(完整版)高三文科数学数列专题.doc
高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考文科数学大题专题练习 (3)

第7页
3.(2019·长郡中学月考)设数列{an}的前n项和为Sn,且Sn= n2-n+1,在正项等比数列{bn}中,b2=a2,b4=a5.
(1)求{an}和{bn}的通项公式; (2)设cn=anbn,求数列{cn=S1=1; 当n≥2时,an=Sn-Sn-1=(n2-n+1)-[(n-1)2-(n-1)+1]
第6页
b1=3对上式也成立,所以bn=n(n+2),即
1 bn
=
1 n(n+2)
=
121n-n+1 2,
所以Tn=
1 2
[
1-13
+
12-14
+
13-15
+…+
n-1 1-n+1 1
+
1n-n+1 2]=12(1+12-n+1 1-n+1 2)=34-2(n+21n)+(3n+2).
第14页
5.(2019·郑州市第一次质量预测)已知数列{an}为等比数 列,首项a1=4,数列{bn}满足bn=log2an,且b1+b2+b3=12.
(1)求数列{an}的通项公式; (2)令cn=bn·4bn+1+an,求数列{cn}的前n项和Sn.
第15页
解析 (1)由bn=log2an和b1+b2+b3=12,得log2(a1a2a3)= 12,∴a1a2a3=212.
设等比数列{an}的公比为q,∵a1=4,∴a1a2a3=4·4q·4q2= 26·q3=212,解得q=4,∴an=4·4n-1=4n.
高三文科数学第一轮复习数列专题.docx

数列专题姓名: _____________ (一)数列求和学号: _____________1.公式法。
(直接用等差、等比数列的求和公式求和)n(a 1a n )n(n 1)na 1 (q 1)na 1 ; S nn ) (q 1)S n22da 1 (1 q公比含字母时一定要讨论1 q例 1(1):已知等差数列.... { a n } 满足 a 1 1, a 23 ,求前 n 项和 S n .例 1(2):已知等比数列.... { a n } 满足 a 11, a 2 3 ,求前 n 项和 S n .练习 1( 1) .设 f (n)2 2427210L23 n 10 ( nN ) ,则 f (n) 等于()A. 2(8n1) B.2 (8n 1 1) C.2(8n 3 1)D. 2 (8n 41)777 7练习 1( 2) . 求和: 1+ 3 + 7 + 9 + K + (2 n - 1)2.分组求和法c n = a n + b n , a n 、 b n 是等差或等比数列,则采用分组求和法1111 例 3:求数列1, 2+, 3+ , 4++⋯ + nn 1 的前 n 项和 S n .2 482练习 2(1):已知数列 { a n } 是 3+ 2-1,6+ 22- 1,9+ 23- 1,12+24 -1,⋯,写出数列 { a n } 的通项公式并求其前 n 项和 S n .练习 2( 2):求和: (2 - 3? 5- 1 ) (4 - 3? 5- 2 ) L + (2 n - 3? 5- n ) .3.错位相减法:(乘以式中的公比q ,然后再进行相减) a n等差 , b n等比 , 求 a1b1 a 2b2a n b n的和 .例 3.求和S n 1 2x 3x2L nx n 1( x 1 0 )(提示:分类讨论, x1和 x 1 两种情况)练习 3( 1)化简:S n 1 21 2 2 2n2n123n练习 3(2) .求和:S n23na a a a练习3(3). 设{ a n}是等差数列,{b n } 是各项都为正数的等比数列,且a1b1 1 , a3b521 ,a5 b3 13 (Ⅰ)求 { a n} , { b n } 的通项公式;(Ⅱ)求数列a n的前 n 项和S n.b n4.裂项相消法 ( 把数列的通项拆成两项之差、正负相消剩下首尾若干项)常见拆项:1 11;1 1 ( 1 1 ) 1= 1 ( 1- 1 )n(n 1) nn 1n(n2)2 n n 2 ; n(n + k) k n n + k11111111]()[(2n 1)( 2n 1) 2 2n 1 2n 1 ; n(n 1)( n2) 2 n(n 1) ( n 1)(n2)例 4(1).数列 { a n } 的前 n 项和为 S n ,若 a n1,则 S 5 等于( )n(n 1)A . 1B .5C .1D .16630例 4(2) . 已知数列 { a n } 的通项公式为 a n1,求前 n 项的和.nn11,求前 n 项的和.练习 4( 1).已知数列 { a n } 的通项公式为 a nn(n 1)练习 4( 2).若数列的通项公式为 b n1n 项和为 _________.,则此数列的前 (2n1) (2n 1)练习 4( 3)已知数列a n: 1 ,12 , 1 23 , ⋯ , 1 2 3 L 9, ⋯ , 若 b n 1,23 34 4410 10 1010a nan 1那么数列 b n 的前 n 项和 S n 为()A .n B. 4n C.3n D. 5n n1n 1n 1n 1练习 4( 4).已知数列 { a n } 的通项公式为 a n =n1,设 T n11 L1 ,求 T n .2a 1 a 3a 2 a 4a nan 2练习 4( 5).求 11 1 14 1,(n N * ) 。
高三数学数列文科知识点和高考题专练

数列一、基本概念:1、数列:一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数。
数列的通项公式也就是相应函数的解析式。
有穷数列:_____________________________; 无穷数列:___________________________. 递增数列:_____________________________; 递减数列:___________________________. 常数列:_______________________________. 摆动数列:___________________________. 数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.2、等差数列:从第2项起,每一项与它的前一项的差等于同一个常数。
这个常数称为等差数列的公差.定义1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥,其中d 为公差.等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a b A +=通项公式的变形:①()n m a a n m d =+-;②()11n a a n d =--;③11n a a d n -=-;④11n a a n d -=+;⑤nm a a d n m-=-.等差数列的前n 项和:①()12n n n a a S +=;②()112n n n S na d -=+. 3、等差数列的性质:1) 当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和1(1)2n n n S na d -=+21()22d d n a n =+-是关于n 的二次函数常数项0.2)若项数为()*2n n ∈N ,则()21nn n S n a a +=+,且S S nd -=偶奇,1nn S a S a +=奇偶.3) 若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶(其中n S na =奇,()1n S n a =-偶).4) 当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a += 4、等比数列:从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比. 定义1(n n a q q a +=为常数),其中0,0n q a ≠≠或11n n n n a aa a +-=(2)n ≥,其中q 为公比.等比中项:在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则G 称为a 与b 的等比中项.若2G ab =,则称G 为a 与b 的等比中项.通项公式的变形:①n m n m a a q -=;②()11n na a q --=;③11n na q a -=;④n m n m a q a -=.等比数列{}n a 的前n 项和:()()()11111111n n n na q S a q a a q q qq =⎧⎪=-⎨-=≠⎪--⎩.6、等比中项的性质: 1) 若项数为()*2n n ∈N ,则S q S =偶奇.2)n n m n m S S q S +=+⋅.3) n S ,2n n S S -,32n n S S -成等比数列.4) 若{}n a 是等比数列,且m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a ⋅=⋅;若{}n a 是等比数列,且2n p q =+(n 、p 、*q ∈N ),则2np q a a a =⋅.二、基本运算:1、数列的通项的求法:1) 公式法:①等差数列通项公式;②等比数列通项公式。
高三文科数学数列专题复习共17页文档

12(1)变式
本次统考理9:已知等差数列 an 的前n项和为 S n , 若M、N、P三点共线,O为坐标原点,且 ONa15OM a6OP
(直线MP不过点O),则 S 20 等于(B )
A.15 B.10 C.40 D. Nhomakorabea0本次统考理20:已知数列
bn 满足
第一课时 等差数列与等比数列 一、基础自测
二轮P47 1、2、3、4、5 P51 1、2、3、4、7、8
小结: 1、基本量 a1、d(q) 2、准确运用通项公式、求和公式
注:等差等比求和公式的运用条件与特点 3、等差等比数列的性质
二、典例分析 二轮P49 例2 变式训练 例3 变式训练
三、体验高考 巩固提高
三、体验高考 巩固提高
二轮P59 6、7 P60 10 二轮P63 2 P64 5
小结: 1、 2、
3、
END
bn1
11 2bn 4
且 b1
7 2
,Tn
为 bn 的前n项和。
求证:数列
b
n
1 2
是等比数列,并求
bn
、T n
第二课时 数列通项与求和
一、基础自测 二轮P53 1、2、3、4
二轮P59 1、2、3、4 二轮P60 9、10 二、典例分析 二轮P55 例1 变式训练
高三数列知识点与题型总结(文科)知识讲解

高三数列知识点与题型总结(文科)数列考点总结第一部分 求数列的通项公式一、数列的相关概念与表示方法(见辅导书) 二、求数列的通项公式四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
求数列通项的基本方法是:累加法和累乘法。
一、累加法 1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
若1()n n a a f n +-=(2)n ≥,则 21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。
(完整word版)高考文科数列知识点总结(全).docx

(2)数列an是等比数列an
2
an 1an 1
4.等比数列的前n项和Sn公式:
(1)当q1时,Snna1
(2)
当q 1时,Sn
a1
1
qn
a1
anq
1
q
1
q
5.
等比数列的判定方法
(1)用定义:对任意的
n,都有an 1
qan或an 1
2n
1
时,则
S2n 1
S奇
S偶
(2 n 1) an+1
S奇
(n 1)an+1
奇
n 1
S
S奇
S偶
an+1
S偶
nan+1
S偶
n
(其中an+1是项数为
2n+1的等差数列的中间项).
(8)等差数列{ an}的前n项和Sm
n,前m项和Sn
m,则前m+n项和S
m n
m n
(9)求Sn的最值
法一:因等差数列前
n项和是关于
推广:
an
am
(n
m) d.
从而d
an
am;
n
m
3.等差中
(1)如果a,A,b成等差数列,那么
A叫做a与b的等差中 .即:A
a
b或2 A
a b
2
(2)等差中 :数列
an
是等差数列
2an
an-1
an 1(n 2)
2an 1
anan 2
4.等差数列的前n和公式:
S
n(a1
an)
na
n( n 1)d
高考文科数学专题 数列

n 13(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.课标文数17.D2,D3[2011·湖北卷] 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;课标理数16.D3,C4[2011·福建卷] 已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.课标理数18.D3[2011·江西卷] 已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.若a =1,求数列{a n }的通项公式;课标理数17.D4[2011·辽宁卷] 已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.大纲文数16.D4[2011·重庆卷] 设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .课标理数17.D5[2011·课标全国卷] 等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.课标文数19.D5[2011·浙江卷] 已知公差不为0的等差数列{a n }的首项a 1为a (a ∈R ),且1a 1,1a 2,1a 4成等比数列. (1)求数列{a n }的通项公式;(2)对n ∈N *,试比较1a 2+1a 22+…+1a 2n 与1a 1的大小.大纲理数21.D5[2011·重庆卷]设实数数列{a n }的前n 项和S n 满足S n +1=a n +1S n (n ∈N *). (1)若a 1,S 2,-2a 2成等比数列,求S 2和a 3;大题过程训练1.(本题满分12分)已知数列{}n a 的通项公式为12-=n a n,数列}{n b 的前n 项和为nT ,且满足nn b T -=1(I )求}{n b 的通项公式;(II )在{}n a 中是否存在使得19na +是}{nb 中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.2.(本小题满分12分)等差数列2{}4n a =中,a ,其前n 项和n S 满足2().n S n n R λλ=+∈(I )求实数λ的值,并求数列{}n a 的通项公式; (II )若数列1{}n nb S +是首项为λ、公比为2λ的等比数列,求数列{}n b 的前n 项和.n T 3.(本题共12分)数列{n a }中,,21=ac cn a a n n (,1+=+是不为零的常数,n=1,2,3…..), 且321,,a a a 成等比数列, (1 )求c 的值 (2) 求{n a }的通项公式高考怎么考?【09福建】17.(本小题满分12分)等比数列{}n a 中,已知142,16a a == (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若35,a a 分别为等差数列{}n b 的第3项和第5项,试求数列{}n b 的通项公式及前n 项和n S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三文科数学数列专题
高三文科数学复习资料
——《数列》专题
1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n;
( 2)若S n242 ,求 n ;
( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值.
2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 .
( 1)求数列{ a n}的通项公式;
( 2)若b n S
n,求数列 {b n } 的前 n 项和 T n. n
3. 已知数列{ a n}满足a1 1 a n 1
( n 1) ,记 b n
1
, a n .
1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列;
(2)求数列{ a n}的通项公式 .
4. 在数列a n 中, a n 0 , a1 1
,且当 n 2 时,a n 2S n S n 1 0 . 2
( 1)求证数列1
为等差数列;S n
( 2)求数列a n的通项 a n;
( 3)当n 2时,设b n n 1
a n,求证: 1 2 (b2 b3
b n ) 1 .
n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 .
( 1)求数列{ a n}的通项公式;
( 2)设S n| a1 | | a2 || a n |,求 S n;
1
(n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n
n(12 a n )
意 n N * ,均有T n m
m 的值,若不存在,请说明理由.
成立,若存在,求出
32
6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式;
( 2)证明: 1 1 ... 1 1.
a2 a1 a3 a2 a
n 1 a n
7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式;
( 2)设b n a
n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n
8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和
为 T n,且 T n 1 1
b n. 2
( 1)求数列{ a n} , { b n}的通项公式;
( 2)记c n a n b n,求证:对一切 n N
2 , 有c n.
3
9. 数列{ a n}的前n项和S n满足S n2a n 3n .
(1)求数列{ a n}的通项公式a n;
(2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 .
10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在
直线 y x 2 上.
( 1)求数列{ a n} , { b n}的通项公式
( 2)若数列 { b n
1 1
L
1
} 的前 n 项和为 B n ,比较
B 2 与 2 的大小;
B 1
B n
( 3)令 T n
b 1 b 2 L b n ,是否存在正整数 M ,使得 T n M 对一切正整数 n 都成立?若存在,
a 1 a 2
a n
求出 M 的最小值;若不存在,请说明理由
.
11. 设数列 { a n } . {b n } 满足: a 1 b 1 6, a 2 b 2 4, a 3 b 3 3 ,且数列 { a n 1 a n }
(n N *) 是等差数列, { b n - 2} 是等比数列.
(Ⅰ)求数列 { a n } , { b n } 的通项公式;
(Ⅱ)是否存在 k N * ,使 a k
b k
(0, 1
) .若存在,求出 k ;若不存在,说明理由 .
2
12. 将等差数列 { a n } 的项按如下次序和规则分组,第一组为 a 1 ,第二组为 a 2 , a 3 ,第三组为 a 4 , a 5 , a 6 ,a 7 ,
第四组 L ,第 n 组共有 2n 1 项组成,并把第 n 组的各项之和记作 P n (n 1,2,3, L ) ,已知 P 2
36 ,
P 4 0.
( 1)求数列 { a n } 的通项公式;
( 2)若以 P , P , P ,L , P 为项构成数列 { P } ,试求 { P } 的前 8 项之和 A (写出具体数值)
.
1 2 3 n n n 8
n
13. 已知数列 { a n } 的前 n 项和 S n 满足: S n 2a n
( 1) , n 1.
⑵求数列 { a n } 的通项公式;
⑶证明:对任意的整数 m >4,有
1
1 L 1 7 . a 4
a 5
a m 8
参考答案
1. a n 2n 10 ; n
11; T n 的最
小值为: -20 .
2. a n
n
3; T n
n 2 9n
.
4
3. a n
1
.
2n
1 4. a n
1
(n 2) .
2n 2
2n
5. S n
9n n 2
(n 5)
7 .
n 2
9n
40 (n
; m
5)
6. a n 2n 1 .
7.
a n n 2 28 ; n 5 时,最小为
53
.
2 ( 1) n 1 . 5
8. a n
2n 1 , b n
3 3
9. a n
6 2n
1
3
;不存在.
10. a n 2n ; b n
2n 1 ;存在 m 3 .
11. a n n 2
7n 6 ;
1) n 1
2 ;不存在.
2
b n 4(
2
12. a n 2n 23 ; 59415 .
13. (1) a 1
1 , a
2 0 , a
3 2 ;
( 2) a n
2 [ 2n 2 ( 1)n 1 ]
3
(3
) 由
已 知 得 :
1 1
1 3 [
1
1
L
1
]
a 4 L
a m
2
2
1 2 3
1
m 2
m
a 5 2 2 ( 1)
3 [ 1 1 1
1 1
L
m 2
1 m ]
2 3 9 15
33 63
2
( 1)
1 [1 1 1 1 1 L ]
2
3 5 11 21
1
[1 1 1 1 1 L ]
2 3 5 10 20
1
1
1 4 5 (1
2
m 5
)
1 4
2 2 g 1
]
2 [
]
[ 5 5 3
1 1
2 3 2m 5
2
13 1 g( 1 ) m 513
104 105 7 .
15 5 2
15
120 120 8
故
1 1 1 7 a 4
L
a m
( m>4).
a 5
8。