (x )|,所以|f (x )g (x )|是偶函数.【答案】C(3)已知函数f (x )=x 2-2x 22x +1,则下列判断正确的是( ) A .f (x )是偶函数不是奇函数B .f (x )是奇函数不是偶函数C .f (x )既是偶函数又是奇函数D .f (x )既不是偶函数也不是奇函数【解析】该函数的定义域为R ,f (-x )=(-x )2-2(-x )22-x +1=x 2-2x 2·2x2x +1 =x 2(2x +1)-2x 2·2x 2x +1=x 2-x 2·2x 2x +1=x 2(-1-2x +2)2x +1 =-x 2+2x 22x +1=-f (x ), 所以函数f (x )是奇函数,f (1)=1-23=13,f (-1)=1-232=-13, 所以函数f (x )不是偶函数.【答案】B【点评】判断函数的奇偶性包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f (x )与f (-x )是否具有等量关系,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立.考点2 函数的奇偶性的应用例2(1)已知函数f (x )=asin x +btan x -1(a ,b∈R ),若f (-2)=2 018,则f (2)=( )A .-2 020B .2 019C .-2 018D .2 017【解析】函数f (x )=a sin x +b tan x -1(a ,b ∈R ),则f (-x )=a sin(-x )+b tan(-x )-1=-a sin x -b tan x -1,即有f (-x )+f (x )=-2,又f (-2)=2 018,则f (2)=-2-f (2)=-2-2 018=-2 020.【答案】A(2)定义在R 上的奇函数f (x )满足f (x -2)=-f (x ),且在[0,1]上是增函数,则有( )A .f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32 B .f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫32 C .f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫-14 D .f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫14 【解析】由题设知f (x )=-f (x -2)=f (2-x ),所以函数f (x )的图象关于直线x =1对称.又函数f (x )是奇函数,其图象关于坐标原点对称,由于函数f (x )在[0,1]上是增函数,故f (x )在[-1,0]上也是增函数,综上,函数f (x )在[-1,1]上是增函数,在[1,3]上是减函数.又f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫2-32=f ⎝ ⎛⎭⎪⎫12, 所以f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32. 【答案】B(3)若函数f (x )=8-ax -2x 2是偶函数,则该函数的定义域是________.【解析】因为函数f (x )=8-ax -2x 2是偶函数,则a =0,函数f (x )=8-2x 2的定义域满足8-2x 2≥0,解得-2≤x ≤2,故函数的定义域为[-2,2].【答案】[-2,2](4)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.【解析】由函数特点绘出函数的图象如图,可求得函数与y=5的交点坐标为(-5,5),(5,5),要使f(x+2)<5,则有-5<x+2<5⇒-7<x<3,故解集为(-7,3).【答案】(-7,3)【点评】已知函数奇偶性可以解决以下问题:(1)求函数值,将待求值利用奇偶性转化为已知区间上的函数值求解;(2)求解析式,将待求区间上的自变量转化到已知区间上,再利用奇偶性求出;(3)求解析式中的参数,利用待定系数法求解;(4)画函数图象,利用奇偶性可画出另一对称区间上的图象.考点3函数的周期性与对称性及应用例3(1)已知函数f(x)(x∈R)满足f(1+x)=f(1-x),f(4+x)=f(4-x),且-3<x≤3时,f(x)=ln(x+1+x2),则f(2 020)=( )A.0 B.1C.ln(5-2) D.ln(5+2)【解析】因为f(1+x)=f(1-x),f(4+x)=f(4-x),所以f(x)=f(2-x),f(x)=f(8-x),∴f(2-x)=f(8-x),∴T=8-2=6,f(2 020)=f(-2)=ln(5-2).【答案】C(2)已知函数f(x)与函数g(x)=(x-1)2的图象关于y轴对称,若存在a∈R,使x∈[1,m](m>1)时,f(x+a)≤4x成立,则m的最大值为( )A .3B .6C .9D .12【解析】由于函数f (x )与函数g (x )=(x -1)2的图象关于y 轴对称,因此f (x )=(x +1)2,由f (x +a )≤4x 得(x +a +1)2≤4x ,把x =1代入得-4≤a ≤0.当a =0时,(x +1)2≤4x ,解得x =1,当a =-4时,(x -3)2≤4x ,解之得1≤x ≤9,因此m 的最大值为9.【答案】C(3)已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围是( )A .-1<a <4B .-2<a <1C .-1<a <2D .-1<a <0【解析】因为f (x )是定义在R 上的偶函数,且以3为周期,所以f (5)=f (2)=f (2-3)=f (-1)=f (1)<1,即2a -3a +1<1,解得-1<a <4. 【答案】A【点评】(1)判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)即可,且周期为T .(2)根据函数的周期性,可以由函数的局部性质得到函数的整体性质,函数的周期性常与函数的其他性质综合命题.(3)在解决具体问题时,要注意结论“若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期”的应用.(4)函数周期性的三个常用结论(a >0):①若f (x +a )=-f (x ),则T =2a ,②若f (x +a )=1f (x ),则T =2a , ③若f (x +a )=-1f (x ),则T =2a . (5)函数对称性代数表示:函数f (x )为奇函数⇔f (x )=-f (-x ),函数f (x )为偶函数⇔f (x )=f (-x )(定义域关于原点对称);函数f (x )关于点(a ,b )对称⇔f (x )+f (-x +2a )=2b ,函数f (x )关于直线x =m 对称⇔f (x )=f (-x +2m ).考点4 函数性质的综合应用例4(1)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2【解析】∵f (x +1)为偶函数,∴f (-x +1)=f (x +1),则f (-x )=f (x +2),又y =f (x )为奇函数,则f (-x )=-f (x )=f (x +2),且f (0)=0.从而f (x +4)=-f (x +2)=f (x ),y =f (x )的周期为4.∴f (4)+f (5)=f (0)+f (1)=0+2=2.【答案】A(2)函数f (x )对任意的实数x 都有f (x +2)-f (x )=2f (1),若y =f (x -1)的图象关于x =1对称,且f (0)=2,则f ()2 019+f ()2 020=( )A .0B .2C .3D .4【解析】因为y =f (x -1)的图象关于x =1对称,所以y =f (x )的图象关于x =0对称,即f (x )为偶函数,因为f (x +2)-f (x )=2f (1),所以f (-1+2)-f (-1)=2f (1),所以f (1)=0,f (x +2)=f (x ),因此f ()2 019=f ()1=0,f ()2 020=f ()0=2,f ()2 019+f ()2 020=2.【答案】B(3)已知函数f (x +1)为偶函数,且f (x )在(1,+∞)上单调递增,f (-1)=0,则f (x -1)>0的解集为( )A .(-∞,0)∪(4,+∞)B .(-∞,-1)∪(3,+∞)C .(-∞,-1)∪(4,+∞)D .(-∞,0)∪(1,+∞)【解析】因为函数f(x+1)为偶函数得,所以f(x)关于x=1对称,因为f(x)在(1,+∞)上单调递增,所以f(x)在(-∞,1)上单调递减,因为f(-1)=0,所以f(3)=0,因此由f(x-1)>0得x-1>3或x-1<-1,解得x>4或x<0.【答案】A【点评】(1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f(x)为偶函数⇔f(x)=f(|x|).②若奇函数在x=0处有意义,则f(0)=0.方法总结【p18】1.函数的奇偶性、周期性是在整个定义域内讨论的整体性质,要正确理解奇函数与偶函数、周期函数的定义,必须注意以下几点:(1)奇、偶函数的定义域关于原点对称,周期函数的定义域是无界的.(2)f(-x)=-f(x)或f(-x)=f(x)和f(x+T)=f(x)(T≠0)是定义域上的恒等式.(3)若T是f(x)的一个周期,则kT(k≠0,k∈Z)也是f(x)的周期.2.f(x)为奇函数⇔f(x)的图象关于原点对称;f(x)为偶函数⇔f(x)的图象关于y轴对称;f(x)是周期函数,则f(x)的图象周期性重复出现.3.判断函数的奇偶性的方法:定义法、图象法、性质法.4.函数的奇偶性与周期性是函数的两个重要性质,它们又存在着一定的联系,特别是存在两条对称轴的函数,一定是一个周期函数,且最小正周期是相邻两条对称轴之间距离的2倍.走进高考【p18】1.(2018·全国卷Ⅱ)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( )A.-50 B.0C.2 D.50【解析】因为f(x)是定义域为(-∞,+∞)的奇函数,且f(1-x)=f(1+x),所以f(1+x )=-f (x -1),∴f (3+x )=-f (x +1)=f (x -1),∴T =4,因此f (1)+f (2)+f (3)+…+f (50)=12[f (1)+f (2)+f (3)+f (4)]+f (1)+f (2), 因为f (3)=-f (1),f (4)=-f (2),所以f (1)+f (2)+f (3)+f (4)=0,∵f (2)=f (-2)=-f (2),∴f (2)=0,从而f (1)+f (2)+f (3)+…+f (50)=f (1)=2.【答案】C2.(2016·上海)设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于命题:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数;②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是以T 为周期的函数,则f (x )、g (x )、h (x )均是以T 为周期的函数,下列判断正确的是( )A .①和②均为真命题B .①和②均为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题【解析】①不成立,可举反例f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,-x +3,x >1,g (x )=⎩⎪⎨⎪⎧2x +3,x ≤0,-x +3,0<x <1,2x ,x ≥1,h (x )=⎩⎪⎨⎪⎧-x ,x ≤0,2x ,x >0. ②f (x )+g (x )=f (x +T )+g (x +T ),f (x )+h (x )=f (x +T )+h (x +T ),g (x )+h (x )=g (x +T )+h (x +T ).前两式作差,可得g (x )-h (x )=g (x +T )-h (x +T ),结合第三式,可得g (x )=g (x +T ),h (x )=h (x +T ).也有f (x )=f (x +T ),∴②正确,故选D.【答案】D考 点 集 训 【p 183】A 组题1.函数f (2x +1)是奇函数,则函数f (x )的对称中心为( )A .(0,0)B .(1,0)C .(-1,0) D.⎝ ⎛⎭⎪⎫12,0 【解析】∵f (2x +1)是奇函数,∴f (2×0+1)=f (1)=0,∴f (x )对称中心为(1,0).【答案】B2.若函数f (x )(x ∈R )是偶函数,则下列各点中必在y =f (x )图象上的是( )A .(-a ,f (a ))B .(-a ,-f (a ))C .(-a ,-f (-a ))D .(a ,-f (-a ))【解析】由于函数f (x )图象必过点(a ,f (a )),且函数f (x )(x ∈R )是偶函数,所以函数f (x )经过点(-a ,f (-a )).又因为f (-a )=f (a ).所以函数一定经过(-a ,f (a ))和(a ,f (-a )).【答案】A3.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=( ) A .-12 B .-14C.14D.12【解析】f ⎝ ⎛⎭⎪⎫-52=-f ⎝ ⎛⎭⎪⎫52=-f ⎝ ⎛⎭⎪⎫2+12=-f ⎝ ⎛⎭⎪⎫12=-2×12⎝ ⎛⎭⎪⎫1-12=-12. 【答案】A4.已知函数f (x ),满足y =f (-x )和y =f (x +2)均为偶函数,且f (1)=π2,设g (x )=f (x )+f (-x ),则g (2 019)=( )A.π2B.2π3 C .π D.4π3【解析】由题意可得:f (-x )=f (x ),f (x +2)=f (-x +2)=f (x -2),故f (x )=f (x +4),周期为4.g (2 019)=f (2 019)+f (-2 019)=f (3)+f (-3)=f (-1)+f (1)=2f (1)=π.【答案】C5.若f (x )=ln(e x+1)+kx 是偶函数,则k =________.【解析】∵f (x )是偶函数,∴f (-1)=f (1), ∴ln ⎝ ⎛⎭⎪⎫1e +1-k =ln(e +1)+k , 解得k =-12,经检验k =-12符合题意. 【答案】-126.已知函数f (x )是定义在R 上的偶函数,且对于任意的x ∈R 都有f (x +4)=f (x )+f (2),f (1)=4,则f (3)+f (10)的值为________.【解析】∵函数f (x )是定义在R 上的偶函数,∴f (x )=f (-x ),∵f (x +4)=f (x )+f (2),令x =-2,可得f (2)=f (-2)+f (2),则f (-2)=0,f (2)=f (-2)=0,∴f (x +4)=f (x ),∴f (x )是以4为周期的函数,∴f (10)=f (6)=f (2)=0,∵f (1)=4,∴f (3)=f (-1)=f (1)=4,则f (3)+f (10)=4+0=4.【答案】47.已知函数f (x )是定义在(-∞,0)∪(0,+∞)上的不恒为零的函数,对于任意非零实数a ,b 满足f (ab )=f (a )+f (b ),且当x >1时,有f (x )>0.(1)判断并证明y =f (x )的奇偶性;(2)求证:函数f (x )在(0,+∞)上为增函数,并求不等式f (x -1)<0的解集.【解析】(1)f (x )是偶函数.证明:由已知得f (1)=f (1)+f (1),∴f (1)=0,f (1)=f (-1)+f (-1),∴f (-1)=0,f (-x )=f (-1)+f (x ),即f (-x )=f (x ),所以f (x )是偶函数.(2)设x 1>x 2>0,则x 1x 2>1,∴f ⎝ ⎛⎭⎪⎫x 1x 2>0. 所以f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2·x 2=f ⎝ ⎛⎭⎪⎫x 1x 2+f (x 2)>f (x 2), 所以f (x )在(0,+∞)上为增函数.因为f (x -1)<0=f (1),又f (x )是偶函数,所以有|x -1|<1,解得0<x <2.∴不等式f (x -1)<0的解集为(0,2).8.已知函数f (x )=x 2-2x . (1)当x ∈⎣⎢⎡⎦⎥⎤12,3时,求函数f (x )的值域; (2)若定义在R 上的奇函数g (x )对任意实数x ,恒有g (x +4)=g (x ),且当x ∈[0,2]时,g (x )=f (x ),求g (1)+g (2)+…+g (2 020)的值.【解析】(1)由题意得f (x )=x 2-2x =(x -1)2-1, ∵x ∈⎣⎢⎡⎦⎥⎤12,3, ∴f (x )在⎣⎢⎡⎦⎥⎤12,1上单调递减,在[1,3]上单调递增. ∴当x =1时,f (x )取得最小值,且[f (x )]min =-1.又f ⎝ ⎛⎭⎪⎫12=-34,f (3)=3, ∴[f (x )]max =3.∴函数f (x )的值域是[-1,3].(2)由g (x +4)=g (x )可得函数g (x )的周期T =4,∵g (1)=f (1)=-1,g (2)=f (2)=0,g (3)=g (-1)=-g (1)=1,g (4)=g (0)=f (0)=0,∴g (1)+g (2)+g (3)+g (4)=0,∴g (1)+g (2)+…+g (2 020)=505[g (1)+g (2)+g (3)+g (4)]=0.B 组题1.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称,若函数f (x )=x (0<x ≤1),则f (-5.5)=( ) A.22 B .1.5 C .-22D .-1.5 【解析】因为函数f (x )是定义在R 上的奇函数,所以可得f (-x )=-f (x ).又因为它的图象关于直线x =1对称,所以可得f (x )=f (2-x ).由上面两式可得-f (-x )=f (2-x ).由此可递推得f (2-x )=-f (-x )=f (-2-x ).所以函数f (x )周期为4.所以f (-5.5)=f (-1.5)=-f (1.5)=-f (2-1.5)=-f (0.5)=-22. 【答案】C2.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是________.【解析】∵f (x )是奇函数,∴当x <0时,f (x )=-x 2+2x .作出函数f (x )的大致图象如图中实线所示,结合图象可知f (x )是R 上的增函数,由f (2-a 2)>f (a ),得2-a 2>a ,解得-2<a <1.【答案】(-2,1) 3.已知定义在R 上的函数y =f (x )满足条件f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34是奇函数,给出以下四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称; ③函数f (x )是偶函数;④函数f (x )在R 上是单调函数.在述四个命题中,正确命题的序号是________(写出所有正确命题的序号).【解析】对于①,∵f (x +3)=-f ⎝ ⎛⎭⎪⎫x +32=f (x ), ∴函数f (x )是以3为周期的周期函数,故①正确;对于②,∵y =f ⎝ ⎛⎭⎪⎫x -34是奇函数,∴其图象关于原点对称,又函数f (x )的图象是由y=f ⎝ ⎛⎭⎪⎫x -34的图象向左平移34个单位长度得到,所以函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称,故②正确;对于③,由②知,对于任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫-34-x =-f ⎝ ⎛⎭⎪⎫-34+x , 用34+x 换x ,可得:f ⎝ ⎛⎭⎪⎫-32-x =-f (x )=f ⎝ ⎛⎭⎪⎫x +32, 令t =32+x ,则f (-t )=f (t ),∴函数f (x )是偶函数,故③正确; 对于④,由③知f (x )是偶函数,偶函数的图象关于y 轴对称,∴f (x )在R 上不是单调函数,故④错误.综上所述,正确命题的序号是①②③.【答案】①②③4.关于函数y =f ()x ()x ∈D 有如下结论:若函数y =f ()x 的图象关于点()a ,b 对称,则有f ()a +x +f ()a -x =2b 成立.(1)若函数f ()x =-2x +1x -2的图象关于点()2,m 对称,根据题设中的结论求实数m 的值; (2)若函数y =f ()x 的图象既关于点()2,0对称,又关于点()-2,1对称,且当x ∈[]2,6时,f ()x =2x +3x ,求f ()-5的值.【解析】(1)f ()x =-2x +1x -2的定义域为{x |x ≠2}, 对任意x (x ≠2),都有f ()2+x +f ()2-x =2m ,即-2()2+x +12+x -2+-2()2-x +12-x -2=2m ,解得m =-2. (2)因为函数y =f ()x 的图象关于点()2,0对称,所以f ()2+x +f ()2-x =0,即f ()x +f ()4-x =0,①又函数y =f ()x 的图象关于点()-2,1对称,所以f ()-2+x +f ()-2-x =2,即f ()x +f ()-4-x =2,②由①②得,f ()4-x =f ()-4-x -2,即f ()x =f ()x +8+2,-5=f()3+2=23+3×3+2=19. 所以f()。

2020届高考数学命题猜想及专题练习--函数﹑基本初等函数的图像与性质2(含解析)

2020届高考数学命题猜想及专题练习--函数﹑基本初等函数的图像与性质2(含解析)

2020届高考数学命题猜想函数﹑基本初等函数的图像与性质2【考向解读】1.高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.2.对图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题.3.对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以选择题、填空题的形式出现,且常与新定义问题相结合,难度较大.【命题热点突破一】函数的性质及应用1.单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.2.奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.3.周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a 不等于0),则其一个周期T=|a|.f x例1、【2017北京,文5】已知函数,则()(A)是偶函数,且在R上是增函数(B)是奇函数,且在R上是增函数(C)是偶函数,且在R上是减函数(D)是奇函数,且在R上是增函数【变式探究】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则= .【答案】-2【解析】因为函数()f x 是定义在R 上的周期为2的奇函数, 所以,所以,即(1)0f =,,所以.【变式探究】【2017课标1,文8】函数sin21cos xy x =-的部分图像大致为A .B .C .D .【变式探究】函数在[]2,2-的图像大致为(A)(B)(C)(D)【答案】D【感悟提升】(1)根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是解决函数图象判断类试题的基本方法.(2)研究函数时,注意结合图象,在解方程和不等式等问题时,借助图象能起到十分快捷的作用.【变式探究】(1)已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x 1)](x2-x1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎪⎫-12,b =f(2),c =f(3),则a ,b ,c 的大小关系为( )A.c >a >bB.c >b >aC.a >c >bD.b >a >c(2)设函数f(x)=ex(2x -1)-ax +a ,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a 的取值范围是( )A.⎣⎢⎢⎡⎭⎪⎪⎫-32e ,1B.⎣⎢⎢⎡⎭⎪⎪⎫-32e ,34C.⎣⎢⎢⎡⎭⎪⎪⎫32e ,34D.⎣⎢⎢⎡⎭⎪⎪⎫32e ,1 【解析】(1)由于函数f(x)的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f(x)的图象本身关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎪⎫-12=f ⎝ ⎛⎭⎪⎪⎫52,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,等价于函数f(x)在(1,+∞)上单调递减,所以b >a >c.选D.【高考真题解读】1. (2018年浙江卷)函数y=sin2x 的图象可能是A.B. C. D.【答案】D2. (2018年全国III 卷)函数的图像大致为A. AB. BC. CD. D【答案】D【解析】当时,,排除A,B.,当时,,排除C,故正确答案选D.3. (2018年全国卷Ⅱ)函数的图像大致为A. AB. BC. CD. D【答案】B4. (2018年天津卷)已知,则的大小关系为A. B. C. D.【答案】D【解析】由题意可知:,即,,即,,即,综上可得:.本题选择D选项.5. (2018年全国I卷)设函数,则满足的x的取值范围是A. B. C. D.【答案】D【解析】将函数的图像画出来,f x3.【2017北京,文5】已知函数,则()(A)是偶函数,且在R上是增函数(B )是奇函数,且在R 上是增函数 (C )是偶函数,且在R 上是减函数 (D )是奇函数,且在R 上是增函数 【答案】B【解析】,所以该函数是奇函数,并且3xy =是增函数,13xy ⎛⎫= ⎪⎝⎭是减函数,根据增函数−减函数=增函数,可知该函数是增函数,故选B. 4.【2017北京,文8】根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN 最接近的是(参考数据:lg3≈0.48)(A )1033 (B )1053 (C )1073 (D )1093 【答案】D5.【2017课标1,文9】已知函数,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y=()f x 的图像关于直线x=1对称D .y=()f x 的图像关于点(1,0)对称【答案】C 【解析】由题意知,,所以()f x 的图像关于直线1x =对称,故C 正确,D 错误;又(02x <<),由复合函数的单调性可知()f x在()0,1上单调递增,在()1,2上单调递减,所以A ,B 错误,故选C .1.【2016高考新课标3文数】已知432a =,254b =,1325c =,则( ) (A )b a c << (B )a b c << (C )b c a << (D )c a b << 【答案】A 【解析】因为,,所以b a c <<,故选A .2.【2016年高考北京文数】已知x ,y R ∈,且0x y >>,则( )A.110x y ->B.C. D.【答案】C3.【2016高考新课标1卷】函数在[]2,2-的图像大致为(A )(B )(C )(D )【答案】D【解析】函数f(x)=2x2–e|x|在[–2,2]上是偶函数,其图像关于y 轴对称,因为,所以排除A 、B 选项;当[]0,2x ∈时,有一零点,设为x ,当0(0,)x x ∈时,()f x 为减函数,当0(2)x x ,∈时,()f x 为增函数.故选D 。

2020年高考文科数学函数的单调性与最值 专项练习题 含解析

2020年高考文科数学函数的单调性与最值  专项练习题  含解析

课时规范练 A 组 基础对点练1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:当x >0时,f (x )=3-x 为减函数; 当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C. 答案:C2.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -x C .y =-x 2+1D .y =lg|x |解析:A 中y =1x 是奇函数,A 不正确;B 中y =e -x=⎝ ⎛⎭⎪⎫1e x 是非奇非偶函数,B不正确;C 中y =-x 2+1是偶函数且在(0,+∞)上是单调递减的,C 正确;D 中y =lg|x |在(0,+∞)上是增函数,D 不正确.故选C. 答案:C3.(2019·天津模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( ) A .f (x )=(x -1)2 B .f (x )=e x C .f (x )=1xD .f (x )=ln(x +1)解析:根据条件知,f (x )在(0,+∞)上单调递减. 对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ; 对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ;对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确; 对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D. 答案:C4.(2019·福州模拟)函数f (x )=⎩⎨⎧-x +3a ,x <0a x ,x ≥0,(a >0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A .(0,1) B.⎣⎢⎡⎭⎪⎫13,1 C.⎝ ⎛⎦⎥⎤0,13 D.⎝ ⎛⎦⎥⎤0,23 解析:∵⎩⎨⎧0<a <13a ≥1,∴13≤a <1.答案:B5.设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件 解析:若函数f (x )=a x 在R 上为减函数,则有0<a <1;若函数g (x )=(2-a )x 3在R 上为增函数,则有2-a >0,即a <2,所以“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件,选A. 答案:A6.定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0)(x 1≠x 2),都有f (x 1)-f (x 2)x 1-x 2<0.则下列结论正确的是( )A .f (0.32)<f (20.3)<f (log 25)B .f (log 25)<f (20.3)<f (0.32)C .f (log 25)<f (0.32)<f (20.3)D .f (0.32)<f (log 25)<f (20.3)解析:∵对任意的x 1,x 2∈(-∞,0),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0,∴f (x )在(-∞,0)上是减函数.又∵f (x )是R 上的偶函数, ∴f (x )在(0,+∞)上是增函数, ∵0<0.32<20.3<log 25,∴f (0.32)<f (20.3)<f (log 25).故选A. 答案:AB 组 能力提升练7.定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为( ) A .[-1,2) B .[0,2) C .[0,1)D .[-1,1)解析:函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,∴函数在[-2,2]上单调递增,∴⎩⎨⎧-2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a ,∴⎩⎨⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,∴0≤a <1,故选C. 答案:C8.已知定义在R 上的函数f (x )在[1,+∞)上单调递减,且f (x +1)是偶函数,不等式f (m +2)≥f (x -1)对任意的x ∈[-1,0]恒成立,则实数m 的取值范围是( ) A .[-3,1]B .[-4,2]C .(-∞,-3]∪[1,+∞)D .(-∞,-4]∪[2,+∞)解析:因为f (x +1)是偶函数,所以f (-x +1)=f (x +1),所以f (x )的图象关于x =1对称,由f (m +2)≥f (x -1)得|(m +2)-1|≤|(x -1)-1|,所以根据题意得|m +1|≤2,解得-3≤m ≤1.故选A. 答案:A9.若函数f (x )=x 2-12ln x +1在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是( )A .[1,+∞) B.⎣⎢⎡⎭⎪⎫1,32 C .[1,2)D.⎣⎢⎡⎭⎪⎫32,2 解析:函数f (x )的定义域为(0,+∞),所以k -1≥0,即k ≥1.令f ′(x )=4x 2-12x =0,解得x =12⎝ ⎛⎭⎪⎫x =-12舍.因为函数f (x )在区间(k -1,k +1)内不是单调函数,所以k -1<12<k +1,得-12<k <32.综上得1≤k <32. 答案:B10.(2018·西安一中模拟)已知函数f (x )=⎩⎨⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( ) A .(-∞,-1)∪(2,+∞) B .(-∞,-2)∪(1,+∞) C .(-1,2)D .(-2,1)解析:∵当x =0时,两个表达式对应的函数值都为零,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.故选D. 答案:D11.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.解析:由f (x )=⎩⎪⎨⎪⎧-2x -a ,x <-a22x +a ,x ≥-a2,可得函数f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫-a 2,+∞,故3=-a 2,解得a =-6.答案:-612.已知函数f (x )=x +ax (x ≠0,a ∈R ),若函数f (x )在(-∞,-2]上单调递增,则实数a 的取值范围是__________.解析:设x 1<x 2≤-2,则Δy =f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2=(x1-x2)(x1x2-a)x1x2.因为x1-x2<0,x1x2>0,所以要使Δy=(x1-x2)(x1x2-a)x1x2<0恒成立,只需使x1x2-a>0恒成立,即a<x1x2恒成立.因为x1<x2≤-2,所以x1x2>4,所以a≤4,故函数f(x)在(-∞,-2]上单调递增时,实数a的取值范围是(-∞,4].答案:(-∞,4]。

2020届高三数学之函数与导数(文理通用)二次求导函数处理(二阶导数)(解析版)

2020届高三数学之函数与导数(文理通用)二次求导函数处理(二阶导数)(解析版)

专题03 二次求导函数处理(二阶导数)一、考情分析1、在历年全国高考数学试题中,函数与导数部分是高考重点考查的内容,并且在六道解答题中必有一题是导数题。

利用导数求解函数的单调性、极值和最值等问题是高考考查导数问题的主要内容和形式,并多以压轴题的形式出现. 常常考查运算求解能力、概括抽象能力、推理论证能力和函数与方程、化归与转化思想、分类与整合思想、特殊与一般思想的渗透和综合运用,难度较大.2、而在有些函数问题中,如含有指数式、对数式的函数问题,求导之后往往不易或不能直接判断出原函数的单调性,从而不能进一步判断函数的单调性及极值、最值情况,此时解题受阻。

需要利用“二次求导”才能找到导数的正负,找到原函数的单调性,才能解决问题. 若遇这类问题,必须“再构造,再求导”。

本文试以全国高考试题为例,说明函数的二阶导数在解高考函数题中的应用。

3、解决这类题的常规解题步骤为: ①求函数的定义域;②求函数的导数)('x f ,无法判断导函数正负; ③构造求)(')(x f x g =,求'(x)g ; ④列出)(),(',x g x g x 的变化关系表; ⑤根据列表解答问题。

二、经验分享方法 二次求导使用情景对函数()f x 一次求导得到()f x '之后,解不等式()0()0f x f x ''><和难度较大甚至根本解不出.解题步骤设()()g x f x '=,再求()g x ',求出()0()0g x g x ''><和的解,即得到函数()g x 的单调性,得到函数()g x 的最值,即可得到()f x '的正负情况,即可得到函数()f x 的单调性.三、题型分析(一) 利用二次求导求函数的极值或参数的范围例1.【2020届西南名校联盟高考适应月考卷一,12】(最小整数问题-导数的单调性和恒成立的转化) 已知关于x 的不等式()22ln 212x m x mx +-+≤在()0,∞上恒成立,则整数m 的最小值为( ) A.1 B.2 C.3 D.4 【答案】B .【解析】【第一种解法(排除法)(秒杀)】:令1=x 时,m m ≤+⨯-+21)1(21ln 2化简:34≥m ; 令2=x 时,m m 422)1(22ln 2≤+⨯-+,化简42ln 22+≥m 你还可以在算出3,4,选择题排除法。

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用2(含解析)

2020届高考数学命题猜想及专题练习--函数与方程﹑函数模型及其应用2(含解析)

2020届高考数学命题猜想函数与方程﹑函数模型及其应用【考向解读】求方程的根、函数的零点的个数问题以及由零点存在性定理判断零点是否存在,利用函数模型解决实际问题是高考的热点;备考时应理解函数的零点,方程的根和函数的图象与x轴的交点的横坐标的等价性;掌握零点存在性定理.增强根据实际问题建立数学模型的意识,提高综合分析、解决问题的能力.【命题热点突破一】函数零点的存在性定理1.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.2.函数的零点与方程根的关系函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.例1 、(2018年全国卷Ⅱ)已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】见解析【解析】(2)由于,所以等价于.设=,则g ′(x )=≥0,仅当x=0时g ′(x )=0,所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a –1)=,f (3a+1)=,故f (x )有一个零点.综上,f (x )只有一个零点.【感悟提升】新定义问题的本质是转化思想的应用,即把新定义问题转化为已知的问题加以解决,解题的关键是理解新定义,把新定义表达的问题转化为我们已经掌握的数学问题,然后根据题目的要求进行推理计算得出结论.【变式探究】给出定义:如果函数f(x)在[a ,b]上存在x1,x2(a<x1<x2<b),满足f ′(x1)=f (b )-f (a )b -a ,f ′(x2)=f (b )-f (a )b -a ,则称实数x1,x2为[a ,b]上的“对望数”,函数f(x)为[a ,b]上的“对望函数”.已知函数f(x)=13x3-x2+m 是[0,m]上的“对望函数”,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎪⎫32,3 B .(2,3) C.⎝⎛⎭⎪⎪⎫32,2 3 D .(2,2 3)【答案】A【命题热点突破三】 函数模型及其应用解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答.例3、(2017·江苏)设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,f(x)=⎩⎪⎨⎪⎧x2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =n -1n ,n ∈N*,则方程f(x)-lg x =0的解的个数是_____.【答案】8【变式探究】随着网络的发展,网校教育越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势.假设某网校每日的套题销售量y(单位:万套)与销售价格x(单位:元/套)满足关系式y =m x -2+4(x -6)2,其中2<x<6,m 为常数.已知销售价格为4元/套时,每日可售出套题21万套.(1)求m 的值;(2)假设每套题的成本为2元(只考虑销售出的套数),试确定销售价格x 的值,使网校每日销售套题所获得的利润最大.(保留1位小数)【解析】解:(1)因为x =4时,y =21,代入y =mx -2+4(x -6)2,得m2+16=21,解得m =10.(2)由(1)可知,套题每日的销售量y =10x -2+4(x -6)2,所以每日销售套题所获得的利润f (x )=(x -2)·⎣⎢⎢⎡⎦⎥⎥⎤10x -2+4(x -6)2=10+4(x -6)2(x -2)=4x3-56x2+240x -278(2<x<6),从而f ′(x )=12x2-112x +240=4(3x -10)(x -6)(2<x<6).令f ′(x )=0,得x =103(x =6舍去),且在⎝ ⎛⎭⎪⎪⎫2,103上,f ′(x )>0,函数f (x )单调递增,在⎝ ⎛⎭⎪⎪⎫103,6上,f ′(x )<0,函数f (x )单调递减,所以x =103是函数f (x )在(2,6)内的极大值点,也是最大值点,所以当x =103≈3.3时,函数f (x )取得最大值,即当销售价格为3.3元/套时,网校每日销售套题所获得的利润最大.1 、(2017·全国Ⅲ)已知函数f(x)=x2-2x +a(ex -1+e -x +1)有唯一零点,则a 等于 A.-12B.13C.12 D.1【解析】f(x)=x2-2x +a(ex -1+e -x +1) =(x -1)2+a[ex -1+e -(x -1)]-1,令t =x -1,则g(t)=f(t +1)=t2+a(et +e -t)-1. ∵g(-t)=(-t)2+a(e -t +et)-1=g(t), ∴函数g(t)为偶函数.∵f(x)有唯一零点,∴g(t)也有唯一零点. 又g(t)为偶函数,由偶函数的性质知g(0)=0, ∴2a -1=0,解得a =12 .【答案】C.2、(2017·江苏)设f(x)是定义在R 上且周期为1的函数,在区间[0,1)上,f(x)=⎩⎪⎨⎪⎧x2,x ∈D ,x ,x ∉D ,其中集合D =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x =n -1n ,n ∈N*,则方程f(x)-lg x =0的解的个数是_____.【答案】81.【2016高考新课标1卷】函数在[]2,2-的图像大致为(A)(B)(C)(D)【答案】D2.【2016高考山东文数】已知函数其中0m>,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是________________.【答案】() 3,+∞【解析】画出函数图象如下图所示:由图所示,要()f x b=有三个不同的根,需要红色部分图像在深蓝色图像的下方,即,解得3m >。

2020届高考数学选择题填空题专项练习(文理通用)08 函数图像02(含解析)

2020届高考数学选择题填空题专项练习(文理通用)08 函数图像02(含解析)

2020届高考数学选择题填空题专项练习(文理通用)08函数图像02第I 卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(2020·山西高三月考)函数()[]2cos e,,xf x x x ππ=∈-,的大致图象是( )A .B .C .D .【答案】C 【解析】【分析】先确定函数()f x 为偶函数,排除B,D 选项,再取特值即可判断最终结论. 【详解】因为f (﹣x )=(﹣x )2e cos(﹣x )=x 2e cos x =f (x ),所以函数f (x )为偶函数,排除B 、D 选项,因为f (π)=π2e cosπ=π2e ﹣1>0,所以排除A 选项,故选:C.【点睛】本题考查函数图象的识别,难度不大.对于判断函数图象的试题,排除法是十分常用的方法,一般通过函数的奇偶性、单调性和特殊值即可判断.2.(2020·洪洞县第一中学高三期中)函数()f x 的导函数()f x '的图象如图所示,则( )A .12为()f x 的极大值点 B .2-为()f x 的极大值点 C .2为()f x 的极大值点D .45为()f x 的极小值点 【答案】A 【解析】【分析】观察各极值点附近左右的导数符号,可得出正确选项. 【详解】对于A 选项,当122x -<<时,()0f x '>,当122x <<时,()0f x '<,12为()f x 的极大值点,A 选项正确;对于B 选项,当2x <-时,()0f x '<,当122x -<<时,()0f x '>,2-为()f x 的极小值点,B 选项错误;对于C 选项,当122x <<时,()0f x '<,当2x >时,()0f x '>,2为()f x 的极小值点,C 选项错误;对于D 选项,由于函数()y f x =为可导函数,且405f ⎛⎫'< ⎪⎝⎭,45不是()f x 的极值点,D 选项错误.故选:A.【点睛】本题考查利用导数的图象判断极值点,解题时要充分利用极大值点和极小值点的概念加以理解,考查分析问题与解决问题的能力,属于中等题.3.(2020·广西师大附属外国语学校高三(理)已知函数()()2ln 1f x x ax =+-的导数为()f x ',且()10f '=,则函数()()cos xg x f ex '=图象的大致形状是( )A .B .C .D .【答案】A 【解析】【分析】根据导函数求出1a =,讨论()211xg x cosx e ⎛⎫=-⎪+⎝⎭的函数图象,结合奇偶性和特殊值即可得解.【详解】()21f x a x ='-+,()110,1f a a ='=-=,()211xg x cosx e ⎛⎫=- ⎪+⎝⎭, ()()221111x x x e g x cos x cosx e e -⎛⎫⎛⎫-=--=- ⎪ ⎪++⎝⎭⎝⎭()2211co 1212s x x x e cosx x g x e e ⎛⎫⎛⎫=-=-=- ⎪ ⎪++⎝⎭+-⎝⎭所以()211xg x cosx e ⎛⎫=-⎪+⎝⎭为奇函数,且当02x π⎛⎫∈ ⎪⎝⎭,时,有g (x )<0.结合选项,只有A 符合题意. 【点睛】此题考查根据导数值求参数的取值,根据函数的性质确定函数图象,关键在于根据导函数准确求解.4.(2020·四川成都七中高三开学考试)若函数()121x af x =--的图象关于原点对称,则实数a 等于( ) A .2- B .1- C .1 D .2【答案】A 【解析】【分析】由题意知,函数()f x 为奇函数,利用()()0f x f x -+=,化简整理即可求出实数a . 【详解】因为函数()121xaf x =--的图象关于原点对称,所以函数()f x 为奇函数,则有()()0f x f x -+=, 即(1)(1)02121x x a a --+-=--,化简可得,(21)2021x xa -+=-,解可得2a =-.故选:A 【点睛】本题考查奇函数的定义和性质;根据题意,挖掘题中隐含的条件:函数()f x 为奇函数是求解本题的关键;属于中档题.5.(2020·广东高三期末)函数3cos 1()x f x x+=的部分图象大致是( ) A . B .C .D .【答案】B 【解析】【分析】分析函数的定义域、奇偶性以及函数值的正负变化,排除错误选项可得答案.【详解】由3cos 1()x f x x+=,可得()()f x f x -=-,故()f x 是奇函数,图象关于原点对称,排除A. 当π02x <<时,()0f x >;当11cos 3x -≤<-时,()0f x <,排除C,D.故选:B.【点睛】本题考查函数图象的识别,一般利用函数的定义域、值域、奇偶性、单调性等性质分析函数图象的特征,排除错误选项得到答案.6.(2020·山西大同一中高三月考)函数()()33lg xxf x x -=+⋅的图象大致为( )A .B .C .D .【答案】D 【解析】【分析】先确定函数的定义域,再判断函数的奇偶性和值域,由此确定正确选项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则.所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a≤0时,由a-1=-1得a=0;当a>0时,由-a2+2a+2=-1,即a2-2a-3=0得a=3或a=-1(舍).综上,a=0或a=3.例3 下列四组函数中,表示同一函数的是( )(A) (B)(C) (D)【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y=|x|及y=|t|,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1) (2)(3) (4)解:(1)由|x-1|-1≥0,得|x-1|≥1,所以x-1≥1或x-1≤-1,所以x≥2或x≤0.所以,所求函数的定义域为{x|x≥2或x≤0}.(2)由x2+2x-3>0得,x>1或x<-3.所以,所求函数的定义域为{x|x>1或x<-3}.(3)由得x<3,且x≠0,x≠1,所以,所求函数的定义域为{x|x<3,且x≠0,x≠1}(4)由所以-1≤x≤1,且x≠0.所以,所求函数定义域为{x|-1≤x≤1,且x≠0}.例5 已知函数f(x)的定义域为(0,1),求函数f(x+1)及f(x2)的定义域.【分析】此题的题设条件中未给出函数f(x)的解析式,这就要求我们根据函数三要素之间的相互制约关系明确两件事情:①定义域是指x的取值范围;②受对应法则f制约的量的取值范围在“已知”和“求”当中是一致的.那么由f(x)的定义域是(0,1)可知法则f制约的量的取值范围是(0,1),而在函数f(x+1)中,受f直接制约的是x+1,而定义域是指x的范围,因此通过解不等式0<x+1<1得-1<x<0,即f(x+1)的定义域是(-1,0).同理可得f(x2)的定义域为{x|-1<x<1,且x≠0}.例6 如图,用长为l的铁丝弯成下部为矩形,上部为半圆形的框架,若矩形的底边长为2x,求此框架围成的面积y与x的函数关系式,并指出定义域.解:根据题意,AB=2x.所以,根据问题的实际意义.AD>0,x>0.解所以,所求函数定义域为【评析】求函数定义域问题一般有以下三种类型问题.(1)给出函数解析式求定义域(如例4),这类问题就是求使解析式有意义的自变量的取值范围.正确的解不等式或不等式组在解决这类问题中是重要的.中学数学中常见的对变量有限制的运算法则有:①分式中分母不为零;②偶次方根下被开方数非负;③零次幂的底数要求不为零;④对数中的真数大于零,底数大于零且不等于1;⑤y=tan x,则,k∈Z.(2)不给出f(x)的解析式而求定义域(如例5).其解决办法见例5的分析.(3)在实际问题中求函数的定义域(如例6).在这类问题中除了考虑解析式对自变量的限制,还应考虑实际问题对自变量的限制.另外,在处理函数问题时要有一种随时关注定义域的意识,这是极其重要的.比如在研究函数单调性、奇偶性、最值等问题时,首先要考虑的就是函数的定义域.例7 (1)已知,求f(x)的解析式;(2)已知,求f(3)的值;(3)如果f(x)为二次函数,f(0)=2,并且当x=1时,f(x)取得最小值-1,求f(x)的解析式;(4)*已知函数y=f(x)与函数y=g(x)=2x的图象关于直线x=1对称,求f(x)的解析式.【分析】(1)求函数f(x)的解析式,从映射的角度看就是求对应法则,于是,我们一般有下面两种方法解决(1)这样的问题.方法一.通过这样“凑型”的方法,我们可以明确看到法则f是“原象对应于原象除以原象的平方减1”.所以,方法二.设,则.则,所以这样,通过“换元”的方法也可以明确看到法则是什么.(2)用“凑型”的方法,(3)因为f(x)为二次函数,并且当x=1时,f(x)取得最小值-1,所以,可设f(x)=a(x-1)2-1,又f(0)=2,所以a(0-1)2-1=2,所以a=3.f(x)=3(x-1)2-1=3x2-6x+2.(4)这个问题相当于已知f(x)的图象满足一定的条件,进而求函数f(x)的解析式.所以,可以类比解析几何中求轨迹方程的方法求f(x)的解析式.设f(x)的图象上任意一点坐标为P(x,y),则P关于x=1对称点的坐标为Q(2-x,y),由已知,点Q在函数y=g(x)的图象上,所以,点Q的坐标(2-x,y)满足y=g(x)的解析式,即y=g(2-x)=22-x,所以,f(x)=22-x.【评析】由于已知条件的不同,求函数的解析式的常见方法有象(1)(2)所用到的“凑形”及“换元”的方法;有象(3)所用到的待定系数法;也有象(4)所用到的解析法.值得注意的是(4)中所用的解析法.在求函数解析式或者求轨迹方程时都可以用这种方法,是一种通法.同时也表明函数和它的图象与曲线和它的方程之间有必然的联系.例8 已知二次函数f(x)的对称轴为x=1,且图象在y轴上的截距为-3,被x轴截得的线段长为4,求f(x)的解析式.解:解法一设f(x)=ax2+bx+c,由f(x)的对称轴为x=1,可得b=-2a;由图象在y轴上的截距为-3,可得c=-3;由图象被x轴截得的线段长为4,可得x=-1,x=3均为方程ax2+bx+c=0的根.所以f(-1)=0,即a-b+c=0,所以a=1.f(x)=x2-2x-3.解法二因为图象被x轴截得的线段长为4,可得x=-1,x=3均为方程f(x)=0的根.所以,设f(x)=a(x+1)(x-3),又f(x)图象在y轴上的截距为-3,即函数图象过(0,-3)点.即-3a=-3,a=1.所以f(x)=x2-2x-3.【评析】二次函数是非常常见的一种函数模型,在高中数学中地位很重.二次函数的解析式有三种形式:一般式y=ax2+bx+c;顶点式y=a(x-h)2+k,其中(h,k)为顶点坐标;双根式y=a(x-x1)(x-x2),其中x1,x2为函数图象与x轴交点的横坐标,即二次函数所对应的一元二次方程的两个根.例9 某地区上年度电价为0.8元/kW·h,年用电量为a kW·h.本年度计划将电价降到0.55元/kW·h至0.75元/kW·h之间,而用户期望电价为0.40元/kW·h.经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k).该地区电力的成本价为0.30元/kW·h.(1)写出本年度电价下调后,电力部门的收益y与实际电价x的函数关系式;(2)设k=0.2a,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%?解:(1)依题意,当实际电价为x元/kW·h时,用电量将增加至故电力部门的收益为.(2)易知,上年度的收益为(0.8-0.3)a,依题意,且0.55≤x≤0.75,解得0.60≤x≤0.75.所以,当电价最低定为0.60元/kW·h时,仍可保证电力部门的收益比上年至少增长20%.练习2-1一、选择题1.已知函数的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N=( )(A){x|x>1} (B){x|x<1} (C){x|-1<x<1} (D)2.图中的图象所表示的函数的解析式为( )(A)(B)(C)(D)y=1-|x-1|(0≤x≤2)3.已知f(x-1)=x2+2x,则( )(A) (B) (C) (D)4.已知若f(x)=3,则x的值是( )(A)0 (B)0或 (C) (D)二、填空题5.给定映射f:(x,y)→(x+2y,x-2y),在映射f下(0,1)的象是______;(3,1)的原象是______.6.函数的定义域是______.7.已知函数f(x),g(x)分别由下表给出x 1 2 3 x 1 2 3f(x) 1 3 1 g(x) 3 2 1则f[g(1)]的值为______;满足f[g(x)]>g[f(x)]的x的值是______.8.已知函数y=f(x)与函数y=g(x)=2x的图象关于点(0,1)对称,则f(x)的解析式为______.三、解答题9.已知f(x)=2x+x-1,求g(-1),g[f(1)]的值.10.在如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程为y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.为使物体落在区间D内,求a的取值范围.11.如图,直角边长为2cm的等腰Rt△ABC,以2cm/s的速度沿直线l向右运动,求该三角形与矩形CDEF重合部分面积y(cm2)与时间t的函数关系(设0≤t≤3),并求出y的最大值.§2-2 函数的性质【知识要点】函数的性质包括函数的定义域、值域及值的某些特征、单调性、奇偶性、周期性与对称性等等.本章着重研究后四个方面的性质.本节的重点在于理解与函数性质有关的概念,掌握有关判断、证明的基本方法以及简单的应用.数形结合是本节常用的思想方法.1.设函数y=f(x)的定义域为D,如果对于D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.设函数y=g(x)的定义域为D,如果对于D内任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数.由奇函数定义可知,对于奇函数y=f(x),点P(x,f(x))与点(-x,-f(x))都在其图象上.又点P与点关于原点对称,我们可以得到:奇函数的图象是以坐标原点为对称中心的中心对称图形;通过同样的分析可以得到,偶函数的图象是以y轴为对称轴的轴对称图形.2.一般地,设函数y=f(x)的定义域为A,区间MA.如果取区间M中的任意两个值x1,x2,改变量x=x2-x1>0,则当y=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数;当y=f(x2)-f(x1)<0时,就称函数y=f(x)在区间M上是减函数.如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性,区间M称为单调区间.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.3.一般的,对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域中的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.4.一般的,对于函数f(x),如果存在一个不为零的常数a,使得当x取定义域中的每一个值时,f(a+x)=f(a-x)都成立,则函数y=f(x)的图象关于直线x=a对称.【复习要求】1.理解函数的单调性、最大值、最小值及其几何意义;会用定义证明函数的单调性,会利用函数的单调性处理有关的不等式问题;2.了解函数奇偶性的含义.能判断简单函数的奇偶性.3.了解函数周期性的含义.4.了解函数单调性、奇偶性和周期性之间的联系,并能解决相关的简单问题.【例题分析】例1 判断下列函数的奇偶性.(1) (2)(3)f(x)=x3-3x; (4)(5)解:(1)解,得到函数的定义域为{x|x>1或x≤0},定义域区间关于原点不对称,所以此函数为非奇非偶函数.(2)函数的定义域为{x|x≠0},但是,由于f(1)=2,f(-1)=0,即f(1)≠f(-1),且f(1)≠-f(-1),所以此函数为非奇非偶函数.(3)函数的定义域为R,又f(-x)=(-x)3-3(-x)=-x3+3x=-f(x),所以此函数为奇函数.(4)解,得-1<x<1,又所以此函数为奇函数.(5)函数的定义域为R,又,所以此函数为奇函数.【评析】由函数奇偶性的定义,可以得到下面几个结论:①一个函数是奇(或偶)函数的必要不充分条件是定义域关于原点对称;②f(x)是奇函数,并且f(x)在x=0时有定义,则必有f(0)=0;③既是奇函数又是偶函数的函数,其解析式一定为f(x)=0.判定函数奇偶性按照其定义可以分为两个步骤:①判断函数的定义域是否关于原点对称;②考察f(-x)与f(x)的关系.由此,若以奇偶性为标准可以把函数分为奇函数,偶函数,既奇又偶函数和非奇非偶函数四类.例2 设函数f(x)在R上有定义,给出下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x).其中必为奇函数的有______.(填写所有正确答案的序号)【分析】①令F(x)=-|f(x)|,则F(-x)=-|f(-x)|,由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.②令F(x)=xf(x2),则F(-x)=-xf[(-x)2]=-xf(x2)=-F(x),所以F(x)为奇函数.③令F(x)=-f(-x),则F(-x)=-f[-(-x)]=-f(x),由于f(x)与f(-x)关系不明确,所以此函数的奇偶性无法确定.④令F(x)=f(x)-f(-x),则F(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-F(x),所以F(x)为奇函数.所以,②④为奇函数.例3 设函数f(x)在R上有定义,f(x)的值不恒为零,对于任意的x,y∈R,恒有f(x+y)=f(x)+f(y),则函数f(x)的奇偶性为______.解:令x=y=0,则f(0)=f(0)+f(0),所以f(0)=0,再令y=-x,则f(0)=f(x)+f(-x),所以f(-x)=-f(x),又f(x)的值不恒为零,故f(x)是奇函数而非偶函数.【评析】关于函数方程“f(x+y)=f(x)+f(y)”的使用一般有以下两个思路:令x,y为某些特殊的值,如本题解法中,令x=y=0得到了f(0)=0.当然,如果令x=y=1则可以得到f(2)=2f(1),等等.令x,y具有某种特殊的关系,如本题解法中,令y=-x.得到f(2x)=2f(x),在某些情况下也可令y=,y=x,等等.总之,函数方程的使用比较灵活,要根据具体情况作适当处理.在不是很熟悉的时候,要有试一试的勇气.例4 已知二次函数f(x)=x2+bx+c满足f(1+x)=f(1-x),求b的值,并比较f(-1)与f(4)的大小.解:因为f(1+x)=f(1-x),所以x=1为二次函数图象的对称轴,所以,b=-2.根据对称性,f(-1)=f(3),又函数在[1,+∞)上单调递增,所以f(3)<f(4),即f(-1)<f(4).例5已知f(x)为奇函数,当x≥0时,f(x)=x2-2x,(1)求f(-1)的值;(2)当x<0时,求f(x)的解析式.解:(1)因为f(x)为奇函数,所以f(-1)=-f(1)=-(12-2×1)=1.(2)方法一:当x<0时,-x>0.所以,f(x)=-f(-x)=-[(-x)2-2(-x)]=-x2-2x.方法二:设(x,y)是f(x)在x<0时图象上一点,则(-x,-y)一定在f(x)在x>0时的图象上.所以,-y=(-x)2-2(-x),所以y=-x2-2x.例6 用函数单调性定义证明,函数y=ax2+bx+c(a>0)在区间上为增函数.证明:设,且x1<x2f(x2)-f(x1)=(ax22+bx2+c)-(ax12+bx1+c)=a(x22-x12)+b(x2-x1)=a(x2+x1)(x2-x1)+b(x2-x1)=(x2-x1)[a(x1+x2)+b]因为x1<x2,所以x2-x1>0,又因为,所以,所以f(x2)-f(x1)>0,函数y=ax2+bx+c(a>0)在区间上为增函数.例7 已知函数f(x)是定义域为R的单调增函数.(1)比较f(a2+2)与f(2a)的大小;(2)若f(a2)>f(a+6),求实数a的取值范围.解:(1)因为a2+2-2a=(a-1)2+1>0,所以a2+2>2a,由已知,f(x)是单调增函数,所以f(a2+2)>f(2a).(2)因为f(x)是单调增函数,且f(a2)>f(a+6),所以a2>a+6,解得a>3或a<-2.【评析】回顾单调增函数的定义,在x1,x2为区间任意两个值的前提下,有三个重要的问题:x=x2-x1的符号;y=f(x2)-f(x1)的符号;函数y=f(x)在区间上是增还是减.由定义可知:对于任取的x1,x2,若x2>x1,且f(x2)>f(x1),则函数y=f(x)在区间上是增函数;不仅如此,若x2>x1,且函数y=f(x)在区间上是增函数,则f(x2)>f(x1);若f(x2)>f(x1),且函数y=f(x)在区间上是增函数,则x2>x1;于是,我们可以清晰地看到,函数的单调性与不等式有着天然的联系.请结合例5例6体会这一点.函数的单调性是极为重要的函数性质,其与其他问题的联系、自身的应用都很广泛,在复习中要予以充分注意.例8 设f(x)是定义域为(-∞,0)∪(0,+∞)的奇函数,且它在区间(-∞,0)上是减函数.(1)试比较f(-2)与-f(3)的大小;(2)若mn<0,且m+n<0,求证:f(m)+f(n)>0.解:(1)因为f(x)是奇函数,所以-f(3)=f(-3),又f(x)在区间(-∞,0)上是减函数,所以f(-3)>f(-2),即-f(3)>f(-2).(2)因为mn<0,所以m,n异号,不妨设m>0,n<0,因为m+n<0,所以n<-m,因为n,-m∈(-∞,0),n<-m,f(x)在区间(-∞,0)上是减函数,所以f(n)>f(-m),因为f(x)是奇函数,所以f(-m)=-f(m),所以f(n)>-f(m),即f(m)+f(n)>0.例9函数f(x)是周期为2的周期函数,且f(x)=x2,x∈[-1,1].(1)求f(7.5)的值;(2)求f(x)在区间[2n-1,2n+1]上的解析式.解:(1)因为函数f(x)是周期为2的周期函数,所以f(x+2k)=f(x),k∈Z.所以f(7.5)=f(-0.5+8)=f(-0.5)=.(2)设x∈[2n-1,2n+1],则x-2n∈[-1,1].所以f(x)=f(x-2n)=(x-2n)2,x∈[2n-1,2n+1].练习2-2一、选择题1.下列函数中,在(1,+∞)上为增函数的是( )(A)y=x2-4x (B)y=|x| (C) (D)y=x2+2x2.下列判断正确的是( )(A)定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数(B)定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数(C)定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数(D)不存在既是奇函数又是偶函数的函数3.已知函数f(x)是R上的奇函数,并且是周期为3的周期函数,又知f(1)=2.则f(2)=( )(A)-2 (B)2 (C)1 (D)-14.设f(x)是R上的任意函数,则下列叙述正确的是( )(A)f(x)f(-x)是奇函数 (B)f(x)|f(-x)|是奇函数(C)f(x)-f(-x)是偶函数 (D)f(x)+f(-x)是偶函数二、填空题5.若函数f(x)=4x2-mx+5在区间[-2,+∞)是增函数,则m的取值范围是______;f(1)的取值范围是______.6.已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x4,则当x∈(0,+∞)时,f(x)=______.7.设函数为奇函数,则实数a=______.8.已知函数f(x)=x2-cos x,对于上的任意x1,x2,有如下条件:①x1>x2;②③|x1|>x2.其中能使f(x1)>f(x2)恒成立的条件序号是______三、解答题9.已知函数f(x)是单调减函数.(1)若a>0,比较与f(3)的大小;(2)若f(|a-1|)>f(3),求实数a的取值范围.10.已知函数(1)判断函数f(x)的奇偶性;(2)当a=1时,证明函数f(x)在区间[2,+∞)上是增函数.11.定义在(0,+∞)上的函数f(x)满足①f(2)=1;②f(xy)=f(x)+f(y),其中x,y 为任意正实数,③任意正实数x,y满足x≠y时,(x-y)[f(x)-f(y)]>0恒成立.(1)求f(1),f(4)的值;(2)试判断函数f(x)的单调性;(3)如果f(x)+f(x-3)≤2,试求x的取值范围.§2-3 基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质.【知识要点】1.一次函数:y=kx+b(k≠0)(1)定义域为R,值域为R;(2)图象如图所示,为一条直线;(3)k>0时,函数为增函数,k<0时,函数为减函数;(4)当且仅当b=0时一次函数是奇函数.一次函数不可能是偶函数.(5)函数y=kx+b的零点为2.二次函数:y=ax2+bx+c(a≠0)通过配方,函数的解析式可以变形为(1)定义域为R:当a>0时,值域为;当a<0时,值域为;(2)图象为抛物线,抛物线的对称轴为,顶点坐标为.当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.(3)当a>0时,是减区间,是增区间;当a<0时,是增区间,是减区间.(4)当且仅当b=0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式=b2-4ac>0时,函数有两个变号零点;当判别式=b2-4ac=0时,函数有一个不变号零点;当判别式=b2-4ac<0时,函数没有零点.3.指数函数y=a x(a>0且a≠1)(1)定义域为R;值域为(0,+∞).(2)a>1时,指数函数为增函数;0<a<1时,指数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y=log a x(a>0且a≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x,使得x n=a (a∈R,n>1,n∈N+),则x叫做a的n次方根.负数没有偶次方根.;(2)分数指数幂,;n,m∈N*,且为既约分数).,且为既约分数).(3)幂的运算性质a m a n=a m+n,(a m)n=a mn,(ab)n=a nb n,a0=1(a≠0).(4)一般地,对于指数式a b=N,我们把“b叫做以a为底N的对数”记为log a N,即b=log a N(a>0,且a≠1).(5)对数恒等式:=N.(6)对数的性质:零和负数没有对数(对数的真数必须大于零!);底的对数是1,1的对数是0.(7)对数的运算法则及换底公式:;;.(其中a>0且a≠1,b>0且b≠1,M>0,N>0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y=x,y=x2,y=x3,这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.【例题分析】例1化简下列各式:(1); (2);(3); (4)log2[log3(log464)];(5).解:(1)(2)(3)(4)log2[log3(log464)]=log2[log3(log443)]=log2[log33]=log21=0.(5)【评析】指数、对数运算是两种重要的运算,在运算过程中公式、法则的准确、灵活使用是关键.例2已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,试确定f(x)的解析式.解:解法一设f(x)=ax2+bx+c(a≠0),依题意解之得所以所求二次函数为f(x)=-4x2+4x+7.解法二f(x)=a(x-h)2+k(a≠0),为f(2)=-1,f(-1)=-1,所以抛物线的对称轴为,又f(x)的最大值为8,所以.因为(-1,-1)点在抛物线上,所以,解得a=-4.所以所求二次函数为.例3 (1)如果二次函数f(x)=x2+(a+2)x+5在区间(2,+∞)上是增函数,则a的取值范围是______.(2)二次函数y=ax2-4x+a-3的最大值恒为负,则a的取值范围是______.(3)函数f(x)=x2+bx+c对于任意t∈R均有f(2+t)=f(2-t),则f(1),f(2),f(4)的大小关系是_______.解:(1)由于此抛物线开口向上,且在(2,+∞)上是增函数,画简图可知此抛物线对称轴或与直线x=2重合,或位于直线x=2的左侧,于是有,解之得.(2)分析二次函数图象可知,二次函数最大值恒为负的充要条件是“二次项系数a<0,且判别式<0”,即,解得a∈(-∞,-1).(3)因为对于任意t∈R均有f(2+t)=f(2-t),所以抛物线对称轴为x=2,又抛物线开口向上,做出函数图象简图可得f(2)<f(1)<f(4).例4已知函数f(x)=mx2+(m-3)x+1的图象与x轴的交点至少有一个在原点的右侧,求实数m的范围.解:当m=0时,f(x)=-3x+1,其图象与x轴的交点为,符合题意;当m<0时,注意到f(0)=1,又抛物线开口向下,所以抛物线与x轴的两个交点必在原点两侧.所以m<0符合题意;当m>0时,注意到f(0)=1,又抛物线开口向上,所以抛物线与x轴的两个交点必在原点同侧(如果存在),所以若满足题意,则解得0<m≤1.综上,m∈(-∞,1].【评析】在高中阶段,凡“二次”皆重点,二次函数,一元二次方程,一元二次不等式,二次曲线都应着重去理解、掌握.例2、3、4 三个题目充分体现了数形结合思想及运动变化思想的运用.这两种数学思想在函数问题的解决中被普遍使用.例5 (1)当a≠0时,函数y=ax+b与y=b ax的图象只可能是( )(2)函数y=log a x,y=log b x,y=log c x,y=log d x的图象分别是图中的①、②、③、④,则a,b,c,d的大小关系是______.【分析】(1)在选项(A)中,由y=ax+b图象可知a<0,b>1,所以b a<b0=1(根据以为底的指数函数的性质),所以y=b ax=(b a)x应为减函数.在选项(B)中,由y=ax+b图象可知a>0,b>1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.在选项(C)中,由y=ax+b图象可知a>0,0<b<1,所以b a<b0=1,所以y=b ax=(b a)x应为减函数.与图形提供的信息相符.在选项(D)中,由y=ax+b图象可知a<0,0<b<1,所以b a>b0=1,所以y=b ax=(b a)x应为增函数.综上,选C.(2)如图,作直线y=1与函数y=log a x,y=log b x,y=log c x,y=log d x的图象依次交于A,B,C,D四点,则A,B,C,D四点的横坐标分别为a,b,c,d,显然,c<d<a<b.【评析】在本题的解决过程中,对函数图象的深入分析起到了至关重要的作用.这里,对基本初等函数图象的熟悉是前提,对图象的形态的进一步研究与关注是解决深层问题要重点学习的,例4中“注意到f(0)=1”,例5中“作直线y=1”就是具体的表现,没有“熟悉”和“深入的研究”是不可能“注意到”的,也作不出“直线y=1”.例6已知幂函数.(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.解:(1)因为f(x)在(0,+∞)上是增函数,所以,解得-1<k<3,因为k∈Z,所以k=0,1,2,又因为f(x)为偶函数,所以k=1,f(x)=x2.(2)因为f(x)在(0,+∞)上是减函数,所以,解得k<-1,或k>3(k∈Z).例7比较下列各小题中各数的大小(1);(2)lg2与lg(x2-x+3);(3)0.50.2与0.20.5;(4);(5);(6)a m+a-m与a n+a-n(a>0,a≠1,m>n>0)【分析】(1)函数y=log2x在区间(0,+∞)上是增函数,所以log20.6<log21=0,函数y=log0.6x在区间(0,+∞)上是减函数,所以所以.(2)由于,所以lg2<lg(x2-x+3).(3)利用幂函数和指数函数单调性.0.50.2>0.20.2>0.20.5.(4)因为.根据不等式的性质有(5)因为比较与log32,只需比较与log32,因为y=log3x是增函数,所以只需比较与2的大小,因为,所以,所以,综上,(6),当a>1时,因为m>n>0,a m>a n,a m+n>1,所以a m+a-m>a n+a-n;当0<a<1时,因为m>n>0,a m<a n,a m+n<1,所以a m+a-m>a n+a-n.综上,a m+a-m>a n+a-n.例8已知a>2,b>2,比较a+b,ab的大小.【分析】方法一(作商比较法),又a>2,b>2,所以,所以,所以a+b<ab.方法二(作差比较法),因为a>2,b>2,所以2-a<0,2-b<0,所以a+b-ab<0,即a+b<ab.方法三(构造函数)令y=f(a)=a+b-ab=(1-b)a+b,将y看作是关于a的一次函数,因为1-b<0,所以此函数为减函数,又a∈(2,+∞),y最大<f(2)=(1-b)×2+b=2-b<0,所以a+b-ab<0,即a+b<ab.【评析】两个数比较大小的基本思路:如果直接比较,可以考虑用比较法(包括“作差比较法”与“作商比较法”,如例8的方法一与方法二),或者利用函数的单调性来比较(如例7(1)(2)(3),例8的方法三).如果用间接的方法可以尝试对要比较的两数进行适当的变形,转化成对另两个数的比较,也可以考虑借助中间量来比较(如例7(4)(5)(6)).例9若log2(x-1)<2,则x的取值范围是______.解:log2(x-1)<2,即log2(x-1)<log24,根据函数y=log2x的单调性,可得x-1<4,所以x<5,结合x-1>0,所以x的取值范围是1<x<5.例10 已知A,B为函数y=log8x的图象上两点,分别过A,B作y轴的平行线与函数y=log2x的图象交于C,D两点.(1)如果A,B两点的连线经过原点O,请问C,D,O三点也共线么?证明你的结论.(2)当A,B,O三点共线并且BC与x轴平行时,求A点的坐标.略解:(1)设A(x1,log8x1),B(x2,log8x2),由于A,B,O在同一条直线上,所以又设C(x1,log2x1),D(x2,log2x2),于是有同样可得结合①式,有k OC=k OD,即C,D,O三点共线.(2)当BC∥x轴时,即。

相关文档
最新文档