2020届高考文科数学大二轮复习冲刺经典专题高考仿真模拟二2
河南省2020届高三第二次模拟考试卷 文科数学(二)(PDF版,答案解析)

成立.
(1)求实数 k 的值;
(2)若 m 1 , n 1 且求证 f (m) f (n) 10 ,求证: 9 1 16 .
2
2
mn 3
二模测试卷 第 7 页(共 8 页)
二模测试卷 第 8 页(共 8 页)
高三第二次模拟考试卷
文科数学(二)答 案
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1.【答案】C
B.若 1 x 1,则 x2 1
C.若 x 1或 x 1,则 x2 1
D.若 x 1或 x 1,则 x2 1
4焦点分别为 F1 ,F2 ,过 F2 且垂直于长轴的直线交椭圆于 A, B 两点,
则 △ABF1的周长为( )
A. 4
B. 6
C. 8
D.16
为
cos2
2asin (a
0)
,过点
P(1, 2)
的直线 l
的参数方程为
x
1
2t 2 ( t 为参数),l
y
2
2t 2
与 C 交于 A , B 两点.
(1)求 C 的直角坐标方程和 l 的普通方程;
(2)若 PA , AB , PB 成等比数列,求 a 的值.
23.(12 分)已知定义在 R 上的函数 f (x) 2x k 2 x , k N* .存在实数 x0 使 f (x0 ) 2
∴△ABF1的周长为| AF1 | | BF1 | | AB | (| AF1 | | AF2 |) (| BF1 | | BF2 |) 8 ,
故选 C. 5.【答案】A
【解析】因为平面向量 a (1, 3) , b (2, 0) ,
百千联考解析版:2020届高三第二次模拟考试卷 文科数学(二)

通过计算确定种植园选择哪种方案获利更多?
(2)设 P 是椭圆 C2 上非顶点的动点, P 与椭圆 C1 长轴两个顶点 A , B 的连线 PA , PB 分别与椭 圆 C1 交于点 E , F . ①求证:直线 PA , PB 斜率之积为常数; ②直线 AF 与直线 BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.
+L
+1. bnbn+1
二模测试卷 第 3 页(共 8 页)
18.(12 分)如图,四棱锥 P − ABCD 中,底面 ABCD 为菱形, PA ⊥ 平面 ABCD , E 为 PD 的
中点.
(1)证明: PB∥平面 AEC ; (2)设 PA = 1, AD = 3 , PC = PD ,求三棱锥 P − ACE 的体积.
D. (−2, −1) U(0, +∞)
8.如图,网格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥的体积
为( )
A. 4 3
B. 2 3
C. 2
D. 3 2
x − y + 2 ≥ 0
9.若点
(x,
y)
满足线性条件
x
+
y
≥
0
,则=z 2x + y 的最大值为( )
5x + y − 8 ≤ 0
20.(12 分)椭圆 C1 与 C2 的中心在原点,焦点分别在 x 轴与 y 轴上,它们有相同的离心率 e =
2020年全国高考数学(文科)仿真冲刺模拟试卷2含答案

2020年全国高考数学(文科)仿真冲刺模拟试卷2注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.[拉萨中学]已知全集{}1,2,3,4U =,集合{}1,2A =,{}2,3B =,则()U A B =I ð( ) A .{}1,3,4B .{}3,4C .{}3D .{}42.[黔东南州一模]12i 12i1i 1i-++=+-( )A .1-B .i -C .1D .i3.[济南模拟]已知双曲线2219x y m-=的一个焦点F 的坐标为()5,0-,则该双曲线的渐近线方程为( ) A .43y x =±B .34y x =±C .53y x =±D .35y x =±4.[贵州适应]2018年12月1日,贵阳市地铁一号线全线开通,在一定程度上缓解了出行的拥堵状况。
为了了解市民对地铁一号线开通的关注情况,某调查机构在地铁开通后的某两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图:根据图中(35岁以上含35岁)的信息,下列结论中不一定正确的是( ) A .样本中男性比女性更关注地铁一号线全线开通 B .样本中多数女性是35岁以上C .35岁以下的男性人数比35岁以上的女性人数多D .样本中35岁以上的人对地铁一号线的开通关注度更高5.[阆中中学]设D 为ABC △的边BC 的延长线上一点,3BC CD =u u u r u u u r,则( )A .1433AD AB AC =-u u u r u u u r u u u rB .4133AD AB AC =+u u u r u u u r u u u rC .1433AD AB AC =-+u u u r u u ur u u u rD .4133AD AB AC =-u u u r u u u r u u u r6.[银川质检]执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为( )A .6B .10C .8D .47.[樟树中学]函数()()sin f x x ωϕ=+(其中π2ϕ<)的图象如图所示,为了得到()y f x =的图象,只需把sin y x ω=的图象上所有点( )A .向右平移π6个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向左平移π12个单位长度 8.[烟台一模]我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .π12+B .1π36+C .12π+D .12π33+9.[临沂质检]在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,3a =,23c =,πsin cos 6b A a B ⎛⎫=+ ⎪⎝⎭,b =则( )A .1B .2C .3D .510.[山西冲刺]函数()sin 2cos f x x x x =+的大致图象有可能是( )A .B .C .D .11.[齐齐哈尔模拟]已知三棱锥D ABC -的四个顶点都在球O 的球面上,若DC ⊥平面ABC ,90ACB ∠=︒,32AB =23DC =O 的表面积为( )A .28πB .30πC .32πD .36π12.[四川诊断]已知函数()211x x f x x --=+,()1e ln x g x x a -=--+对任意的[]11,3x ∈,[]21,3x ∈恒有()()12f x g x ≥成立,则a 的取值范围是( ) A .12a ≤B .12a ≥C .102a <≤D .1122a -≤≤第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.[宣城期末]log 32381127log 44⎛⎫+-= ⎪⎝⎭_______. 14.[焦作模拟]设x ,y 满足约束条件202300x y x y x y --≤-+≥+≤⎧⎪⎨⎪⎩,则46y x ++的取值范围是__________.15.[海安中学]若cos 24πcos αα⎛⎫=+ ⎪⎝⎭,则an 8πt α⎛⎫+= ⎪⎝⎭______.16.[呼和浩特调研]设抛物线24y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA L ⊥,A 为垂足.如果直线AF 的斜率为3-PF 为直径的圆的标准方程为______.三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)[济南模拟]已知数列{}n a 的前n 项和为n S ,且22n n S a =-.(1)求数列{}n a 的通项公式;(2)设22log 11n n b a =-,数列{}n b 的前n 项和为n T ,求n T 的最小值及取得最小值时n 的值.18.(12分)[宜宾诊断]在如图所示的几何体中,已知90BAC ∠=︒,PA ⊥平面ABC ,3AB =,4AC =,2PA =.若M 是BC 的中点,且PQ AC ∥,QM ∥平面PAB .(1)求线段PQ 的长度;(2)求三棱锥Q AMC -的体积V .19.(12分)[海淀一模]据《人民网》报道,“美国国家航空航天局(NASA)发文称,相比20年前世界变得更绿色了,卫星资料显示中国和印度的行动主导了地球变绿.”据统计,中国新增绿化面积的42%来自于植树造林,下表是中国十个地区在2017年植树造林的相关数据.(造林总面积为人工造林、飞播造林、新封山育林、退化林修复、人工更新的面积之和)单位:公顷地区造林总面积按造林方式分人工造林飞播造林新封山育林退化林修复人工更新内蒙618484 311052 74094 136006 90382 6950河北583361 345625 33333 135107 65653 3643河南149002 97647 13429 22417 15376 133重庆226333 100600 62400 63333陕西297642 184108 33602 63865 16067甘肃325580 260144 57438 7998新疆263903 118105 6264 126647 10796 2091青海178414 16051 159734 2629宁夏91531 58960 22938 8298 1335北京19064 10012 4000 3999 1053(1)请根据上述数据,分别写出在这十个地区中人工造林面积与造林总面积的比值最大和最小的地区;(2)在这十个地区中,任选一个地区,求该地区人工造林面积与造林总面积的比值不足50%的概率是多少?(3)从上表新封山育林面积超过十万公顷的地区中,任选两个地区,求至少有一个地区退化林修复面积超过五万公顷的概率.20.(12分)[上饶模拟]已知椭圆()2222:10x yD a ba b+=>>的离心率为2e,点)2,1-在椭圆D 上.(1)求椭圆D的标准方程;(2)过y轴上一点()0,E t且斜率为k的直线l与椭圆交于A,B两点,设直线OA,OB(O为坐标原点)的斜率分别为OA k ,OB k ,若对任意实数k ,存在[]2,4λ∈,使得OA OB k k k λ+=,求实数t 的取值范围.21.(10分)[衡阳联考]已知函数()()21ln 12f x x ax a x =-++-,a ∈R .(1)讨论()f x 的单调性;(2)()2,x ∀∈+∞,()0f x >恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】[东莞调研]在直角坐标系xOy 中,直线l 的参数方程为()334 3x tt y a t ⎧⎪⎨=+⎪⎩+=为参数, 圆C 的标准方程为()()22334x y -+-=.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.求直线l 和圆C 的极坐标方程; 若射线π3θ=与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点, 求a 的值.23.(10分)【选修4-5:不等式选讲】 [河南联考]已知函数()2f x x a x a =-+-. (1)当1a =-时,求()4f x ≤的解集;(2)记()f x 的最小值为()g a ,求()g a 在[]0,2a ∈时的最大值.绝密 ★ 启用前 2020年全国高考数学(文科)仿真冲刺模拟试卷1答案一、选择题. 1.【答案】A【解析】集合{}1,2A =,{}2,3B =,则{}2A B =I ,又全集{}1,2,3,4U =,则(){}1,3,4U A B =I ð,故选A . 2.【答案】A 【解析】12i 12i 13i 13i11i 1i 2-+---++==-+-,故答案为A . 3.【答案】A【解析】Q 双曲线2219x y m-=的一个焦点为()5,0F -,∴由222a b c +=,得925m +=,解得16m =,∴双曲线方程为221916x y -=,∴双曲线的渐近线方程为43y x =±.故选A 项.4.【答案】C【解析】由左图知,样本中的男性数量多于女性数量,A 正确; 由右图知女性中35岁以上的占多数,B 正确;由右图知,35岁以下的男性人数比35岁以上的女性人数少,C 错误;由右图知样本中35岁以上的人对地铁一号线的开通关注度更高,D 正确.故选C . 5.【答案】C【解析】()44143333AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r ,故选C .6.【答案】C【解析】由题意可知,执行如图所示的程序框图,可知: 第一循环:134n =+=,2146S =⨯+=; 第二循环:437n =+=,26719S =⨯+=; 第三循环:7310n =+=,2191048S =⨯+=,要使的输出的结果为48,根据选项可知8k =,故选C . 7.【答案】C【解析】由图知,17ππ1π41234T =-=,()2ππ0T ωω∴==>,2ω∴=,又ππ3ωϕ+=,π2ππππ333ϕω∴=-=-=, 又1A =,()πsin 23y f x x ⎛⎫∴==+ ⎪⎝⎭,()sin 2g x x =,πππsin 2sin 2663g x x x ⎛⎫⎛⎫⎛⎫+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Q ,∴为了得到()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象,则只要将()sin 2g x x =的图象向左平移π6个单位长度.故选C . 8.【答案】B【解析】根据三视图知,该几何体是三棱锥与14圆锥体的组合体,如图所示:则该组合体的体积为211111π112π12323436V =⨯⨯⨯⨯+⨯⨯⨯=+,所以对应不规则几何体的体积为1π36+,故选B .9.【答案】C【解析】因为πsin cos 6b A a B ⎛⎫=+ ⎪⎝⎭,展开得31sin cos sin 2b A B a B -,由正弦定理化简得31sin sin cos sin sin 2B A A B A B =-, 3sin cos B B =,即3tan B =, 而三角形中0πB <<,所以π6B =, 由余弦定理可得2222cos b a c ac B =+-,代入(222π3232323cos6b =+-⨯⨯, 解得3b =C . 10.【答案】A【解析】函数()f x 是偶函数,排除D ;由()()2sin cos cos cos 2sin 1f x x x x x x x x =+=+,知当()0,2πx ∈时,cos 0x =有两个解π2,3π2, 令2sin 10x x +=,1sin 2x x =-,而sin y x =与12y x=-在()0,2π有两个不同的交点(如下图所示),故函数在()0,2π上有4个零点,故选A . 11.【答案】B【解析】由于C 处的三条棱两两垂直,可以把三棱锥补成长方体.设球O 半径为R ,则()222230R CD AB =+=,球表面积24π30πS R ==.故选B . 12.【答案】A 【解析】由题得()()22201x xf x x =+'+>,()f x ∴在[]1,3上单调递增,所以()()min 112f x f ==-,由题得()11e 0x g x x -⎛⎫=-+< ⎪⎝⎭',所以函数()g x 在[]1,3上单调递减,所以()()max 11g x g a ==-,由题得()()min max f x g x ≥,112a ∴-≥-,所以12a ≤.故选A .二、填空题. 13.【答案】10 【解析】原式2232log 33232103⨯-=++=.故答案为10. 14.【答案】[]3,1-【解析】作出不等式组对应的平面区域如图所示:则46y x ++的几何意义是区域内的点到定点()6,4P --的斜率, 由2300x y x y -+=+=⎧⎨⎩,得1x =-,1y =,即()1,1A -,则AP 的斜率14116k +==-+,由20230x y x y --=-+=⎧⎨⎩,得5x =-,7y =-,即()5,7B --,则BP 的斜率74356k -+==--+,则46y x ++的取值范围是[]3,1-,故答案为[]3,1-. 15.【答案】21+ 【解析】πcos 2cos 4αα⎛⎫=+ ⎪⎝⎭Q ,ππππcos 2cos 8888αα⎛⎫⎛⎫∴+-=++ ⎪ ⎪⎝⎭⎝⎭,ππππππππcos cos sin sin 2cos cos 2sin sin 88888888αααα⎛⎫⎛⎫⎛⎫⎛⎫∴+++=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化为ππππcos cos 3sin sin 8888αα⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,ππ3tan tan 188α⎛⎫∴+= ⎪⎝⎭,2π2tanπ8tan 1π41tan 8==-Q ,解得πtan 218=-. ()π21tan 8321α+⎛⎫∴+==⎪⎝⎭-,故答案为21+. 16.【答案】()()22234x y -+-=【解析】Q 抛物线24y x =的焦点为F ,准线为l ,P 为抛物线上一点,PF PA ∴=,()1,0F ,准线l 的方程为1x =-, 设F 在l 上的射影为F ',又PA l ⊥,依题意,60AFF '∠=︒,2FF '=,AF '∴=PA x ∥轴,∴点P的纵坐标为设点P 的横坐标为0x,(204x =,03x ∴=,()()01314PF PA x ∴==--=--=.故以PF为直径的圆的圆心为(,半径为2. 以PF 为直径的圆的标准方程为()(2224x y -+=.故答案为()(2224x y -+=.三、解答题.17.【答案】(1)2n n a =;(2)当5n =时,n T 有最小值525T =-. 【解析】(1)当1n =时,11122S a a ==-,解得12a =, 当2n ≥时,()111222222n n n n n n n a S S a a a a ---=-=---=-,所以12n n a a -=,所以{}n a 是以2为首项,2为公比的等比数列,所以2n n a =. (2)222log 112log 211211n n n b a n =-=-=-,所以{}n b 为等差数列, 所以()()1292111022n n n b b n n T n n +-+-===-,所以当5n =时,n T 有最小值525T =-. 18.【答案】(1)2;(2)2.【解析】(1)取AB 的中点N ,连接MN ,PN ,MN AC ∴∥,且122MN AC ==,PQ AC Q ∥,P ∴、Q 、M 、N 确定平面α, QM Q ∥平面PAB ,且平面αI 平面PAB PN =,又QM ⊂平面α,QM PN ∴∥,∴四边形PQMN 为平行四边形, 2PQ MN ∴==.(2)解:取AC 的中点H ,连接QH ,PQ AH Q ∥,且2PQ AH ==,∴四边形PQHA 为平行四边形,QH PA ∴∥,PA ⊥Q 平面ABC ,QH ∴⊥平面ABC ,11322AMC S AC AB ⎛⎫=⨯⨯= ⎪⎝⎭Q △,2QH PA ==, ∴三棱锥Q AMC -的体积:1132233AMC V S QH =⋅=⨯⨯=△.19.【答案】(1)甘肃省,青海省;(2)310;(3)56. 【解析】(1)人工造林面积与造林总面积比最大的地区为甘肃省,人工造林面积占造林总面积比最小的地区为青海省.(2)设在这十个地区中,任选一个地区,该地区人工造林面积占总面积的比值不足50%为事件A ,在十个地区中,有3个地区(重庆、新疆、青海)人工造林面积占总面积比不足50%,则()310P A =. (3)设至少有一个地区退化林修复面积超过五万公顷为事件B ,新封山育林面积超过十万公顷有4个地区:内蒙、河北、新疆、青海,分别设为1a ,2a ,3a ,4a ,其中退化林修复面积超过五万公顷有2个地区:内蒙、河北,即1a ,2a ,从4个地区中任取2个地区共有6种情况,()12,a a ,()13,a a ,()14,a a ,()23,a a ,()24,a a ,()34,a a ,其中至少有一个地区退化林修复面积超过五万公顷共有5种情况,()12,a a ,()13,a a ,()14,a a ,()23,a a ,()24,a a ,则()56P B =.20.【答案】(1)22142x y +=;(2)[]1,1t ∈-. 【解析】(1)椭圆D的离心率2e ==,a ∴,又点)1-在椭圆上,22211a b ∴+=,得2a =,b , ∴椭圆D 的标准方程为22142x y +=.(2)由题意得,直线l 的方程为y kx t =+,由22142x y y kx t +==+⎧⎪⎨⎪⎩,消元可得 ()222214240kx ktx t +++-=,设()11,A x y ,()22,B x y ,则122421kt x x k -+=+,21222421t x x k -⋅=+,()212121222212121242142221242OA OBt x x y y kx t kx t kt k kk k k k t x x x x x x k t t +++-+-+=+=+=+=+⋅⋅=+--,由OA OB k k k λ+=,得242t λ-=-,即242t λ=-, 又[]2,4λ∈,[]20,1t ∴∈,[]1,1t ∴∈-. 21.【答案】(1)见解析;(2)2ln2,4+⎡⎫+∞⎪⎢⎣⎭.【解析】(1)()f x 的定义域为()0,+∞,()()()1111x ax f x ax a x x+-'=-++-=. 若0a ≤,则当()0,x ∈+∞时,()0f x '<,故()f x 在()0,+∞单调递减. 若0a >,则当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.故()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增.综上可得:当0a ≤时,()f x 在()0,+∞单调递减.当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增.(2)因为()2,x ∈+∞,由()()()222ln 10ln 1022x x f x x ax a x a x x+>⇒-++->⇒>+.令()()22ln 2x x g x x x+=+,()2,x ∈+∞,则()()()()22212ln 202x x x g x xx +--+'=<+.所以()g x 在()2,+∞单调递减,又()2ln224g +=,∴()2ln24g x +<,∴2ln24a +≥, 即实数a 的取值范围是2ln2,4+⎡⎫+∞⎪⎢⎣⎭.22.【答案】(1)直线l 的极坐标方程为3cos sin 04a ρθρθ--+=,圆C 的极坐标方程为26cos 6sin 140ρρθρθ--+=;(2)94a =. 【解析】(1)∵直线l的参数方程为()34 x t y a ⎧⎪⎨=⎪⎩+=为参数, ∴在直线l 的参数方程中消去t 可得直线l 的普通方程为304x y a --+=, 将cos x ρθ=,sin y ρθ=代入以上方程中, 得到直线l 的极坐标方程为3cos sin 04a ρθρθ--+=. Q 圆C 的标准方程为()()22334x y -+-=,∴圆C 的极坐标方程为26cos 6sin 140ρρθρθ--+=.(2)在极坐标系中,由已知可设1π3,M ρ⎛⎫ ⎪⎝⎭,2π3,A ρ⎛⎫ ⎪⎝⎭,3π3,B ρ⎛⎫ ⎪⎝⎭,联立236cos π6sin 140θρρθρθ=⎧--+=⎪⎨⎪⎩,得(23140ρρ-++=,233ρρ∴+=+Q 点M 恰好为AB的中点,1ρ∴=,即3πM ⎫⎪⎪⎝⎭,把3πM ⎫⎪⎪⎝⎭代入3cos sin 04a ρθρθ--+=,得(313024a +-+=,解得94a =. 23.【答案】(1){}22x x -≤≤;(2)2.【解析】(1)当1a =-时,原不等式变为114x x ++-≤. ①当1x ≥时,114x x ++-≤,得2x ≤,所以12x ≤≤; ②当1x ≤-时,114x x ---+≤,得2x ≥-,所以21x -≤≤-; ③当11x -<<时,1124x x +-+=≤恒成立,所以11x -<<.综上,得22x -≤≤.故()4f x ≤的解集为{}22x x -≤≤. (2)()()()22f x x a x a a a ≥---=-,所以()2g a a a =-.①当01a ≤<时,()2g a a a =-,最大值为1124g ⎛⎫= ⎪⎝⎭;②当12a ≤≤时,()2g a a a =-,最大值为()22g =. 综上,得()g a 在[]0,2a ∈时的最大值为2.。
2020年贵州省高考文科科数学仿真模拟试题二(附答案)

2020年贵州省高考文科数学仿真模拟试题二(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =( )A. [0,)+∞B. [1,)+∞C. 3,2⎛⎫+∞ ⎪⎝⎭D. 30,2⎡⎫⎪⎢⎣⎭2. 在复平面内,复数22ii+-对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3.“x>5”是“>1”的( )A. 充分不必要条件B. 必要不充分条件C. 既不充分也不必要条件D. 充要条件4. 以A (-2,1),B (1,5)为半径两端点的圆的方程是( ) A. (x +2)2+(y -1)2=25 B. (x -1)2+(y -5)2=25C. (x +2)2+(y -1)2=25或(x -1)2+(y -5)2=25D. (x +2)2+(y -1)2=5或(x -1)2+(y -5)2=5 5. 已知函数2()21x f x a =-+(a R ∈)为奇函数,则(1)f =( ) A. 53-B. 13C. 23D. 326. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,510a =-,则1a =( ) A. -3B. -2C. 2D. 37. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则( ) A. 1212p p << B. 1212p p << C. 2112p p << D.2112p p << 8. 已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为( ) A. 58-B.118C.14D.189. 已知4616117421⨯⨯⨯⨯⨯⨯⨯= T ,若右边的框图是计算T 的程序框图,则框图中①和②处可以分别填入( ) A.i m m i +=≤,?10 B.1?10++=≤i m m i , C.i m m i +=≤,?11 D.1?11++=≤i m m i ,10.已知点()12,0F -,圆()222:236F x y -+=,点M 是圆上一动点,线段1MF 的垂直平分线与2MF 交于点N .则点N 的轨迹方程为A.22192x y -=B.320x y --=C.2236x y += D.22195x y += 11.函数()2sin sin2f x x x =-在[]0,2π的零点个数为( )A .2B .3C .4D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦ 二、填空题:本题共4小题,每小题5分,共20分。
2020年全国高考仿真模拟文科数学试卷(二)解析版

四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).二十四
个节气及晷长变化如图所示,若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十
-1-
尺,一尺等于十寸),则夏至后的那个节气(小暑)晷长为( )
11.若 x,y,z∈R+,且 3x=4y=12z,x+y∈(n,n+1),n∈N,则 n 的值是( ) z
2
3
6
12
答案 C
解析 ∵等边三角形 ABC 的边长为 2,∴A→B·A→C=B→A·B→C=C→A·C→B=2,
-3-
又A→E=λA→B,A→F=μA→C,
∴E→C=E→B+B→C=B→C+(1-λ)A→B,F→B=F→C+C→B=(1-μ)A→C-B→C,
∴E→B·F→C=(1-λ)·A→B·(1-μ)A→C=(1-μ)(1-λ)A→B·A→C =2(1-μ)(1-λ)=2, 3
7.已知函数 f(x)=Asin(ωx+φ)·e-|x|(A>0,ω>0,0<φ<π)的图象如图所示,则 Aω的可能取值 为( )
-2-
A.π
B.π
C.3π
象关于 y 轴对称,∴f(x)为偶函数,∴φ=kπ+π,k∈Z,∵0<φ<π,∴φ 2
=π,∴f(x)=Acosωx·e-|x|,∵f(0)=2,∴A=2,∵f(1)=f(3)=0, 2 ∴cosω·1e=cos3ω·e13=0,∴cosω=cos3ω=0,取ω=π2,则 Aω=π.故选 B.
2020 年全国高考仿真模拟试卷(二)
数学(文科)解析版
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共 150 分,考试时间 120 分钟.
陕西省2020届高三下学期第二次模拟文科数学试题 Word版含解析

2020年陕西省高考数学二模试卷(文科)一、选择题(共12小题).1.已知集合2{|6}=0A x x x --≤,函数()=(1)f x ln x -的定义域为集合B ,则AB =( )A.[21]-, B. [21)-, C. [1]3, D. (13],【答案】B 【解析】 【分析】求出集合A ,B ,然后进行交集的运算即可.【详解】解:∵{|23}A x x =-≤≤,=10{|}{|}1B x x x x >=<- ∴21[)AB =﹣,.故选:B .【点睛】本题考查了描述法、区间的定义,对数函数的定义域,交集的运算,考查了计算能力,属于基础题.2.已知i 为虚数单位,复数Z 131ii-=+,则其共轭复数z 的虚部为( ) A. 2 B. ﹣2C. 2iD. ﹣2i【答案】A 【解析】 【分析】利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.【详解】解:∵z ()()()()1311312111i i i i i i i ---===--++-, ∴12z i =-+,则共轭复数z 的虚部为2. 故选:A .【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题. 3.已知向量()1,1a =-,(),2b x =,且a b ⊥,则a b +的值为( )A.B.C. D.【答案】D 【解析】【详解】由a b ⊥得20a b x ⋅=-=,解得2x =. ∴(3,1)a b +=,∴23110a b +=+=.选D .4.现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为 A.12B.13C.16D.112【答案】B 【解析】 【分析】求得基本事件的总数为222422226C C n A A =⨯=,其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志愿者小组到校外参加两项活动,基本事件的总数为222422226C C n A A =⨯=, 其中乙丙两人恰好参加同一项活动的基本事件个数为2222222m C C A ==,所以乙丙两人恰好参加同一项活动的概率为13m p n ==,故选B. 【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题. 5.甲、乙、丙、丁四人参加数学竞赛,四人在成绩公布前作出如下预测: 甲预测说:获奖者在乙、丙、丁三人中; 乙预测说:我不会获奖,丙获奖 丙预测说:甲和丁中有一人获奖; 丁预测说:乙的猜测是对的成绩公布后表明,四人的猜测中有两人的预测与结果相符.另外两人的预测与结果不相符,已知有两人获奖,则获奖的是() A. 甲和丁 B. 乙和丁 C. 乙和丙 D. 甲和丙 【答案】B 【解析】 【分析】从四人的描述语句中可以看出,乙、丁的表述要么同时与结果相符,要么同时与结果不符,再进行判断【详解】若乙、丁的预测成立,则甲、丙的预测不成立,推出矛盾.故乙、丙预测不成立时,推出获奖的是乙和丁 答案选B【点睛】真假语句的判断需要结合实际情况,作出合理假设,才可进行有效论证 6.设函数()f x 是定义在R 上的周期为2的奇函数,当01<x <时,()4x f x =,则5(2019)2f f ⎛⎫-+= ⎪⎝⎭( ) A. 2- B. 2C. 4D. 6【答案】A 【解析】 【分析】利用周期性得到5122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭及()()20191f f =,再利用奇偶性得到12f ⎛⎫- ⎪⎝⎭的值从而得到要求的函数值的和.【详解】因为()f x 的周期为2,所以5122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭且()()20191f f =, 由()f x 为奇函数,则11222f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,()()11f f -=-,但()()11f f -=,故()()110f f -==,故()5201922f f ⎛⎫-+=- ⎪⎝⎭,选A .【点睛】一般地,对于定义在R 的奇函数()f x ,如果其周期为T ,那么02T f ⎛⎫=⎪⎝⎭.另外,对于奇函数、周期函数的求值问题,应利用周期性将所求的值归结为给定区间上的求值问题. 7.已知m ,n ,l 是三条不同的直线,α,β是两个不同的平面,则下列命题正确的是( ) A. 若m ⊂α,n ⊂α,l ⊂β,m ∥l ,n ∥l ,则α∥β B. 若m ∥α,n ∥α,m ∥β,n ∥β,则α∥β C. 若m ⊂α,m ∩n =A ,l ⊥m ,l ⊥n ,l ⊥β,则α∥β D. 若m ∥n ,m ⊥α,n ⊥β,则α∥β 【答案】D 【解析】 【分析】在A 中,α与β相交或平行;在B 中,α与β相交或平行;在C 中,α与β相交或平行;在D 中,由面面平行的判定定理得α∥β.【详解】解:由m ,n ,l 是三条不同的直线,α,β是两个不同的平面,知: 在A 中,若m ⊂α,n ⊂α,l ⊂β,m ∥l ,n ∥l ,则α与β相交或平行,故A 错误; 在B 中,若m ∥α,n ∥α,m ∥β,n ∥β,则α与β相交或平行,故B 错误; 在C 中,若m ⊂α,m ∩n =A ,l ⊥m ,l ⊥n ,l ⊥β,则α与β相交或平行,故C 错误; 在D 中,若m ∥n ,m ⊥α,n ⊥β,则由面面平行的判定定理得α∥β,故D 正确.故选:D .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 8.已知函数f (x )=﹣sinωx (ω>0)的最小正周期为π,则该函数图象( )A. 关于点(6π,0)对称 B. 关于直线x 6π=对称 C. 关于点(3π,0)对称 D. 关于直线x 3π=对称【答案】A 【解析】 【分析】由两角和的余弦函数公式可得f (x )=2cos (ωx 6π+),利用周期公式可求ω的值,进而根据余弦函数的图象和性质即可求解.【详解】解:f (x )=﹣sinωx =2cos (ωx 6π+), ∵f (x )的最小正周期为T 2πω==π,∴ω=2,∴f (x )=2cos (2x 6π+), ∴f (6π)=2cos 2π=0,可得函数关于点(6π,0)对称,故A 正确,B 错误,f (3π)=2cos56π=可得C 错误,D 错误. 故选:A .【点睛】本题主要考查了两角和的余弦函数公式,周期公式,余弦函数的图象和性质,考查了函数思想,属于基础题.9.已知抛物线C :y 2=2px (p >0)上一点M (x 0,4)到焦点F 的距离|MF |54=x 0,则p =( ) A. 2 B. 4C. 1D. 5【答案】A 【解析】 【分析】由抛物线的定义可知,|MF |=x 02p+,与已知条件结合,得x 0=2p ①;把点M 的坐标代入抛物线方程可得42=2p •x 0②,结合①②即可解出p 的值. 【详解】解:由抛物线的定义可知,|MF |=x 02p +, ∵|MF |54=x 0, ∴x 0524p +=x 0,即x 0=2p ①,∵点M (x 0,4)在抛物线y 2=2px 上, ∴42=2p •x 0②,由①②解得,p =2或﹣2(舍负), 故选:A .【点睛】本题考查抛物线的定义,考查学生的分析能力和运算能力,属于基础题.10.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则( ) A. ,1a e b ==-B. ,1a e b ==C. 1,1a e b -==D.1,1a e b -==-【答案】D 【解析】 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【详解】详解:ln 1,xy ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .【点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 11.已知sin 2cos 5sin 2cos αααα+=-,则21cos sin 22αα+=( )A. 25-B. 3C. 3-D.25【答案】D 【解析】 【分析】将已知等式弦化切,求得tan 3α=, 21cos sin 22αα+分母用22cos sin αα+代替,弦化切后,将tan 3α=代入即可得结果.【详解】因为sin 2cos 5sin 2cos αααα+=-,所以tan 25tan 3tan 2ααα+=⇒=-, 22221cos sin cos cos sin 22cos sin ααααααα++=+ 21tan 1321tan 195αα++===++,故选D.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.12.已知双曲线()222210,0x y a b a b-=>>,点(4,1)在双曲线上,则该双曲线的方程为A. 2214x y -=B. 221205x y -=C. 221123y x -=D.2218x y -= 【答案】C 【解析】 【分析】根据离心率可得一个方程,结合双曲线过点(4,1)得另一个方程,联立可得.,所以c a =①;因为点(4,1)在双曲线上,所以221611a b-=②;因为222c a b =+③;联立①②③可得2212,3a b ==,故选C.【点睛】本题主要考查双曲线方程的求解,根据已知条件建立方程组是求解的关键,注意隐含关系的挖掘使用.二、填空题:本题共4小题,每小题5分,共20分.13.已知x ,y 满足203010y x x y -≤⎧⎪+≥⎨⎪--≤⎩,则14y x --的取值范围是_____.【答案】51,7⎡⎤-⎢⎥⎣⎦【解析】 【分析】首先画出平面区域,根据14y x --的几何意义求范围. 【详解】解:不等式组对应的平面区域如图:14y x --的几何意义是过(4,1)和区域内的点的直线的斜率,所以最大值是过A (﹣3,﹣4)与(4,1)连接的直线斜率为415347--=--, 最小值是过B (3,2)与(4,1)连接的直线斜率为21134-=--, 所以14y x --的取值范围是51,7⎡⎤-⎢⎥⎣⎦. 故答案为:51,7⎡⎤-⎢⎥⎣⎦【点睛】本题考查了简单线性规划的问题解答,关键是正确画出平面区域以及明确目标函数的几何意义.属于基础题.14.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如表的表格:根据表中数据,该中学应选_____参加比赛. 【答案】乙 【解析】 【分析】根据题意,分析可得三人中乙的平均数最小且方差最小,由平均数、方差的统计意义分析可得答案.【详解】解:根据题意,由图中的表格:甲的平均数高于乙和丙的平均数,而甲乙的方差小于丙的方差,则三人中乙的平均数最小且方差最小,故应该选乙参加比赛; 故答案为:乙【点睛】本题考查平均数、方差的统计意义,属于基础题. 15.如图,在ABC 中,D 是边BC 上一点,AB =22AD AC=,1cos 3BAD ∠=,则sin C =_________.【答案】33【解析】 【分析】设2AC =,利用余弦定理求得BD ,然后在ABC 中利用正弦定理可求得sin C 的值. 【详解】由题意不妨取2AC =,则2AB AD ==且13cos BAD ∠=, 由余弦定理,可得22262BD AB AD AB AD cos BAD =+-⋅⋅∠=,22sin 3BAD ∠=,由正弦定理得sin 6sin AD BAD B BD ⋅∠==,从而sin 3sin AB B C AC ⋅==. 3【点睛】此题主要考查解三角形中余弦定理、正弦定理方面等知识的综合应用,属于中档题.根据题目中的条件“AB =22AD AC =”,可有多种方法假设,比如:设()20AC t t =>,则2AB AD t ==;或者取2AC AB =,则有AD AB =,…,代入余弦定理、正弦定理进行运算,注意在取值时候要按照题目所给的比例合理进行,更要注意新引入参数t 的范围. 16.如图,圆锥型容器内盛有水,水深3dm ,水面直径3dm 放入一个铁球后,水恰好把铁球淹没,则该铁球的体积为________dm【答案】125π【解析】 【分析】通过将图形转化为平面图形,然后利用放球前后体积等量关系求得球的体积.【详解】作出相关图形,显然3AH =,因此30ACH ∠=,因此放球前()211=33=33V ππ⋅⋅,球O 与边1A C 相切于点M ,故OM r =,则2OC r =,所以13CH r =,113A H r =,所以放球后()2321=33=33V r r r ππ⋅⋅,而12+=V V V 球,而34=3V r π球,解得12=5V π球.【点睛】本题主要考查圆锥体积与球体积的相关计算,建立体积等量关系是解决本题的关键,意在考查学生的划归能力,计算能力和分析能力.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.在等差数列{a n }中,已知a 1+a 3=12,a 2+a 4=18,n ∈N *. (1)求数列{a n }的通项公式; (2)求a 3+a 6+a 9+…+a 3n . 【答案】(1)a n =3n ,n ∈N *(2)()292n n + 【解析】 【分析】(1)依题意a 1+a 3=12,a 2+a 4=18,两式相减得d =3,将d =3代入一式可得a 1,则通项公式可求. (2)因为数列{a n }是等差数列,所以数列{a 3n }也是等差数列,且首项a 3=9,公差d '=9,则其前n 项和可求.【详解】解:(1)因为{a n }是等差数列,a 1+a 3=12,a 2+a 4=18,所以1122122418.a d a d +=⎧⎨+=⎩,1122122418.a d a d +=⎧⎨+=⎩,解得d =3,a 1=3.则a n =3+(n ﹣1)×3=3n ,n ∈N *. (2)a 3,a 6,a 9,…,a 3n 构成首项为a 3=9,公差为9的等差数列. 则()()236931991922n a a a a n n n n n ++++=+-⨯=+.【点睛】本题考查了等差数列的通项公式,等差数列的前n 项和公式,等差数列的定义等,考查分析解决问题的能力和计算能力,属于基础题.18.如图,四边形ABCD 是直角梯形,AB =2CD =2PD =2,PC 2=,且有PD ⊥AD ,AD ⊥CD ,AB ∥CD.(1)证明:PD ⊥平面ABCD ; (2)若四棱锥P ﹣ABCD 的体积为12,求四棱锥P ﹣ABCD 的表面积.【答案】(1)证明见解析;(2)2+ 【解析】 【分析】(1)推导出PD ⊥CD ,PD ⊥AD ,由此能证明PD ⊥平面ABCD. (2)由PD ⊥面ABCD ,四棱锥P ﹣ABCD 的体积为12,求出AD =1,由PD ⊥AB ,AB ⊥AD ,得AB ⊥平面P AD ,AB ⊥P A ,P A =由此能求出四棱锥P ﹣ABCD 的表面积.【详解】解:(1)证明:在△PCD 中,PD =1,CD =1,PC =∵12+122=,∴∠PDC =90°,即PD ⊥CD ,又PD ⊥AD ,AD ∩CD =D ,∴PD ⊥平面ABCD. (2)由(1)得PD ⊥面ABCD , V P ﹣ABCD ()111322AB CD AD PD =⨯⨯+⨯⨯=, ∴AD =1,∵PD ⊥AB ,AB ⊥AD ,PD ∩AD =D ,∴AB ⊥平面P AD ,∴AB ⊥P A ,∴P A =由题意得BC =PC =PB =△PBC 中,由余弦定理得cos ∠PCB 12==-.∴∠PCB =120°,∴S △PCB 11202sin =︒=, 122PABS=⨯=, S △P AD =S △PCD 111122=⨯⨯=,()1312122ABCD S =+⨯=,∴四棱锥P ﹣ABCD 的表面积S22=++. 【点睛】本题考查线面垂直的证明,考查四棱锥的表面积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19.将某产品投入甲、乙、丙、丁四个商场进行销售,五天后,统计了购买该产品的所有顾客的年龄情况以及甲商场这五天的销售情况如频率发布直方图所示:甲商场五天的销售情况 销售第x 天 1 2 3 4 5 第x 天的销量y 1113121514(1)试计算购买该产品的顾客的平均年龄;(2)根据甲商场这五天的销售情况,求x 与y 的回归直线方程ˆˆy bx a =+. 参考公式:回归直线方程ˆˆybx a =+中,()()()121niii nii x x y y b x x ==--=-∑∑,ˆa y bx =-.【答案】(1)38.5(2)453ˆ55yx =+ 【解析】 【分析】(1)根据平均值公式计算平均值.(2)根据公式计算回归直线方程ˆˆybx a =+.【详解】(1)购买该产品的顾客的平均年龄为:27.50.01532.50.04537.50.07542.50.06547.50.02538.5⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=(2)1234535x ++++== 1113121514135y ++++==()()()12122222(13)(1113)(23)(1313)(33)(1213)(43)(1513)(53)(1413)4(13)(23)(33)(43)(53)5niii ni i x x y y b x x ==--=---+--+--+--+--==-+-+-+-+-∑∑453ˆ13355a y bx =-=-⨯=回归方程为:453ˆ55yx =+ 【点睛】本题考查了平均值的计算,线性回归方程,意在考查学生的计算能力. 20.已知函数()21xf x e x x =---.(1)求函数()y f x ='的单调区间;(2)函数()()21g x x a x =-+-,求()()g x f x =的解的个数.【答案】(1)函数()y f x ='在(),ln 2-∞上单调递减,在()ln 2,+∞上单调递增,(2)(]{},01a ∈-∞⋃时,()()g x f x =有1个解,当()()0,11,a ∈⋃+∞时,()()g x f x =有2个解. 【解析】 【分析】 (1)求出fx 和()f x '',然后可得答案;(2)令()()()h x g x f x =-,则()xh x a e '=-,然后分0a ≤和0a >两种情况讨论,分别求出()h x 的单调性,然后结合()h x 的函数值即可得出答案. 【详解】(1)由()21xf x e x x =---,得()21xf x e x '=--,故()2xf x e ''=-,令()0f x ''>,解得ln 2x >,令()0f x ''<,解得ln 2x <,故函数()y f x ='在(),ln 2-∞上单调递减,在()ln 2,+∞上单调递增; (2)令()()()1xh x g x f x ax e =-=+-,则()xh x a e '=-,若0a ≤,则()0h x '<,()h x 在R 上单调递减,而()00h =,故()h x 有1个零点, 若0a >,可得(),ln x a ∈-∞时,()0h x '>,()ln ,x a ∈+∞时,()0h x '<, ∴()h x 在(),ln a -∞上单调递增,在()ln ,a +∞上单调递减, ∴()()max ln 1ln h x h a a a a ==-+, 令()1ln t a a a a =-+,则()ln t a a '=,当()0,1a ∈时,()0t a '<,当()1,a ∈+∞时,()0t a '>, ∴()t a 在0,1上单调递减,在1,上单调递增,而()10t =,故()()0,11,a ∈⋃+∞时,()max 0h x >,()h x 有2个零点, 当1a =时,()max 0h x =,()h x 有1个零点, 综上,(]{},01a ∈-∞⋃时,()()g x f x =有1个解, 当()()0,11,a ∈⋃+∞时,()()g x f x =有2个解.【点睛】本题考查了函数的单调性,最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道常规题.21.已知椭圆()222210x y a b a b+=>>的四个顶点围成的菱形的面积为为()1,0.(1)求椭圆的方程;(2)若M ,N 为椭圆上的两个动点,直线OM ,ON 的斜率分别为1k ,2k ,当1234k k =-时,MON △的面积是否为定值?若为定值,求出此定值;若不为定值,说明理由.【答案】(1)22143x y +=(2.【解析】 【分析】(1)由题设条件,列出方程组,结合222a b c =+,求得22,a b 的值,即可求解.(2)设()11,M x y ,()22,N x y ,当直线MN 的斜率存在时,设方程为y kx m =+,联立方程组,结合根与系数的关系和弦长公式,及三角形的面积公式,求得三角形的面积;当直线MN 的斜率不存在时,结合椭圆的对称性和三角形的面积公式,即可求解.【详解】(1)由椭圆22221x y a b+=的四个顶点围成的菱形的面积为()1,0,可得2ab =,1c =,即221ab a b ⎧=⎪⎨-=⎪⎩,解得24a =,23b =, 故椭圆的方程为22143x y +=.(2)设()11,M x y ,()22,N x y ,当直线MN 的斜率存在时,设方程为y kx m =+,由22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消y 可得,()2223484120k x kmx m +++-=, 则()()222264434412k m km∆=-+-()2248430k m =-+>,即2243m k <+,且122834km x x k -+=+,212241234m x x k -=+,所以12MN x x =-===又由点O 到直线MN的距离d =所以12MON S MN d =△=又因为12121234y y k k x x ==-,所以()22121112k x x km x x m x x +++222228334412434km km m k k m k -⎛⎫+ ⎪+⎝⎭=+=--+, 化简整理可得22243m k =+,满足>0∆,代入222MCNmS ===△ 当直线MN 的斜率不存在时,由于1234k k =-, 考虑到OM ,ON 关于x轴对称,不妨设1k =,2k =,则点M ,N的坐标分别为2M ⎫⎪⎪⎭,2N ⎫-⎪⎪⎭,此时12MON S ==△ 综上可得,MON △.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的综合应用,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.(二)选考题:共10分,请考生在22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.平面直角坐标系xOy 中,点M 的坐标为()1,0,曲线C 的参数方程是244x m y m⎧=⎨=⎩(m 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为cos +104πθ⎛⎫-= ⎪⎝⎭.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于A ,B 两点,求11MA MB+. 【答案】(1):10l x y --=,2:4C y x =;(2)1【解析】 【分析】(1)cos +104πθ⎛⎫-= ⎪⎝⎭得cos sin 10ρθρθ--=,然后可得直线l 的直角坐标方程为:10x y --=,消去244x m y m⎧=⎨=⎩中的m 可得曲线C 的普通方程;(2)直线l的参数方程为122x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),代入方程24y x =可得280t --=,然后可得12t t +=128t t =-,然后利用121211t t MA MB t t-+=求解即可.【详解】(1cos +104πθ⎛⎫-= ⎪⎝⎭得cos sin 10ρθρθ--=因为x cos y sin ρθρθ=⎧⎨=⎩,所以直线l 的直角坐标方程为:10x y --=.曲线C 的参数方程是244x m y m⎧=⎨=⎩(m 为参数),消去参数m ,转换为普通方程为24y x =;(2)直线l 的参数方程为12x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),代入方程24y x =可得280t --=, 设其根为12,t t ,则有12t t +=,128t t =-,所以1212111t t MA MB t t -+====. 【点睛】本题考查的知识要点:参数方程与普通方程、极坐标方程和直角坐标方程的互化,直线参数方程的应用,主要考查学生的运算能力和转换能力及思维能力,属于中等题型. 23.已知函数()31f x x m x m =----(1)若1m =,求不等式()1f x <的解集.(2)对任意的x ∈R ,有()()2f x f ≤,求实数m 的取值范围. 【答案】(1){}3x x <(2)11,23⎡⎤-⎢⎥⎣⎦ 【解析】 【分析】(1)当1m =时,()14f x x x =---34251431x x x x >⎧⎪=-≤≤⎨⎪-<⎩,,,,然后分段解不等式即可. (2)由绝对值的三角不等式可得()max 21f x m =+,对任意的x ∈R ,有()()2f x f ≤,即21312m m m ++-≤-,令()2131f m m m =++-152********m m m m m m ⎧-<-⎪⎪⎪=--≤≤⎨⎪⎪>⎪⎩,,,,()2g m m =-,利用()f m ,()g m 在同一坐标系中的图象求解即可. 【详解】(1)当1m =时,()14f x x x =---34251431x x x x >⎧⎪=-≤≤⎨⎪-<⎩,,, 因为()1f x <,所以25114x x -<⎧⎨≤≤⎩或1x <所以3x <,所以不等式的解集为:{}3x x <;(2)因为()()313121x m x m x m x m m ----≤----=+ 所以()max 21f x m =+,因为任意的x ∈R ,有()()2231f x f m m ≤=---, 所以21231m m m +≤---,即21312m m m ++-≤-,设()2131f m m m =++-152********m m m m m m ⎧-<-⎪⎪⎪=--≤≤⎨⎪⎪>⎪⎩,,,,()2g m m =-, ()f m ,()g m 在同一坐标系中的图象如下:所以1123m -≤≤, 所以实数m 的取值范围为:11,23⎡⎤-⎢⎥⎣⎦【点睛】本题主要考查了绝对值不等式的解法和利用绝对值的三角不等式求最值、考查了数形结合思想和分类讨论思想,属于中档题.。
2020年青海省高考文科科数学仿真模拟试题二(附答案)

2020年青海省高考文科数学仿真模拟试题二(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合}1|{≥=x x A ,{|230}B x x =->,则AB =( )A. [0,)+∞B. [1,)+∞C. 3,2⎛⎫+∞ ⎪⎝⎭D. 30,2⎡⎫⎪⎢⎣⎭2. 在复平面内,复数22ii+-对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限3.“x>5”是“>1”的( )A. 充分不必要条件B. 必要不充分条件C. 既不充分也不必要条件D. 充要条件4. 以A (-2,1),B (1,5)为半径两端点的圆的方程是( ) A. (x +2)2+(y -1)2=25 B. (x -1)2+(y -5)2=25C. (x +2)2+(y -1)2=25或(x -1)2+(y -5)2=25D. (x +2)2+(y -1)2=5或(x -1)2+(y -5)2=5 5. 已知函数2()21x f x a =-+(a R ∈)为奇函数,则(1)f =( ) A. 53-B. 13C. 23D. 326. 设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,510a =-,则1a =( ) A. -3B. -2C. 2D. 37. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则( ) A. 1212p p << B. 1212p p << C. 2112p p << D.2112p p << 8. 已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得2DE EF =,则AF BC ⋅的值为( ) A. 58-B.118C.14D.189. 已知4616117421⨯⨯⨯⨯⨯⨯⨯= T ,若右边的框图是计算T 的程序框图,则框图中①和②处可以分别填入( ) A.i m m i +=≤,?10 B.1?10++=≤i m m i , C.i m m i +=≤,?11 D.1?11++=≤i m m i ,10.已知点()12,0F -,圆()222:236F x y -+=,点M 是圆上一动点,线段1MF 的垂直平分线与2MF 交于点N .则点N 的轨迹方程为A.22192x y -=B.320x y --=C.2236x y += D.22195x y += 11.函数()2sin sin2f x x x =-在[]0,2π的零点个数为( )A .2B .3C .4D .512.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦ C .5,2⎛⎤-∞ ⎥⎝⎦ D .8,3⎛⎤-∞ ⎥⎝⎦ 二、填空题:本题共4小题,每小题5分,共20分。
高考2020年数学(文科)二轮复习综合模拟卷解析版

;
(2)若
,求证:f(x)≥lnx+4.
22. 在直角坐标系 xOy 中,直线 C1 的参数方程为
(其中 t 为参数).以坐
标原点 O 为极点,x 轴非负半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为 ρcos2θ=3sin θ.
(1)求 C1 和 C2 的直角坐标方程;
(2)设点 P(0,2),直线 C1 交曲线 C2 于 M,N 两点,求|PM|2+|PN|2 的值.
日需求量
15
18
21
24
27
频数
10
Hale Waihona Puke 8732
(1)以 30 天记录的各日需求量的频率代替各日需求量的概率,求这款新面包日需求 量不少于 21 个的概率;
(2)该店在这 30 天内,这款新面包每天出炉的个数均为 21.
第 2 页,共 15 页
(i)若日需求量为 15 个,求这款新面包的日利润;(ii)求这 30 天内这款面包的日利润 的平均数.
A.
B.
C.
D.
7. 已知函数 f(x)=-x2+ax 的单调递减区间为[2,+∞),且 p=log381,q=loga7,
,则 f(p),f(q),f(m)的大小关系为 (
A. f(q)<f(m)<f(p) C. f(q)<f(p)<f(m)
)
B. f(p)<f(m)<f(q) D. f(p)<f(q)<f(m)
三、解答题(本大题共 7 小题,共 84.0 分)
17. 某面包店推出一款新面包,每个面包的成本价为 4 元,售价为 10 元,该款面包当
天只出一炉(一炉至少 15 个,至多 30 个),当天如果没有售完,剩余的面包以每个 2 元的价格处理掉,为了确定这一炉面包的个数,该店记录了这款新面包最近 30 天 的日需求量(单位:个),整理得下表:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考仿真模拟(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,则i +i 2+i 3+…+i 2019等于( )A .iB .1C .-iD .-1答案 D解析 由于i +i 2+i 3+i 4=i -1-i +1=0,且i n (n ∈N *)的周期为4,2019=4×504+3,所以原式=i +i 2+i 3=i -1-i =-1.故选D.2.集合A ={y |y =2cos 2x +1},B ={x |log 2(x +2)<2},则A ∩B =( ) A .(-2,3] B .(0,2] C .[1,2) D .(2,3]答案 C解析 因为A ={y |y =2cos 2x +1}={y |y =cos2x +2}=[1,3],B ={x |log 2(x +2)<2}={x |0<x +2<4}=(-2,2),所以A ∩B =[1,2),故选C.3.“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( ) A .m >14B .0<m <1C .m >0D .m >1答案 C解析 若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,推不出m >14,即推不出不等式x 2-x +m >0在R 上恒成立,故所求的必要不充分条件可以是m >0.4.某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红4种颜色中任意挑选2种颜色,则所选颜色中含有白色的概率是( )A.23B.12C.14D.16 答案 B解析 从黄、白、蓝、红4种颜色中任意选2种颜色的所有基本事件有{黄,白},{黄,蓝},{黄,红},{白,蓝},{白,红},{蓝,红},共6种,这6种基本事件发生的可能性是相等的.其中包含白色的有3种,所以选中白色的概率为12,故选B.5.《周髀算经》是我国古代的天文学和数学著作.其中有一个问题大意为:一年有二十四个节气,每个节气晷长损益相同(即太阳照射物体影子的长度增加和减少大小相同).二十四个节气及晷长变化如图所示,若冬至晷长一丈三尺五寸,夏至晷长一尺五寸(注:一丈等于十尺,一尺等于十寸),则夏至后的那个节气(小暑)晷长为( )A .五寸B .二尺五寸C .三尺五寸D .四尺五寸答案 B解析 设从夏至到冬至的晷长依次构成等差数列{a n },公差为d ,a 1=15,a 13=135,则15+12d =135,解得d =10.∴a 2=15+10=25,∴《周髀算经》中所记录的小暑的晷长是25寸,即二尺五寸.故选B.6.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )答案 B解析 ∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cos x =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,排除A ,C ;又当x ∈⎝ ⎛⎭⎪⎫0,π2时,e x >e 0=1,21+e x -1<0,cos x >0,∴f (x )<0,排除D ,故选B.7.已知函数f (x )=A sin(ωx +φ)·e -|x |(A >0,ω>0,0<φ<π)的图象如图所示,则Aω的可能取值为( )A.π2 B .πC.3π2D .2π答案 B解析 ∵f (x )的图象关于y 轴对称,∴f (x )为偶函数,∴φ=k π+π2,k ∈Z ,∵0<φ<π,∴φ=π2,∴f (x )=A cos ωx ·e-|x |,∵f (0)=2,∴A =2,∵f (1)=f (3)=0,∴cos ω·1e =cos3ω·1e 3=0,∴cos ω=cos3ω=0,取ω=π2,则Aω=π.故选B.8.一个几何体的三视图如图所示,则该几何体的体积等于( )A .72B .48C .24D .16 答案 C9.已知等边△ABC 的边长为2,点E ,F 分别在边AB ,AC 上,且AE →=λAB →,AF →=μAC →,若EB →·FC →=23,EC →·FB →=-1,则λ+μ=( )A.12B.23C.56D.712答案 C解析 ∵等边三角形ABC 的边长为2,∴AB →·AC →=BA →·BC →=CA →·CB →=2,又AE →=λAB →,AF →=μAC →,∴EC →=EB →+BC →=BC →+(1-λ)AB →,FB →=FC →+CB →=(1-μ)AC →-BC →,∴EB →·FC →=(1-λ)·AB →·(1-μ)AC →=(1-μ)(1-λ)AB →·AC →=2(1-μ)(1-λ)=23,EC →·FB →=[BC →+(1-λ)AB →]·[(1-μ)AC →-BC →]=-4+2(1-μ)(1-λ)+2(1-λ)+2(1-μ)=-1,∴2(1-λ)+2(1-μ)=3-23=73,∴λ+μ=56,故选C.10.实数x ,y 满足|x +1|≤y ≤-12x +1时,目标函数z =mx +y 的最大值等于5,则实数m 的值为( )A .-1B .-12 C .2 D .5答案 B解析 实数x ,y 满足|x +1|≤y ≤-12x +1时,表示的平面区域如图中阴影部分所示,易得A (-1,0),B (0,1),由⎩⎪⎨⎪⎧y =-x -1,y =-12x +1,得⎩⎪⎨⎪⎧x =-4,y =3,∴C (-4,3).目标函数z =mx +y ,∴y =-mx +z ,当m >12时,直线过点B 时,z 取得最大值,此时z=1,与z 取得最大值5矛盾,舍去;当0<m <12时,直线过点C 时,z 取得最大值5,∴-4m +3=5,∴m=-12不成立,舍去;当m =0或12时,易验证z 的最大值不可能等于5;当m <0时,直线过点C 时,z 取得最大值5,∴-4m +3=5,∴m =-12成立.故选B.11.若x ,y ,z ∈R +,且3x=4y=12z,x +yz∈(n ,n +1),n ∈N ,则n 的值是( ) A .2 B .3 C .4 D .5答案 C解析 设3x=4y=12z=t (t >1),则x =log 3t ,y =log 4t ,z =log 12t ,∴x +yz= log 3t +log 4t log 12t =log 3t log 12t +log 4tlog 12t=log 312+log 412=2+log 34+log 43.∵1<log 34<2,0<log 43<1,∴1<log 34+log 43<3;又log 34+log 43>2log 34·log 43=2,∴2<log 34+log 43<3,∴4<2+log 34+log 43<5,即x +yz∈(4,5).∴n =4.故选C. 12.已知函数f (x )=⎩⎪⎨⎪⎧e -x +mx +m 2,x <0,e x x -1,x ≥0(e 为自然对数的底数),若方程f (-x )+f (x )=0有且仅有四个不同的解,则实数m 的取值范围是( )A .(0,e)B .(e ,+∞)C .(0,2e)D .(2e ,+∞)答案 D解析 因为函数F (x )=f (-x )+f (x )是偶函数,F (0)≠0,所以零点成对出现,依题意,方程f (-x )+f (x )=0有两个不同的正根,又当x >0时,f (-x )=e x -mx +m 2,所以方程可以化为e x -mx +m2+x e x-e x =0,即x e x =m ⎝ ⎛⎭⎪⎫x -12,记g (x )=x e x (x >0),则g ′(x )=e x(x +1)>0,设直线y =m ⎝ ⎛⎭⎪⎫x -12与g (x )图象相切时的切点为(t ,t e t ),则切线方程为y -t e t =e t(t +1)(x -t ),过点⎝ ⎛⎭⎪⎫12,0,所以-t e t =e t (t +1)⎝ ⎛⎭⎪⎫12-t ⇒t =1或-12(舍去),所以切线的斜率为2e ,由图象可以得m >2e.故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分. 13.函数f (x )=1-ln x2x-2的定义域为________. 答案 (0,1)∪(1,e]解析 依题意得⎩⎪⎨⎪⎧x >0,1-ln x ≥0,2x -2≠0,得⎩⎪⎨⎪⎧x >0,0<x ≤e,x ≠1,即函数的定义域为(0,1)∪(1,e].14.已知函数f (x )=⎩⎨⎧2-x-1,x ≤0,x 12 ,x >0在区间[-1,m ]上的最大值是1,则m的取值范围是________.答案 (-1,1]解析 作出函数f (x )的图象,如图所示,可知当-1<m ≤1时,f (x )在[-1,m ]上的最大值是1.15.在△ABC 中,点D 是BC 的中点,若AB ⊥AD ,∠CAD =30°,BC =27,则△ABC 的面积为________. 答案 2 3解析 因为D 是BC 的中点,所以S △ABC =2S △ABD ,即12AB ·AC sin120°=2×12AB ·AD ,所以AD =34AC ,于是在△ACD 中,CD 2=AC 2+AD 2-2AC ·AD cos ∠CAD ,即(7)2=AC 2+316AC 2-2AC ·34AC ·32,解得AC =4,所以AD =3,于是S △ABC =2S △ADC =2×12×3×4×12=2 3.16.已知三棱锥P -ABC ,△ABC 为等边三角形,△PAC 为直角三角形,∠PAC =90°,∠PCA =45°,平面PAC ⊥平面ABC ,若AB =3,则三棱锥P -ABC 外接球的表面积为________.答案 21π解析 由∠PAC =90°,平面PAC ⊥平面ABC ,可知PA ⊥平面ABC ,球心在经过△ABC 的中心且垂直面ABC 的垂线上,也在线段PA 的中垂面上,故二者交点即球心,因为∠PCA =45°,所以PA =3,所以三棱锥P -ABC 外接球的半径R 满足R 2=⎝ ⎛⎭⎪⎫322+(3)2=214,所以外接球的表面积为S =4πR 2=21π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n . (1)求数列{a n }的通项公式; (2)若b n =-1na n2,求数列{b n }的前n 项和S n .解 (1)a 12+a 222+a 323+…+a n2n =n 2+n ,①∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,②①-②,得a n2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).当n =1时,a 12=1+1,a 1=4也适合,∴a n =n ·2n +1.(2)由(1)得,b n =-1na n2=n (-2)n,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n,③-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n ×(-2)n +1,④③-④得,3S n =(-2)+(-2)2+(-2)3+…+(-2)n -n ×(-2)n +1=-2[1--2n]3-n ×(-2)n +1, ∴S n =-3n +1-2n +1+29.18.(本小题满分12分)新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在A 地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中a =4b .(1)求a ,b 的值并估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)(2)若按照分层抽样从[50,60),[60,70)中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[50,60)的概率.解 (1)依题意,(a +0.008+0.035+0.027+b )×10=1,所以a +b =0.03. 又a =4b ,所以a =0.024,b =0.006.因为0.08+0.24<0.5,0.08+0.24+0.35>0.5,所以中位数在第三组, 所以中位数为70+0.5-0.08-0.240.035≈75.14.(2)依题意,知分数在[50,60)的员工抽取了2人,记为a ,b ,分数在[60,70)的员工抽取了6人,记为1,2,3,4,5,6,所以从这8人中随机抽取2人,所有的情况为(a ,b ),(a,1),(a,2),(a,3),(a,4),(a,5),(a,6),(b,1),(b,2),(b,3),(b,4),(b,5),(b,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共28种,这28种情况发生的可能性是相等的.其中满足条件的为(a ,b ),(a,1),(a,2),(a,3),(a,4),(a,5),(a,6),(b,1),(b,2),(b,3),(b,4),(b,5),(b,6),共13种,设“至少有1人的分数在[50,60)”的事件为A ,则P (A )=1328.19.(本小题满分12分)如图所示,三棱锥P -ABC 放置在以AC 为直径的半圆面O 上,O 为圆心,B为圆弧AC ︵上的一点,D 为线段PC 上的一点,且AB =BC =PA =3,PB =32,PA ⊥BC .(1)求证:平面BOD ⊥平面PAC ;(2)当PC →=2PD →时,求三棱锥C -BOD 的体积. 解 (1)证明:由AB =PA =3,PB =32, ∴PA 2+AB 2=PB 2,∴PA ⊥AB ,又PA ⊥BC 且AB ∩BC =B ,AB ⊂平面ABC ,BC ⊂平面ABC , ∴PA ⊥平面ABC . ∵BO ⊂平面ABC ,∴PA ⊥BO ,由BA =BC ,O 为圆心,AC 为直径,所以BO ⊥AC . 因AC ∩PA =A ,故BO ⊥平面PAC ,又BO ⊂平面BOD ,所以平面BOD ⊥平面PAC . (2)由PC →=2PD →,知D 为PC 的中点,而O 为圆心,AC 为直径,所以PA ∥DO ,所以DO ⊥平面ABC , 因为PA =3,所以DO =32,由题意知∠ABC =90°,所以S △ABC =12×3×3=92,由等体积法知V 三棱锥C -BOD =V 三棱锥D -BOC =13×S △BOC ·DO =13×12×92×32=98.故三棱锥C -BOD 的体积为98.20.(本小题满分12分)已知函数f (x )=a ln x -x 2+12a (a ∈R ).(1)讨论f (x )的单调性;(2)若f (x )≤0,求a 的取值范围.解 (1)f ′(x )=a x -2x =a -2x 2x,当a ≤0时,f ′(x )<0,则f (x )在(0,+∞)上单调递减; 当a >0时,令f ′(x )=0得x =a2(负根舍去).令f ′(x )>0得0<x < a2;令f ′(x )<0得x >a2,∴f (x )在⎝⎛⎭⎪⎫0,a 2上单调递增,在⎝⎛⎭⎪⎫a2,+∞上单调递减.(2)当a =0时,f (x )=-x 2<0,符合题意. 当a >0时,f (x )max =f ⎝⎛⎭⎪⎫a 2=a lna 2-a 2+a2=a ln a2≤0, ∵a >0,∴lna2≤0,∴0< a2≤1,∴0<a ≤2. 当a <0时,f (x )=a ln x -x 2+12a 在(0,+∞)上单调递减,且y =a ln x 与y =x 2-12a 的图象在(0,+∞)上只有一个交点,设此交点为(x 0,y 0),则当x ∈(0,x 0)时,f (x )>0,故当a <0时,不满足f (x )≤0. 综上,a 的取值范围为[0,2].21.(本小题满分12分)如图,已知直线l :y =kx +1(k >0)关于直线y =x +1对称的直线为l 1,直线l ,l 1与椭圆E :x 24+y 2=1分别交于点A ,M 和A ,N ,记直线l 1的斜率为k 1.(1)求k ·k 1的值;(2)当k 变化时,试问直线MN 是否恒过定点?若恒过定点,求出该定点坐标;若不恒过定点,请说明理由. 解 (1)设直线l 上任意一点P (x ,y )关于直线y =x +1对称的点为P 0(x 0,y 0),直线l 与直线l 1的交点为(0,1),∴l :y =kx +1,l 1:y =k 1x +1,k =y -1x ,k 1=y 0-1x 0, 由y +y 02=x +x 02+1,得y +y 0=x +x 0+2, ① 由y -y 0x -x 0=-1,得y -y 0=x 0-x, ② 由①②得⎩⎪⎨⎪⎧ y =x 0+1,y 0=x +1,kk 1=yy 0-y +y 0+1xx 0=x +1x 0+1-x +x 0+2+1xx 0=1. (2)由⎩⎪⎨⎪⎧y =kx +1,x 24+y 2=1得(4k 2+1)x 2+8kx =0, 设M (x M ,y M ),N (x N ,y N ),∴x M =-8k 4k 2+1, ∴y M =1-4k 24k 2+1. 同理可得x N =-8k 14k 21+1=-8k 4+k 2,y N =1-4k 214k 21+1=k 2-44+k 2. k MN =y M -y N x M -x N =1-4k 24k 2+1-k 2-44+k 2-8k 4k 2+1--8k 4+k2=8-8k 48k 3k 2-3=-k 2+13k , 直线MN :y -y M =k MN (x -x M ),即y -1-4k 24k 2+1=-k 2+13k ⎝ ⎛⎭⎪⎫x --8k 4k 2+1, 即y =-k 2+13k x -8k 2+134k 2+1+1-4k 24k 2+1=-k 2+13k x -53. ∴当k 变化时,直线MN 过定点⎝⎛⎭⎪⎫0,-53. 请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.作答时请写清题号.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρ(1+cos2θ)=8sin θ.(1)求曲线C 的普通方程;(2)直线l 的参数方程为⎩⎪⎨⎪⎧ x =t cos α,y =1+t sin α(t 为参数),直线l 与y 轴交于点F ,与曲线C 的交点为A ,B ,当|FA |·|FB |取最小值时,求直线l 的直角坐标方程.解 (1)由题意得ρ(1+cos2θ)=8sin θ,得2ρcos 2θ=8sin θ,得ρ2cos 2θ=4ρsin θ,∵x =ρcos θ,y =ρsin θ,∴x 2=4y ,即曲线C 的普通方程为x 2=4y .(2)由题意可知,直线l 与y 轴交于点F (0,1),即为抛物线C 的焦点,令|FA |=|t 1|,|FB |=|t 2|,将直线l 的参数方程⎩⎪⎨⎪⎧ x =t cos α,y =1+t sin α 代入C 的普通方程x 2=4y 中,整理得t 2cos 2α-4t sin α-4=0,由题意得cos α≠0,根据根与系数的关系得, t 1+t 2=4sin αcos 2α,t 1t 2=-4cos 2α, ∴|FA ||FB |=|t 1||t 2|=|t 1t 2|=4cos 2α≥4(当且仅当cos 2α=1时,等号成立), ∴当|FA |·|FB |取得最小值时,直线l 的直角坐标方程为y =1.23.(本小题满分10分)选修4-5:不等式选讲已知函数f (x )=m -|x -1|-|x +1|.(1)当m =5时,求不等式f (x )>2的解集;(2)若二次函数y =x 2+2x +3与函数y =f (x )的图象恒有公共点,求实数m 的取值范围.解 (1)当m =5时,f (x )=⎩⎪⎨⎪⎧ 5+2x x <-1,3-1≤x ≤1,5-2x x >1,由f (x )>2得不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -32<x <32. (2)由二次函数y =x 2+2x +3=(x +1)2+2,知函数在x =-1处取得最小值2,因为f (x )=⎩⎪⎨⎪⎧ m +2x x <-1,m -2-1≤x ≤1,m -2x x >1在x =-1处取得最大值m -2, 所以要使二次函数y =x 2+2x +3与函数y =f (x )的图象恒有公共点,只需m -2≥2,即m ≥4.。