高考文科数学各类大题专题汇总

合集下载

(word完整版)高考文科解三角形大题

(word完整版)高考文科解三角形大题

高考文科解三角形大题1. 在cos A 2 cosC2c a ABC 中,内角A, B,C的对边分别为a, b, c,.cos B bsin C〔 1〕求的值;〔 2〕假设cos B 1, b 2 ,求ABC 的面积S. 42.在ABC中,角A, B,C的对边分别是a, b, c , sin C cosC 1 sin C.〔 1〕求sin C的值;2〔 2〕假设a2b24(a b) 8,求边c的值.3.在ABC 中,角A, B,C的对边分别是a, b, c .〔 1〕假设sin( A) 2 cos A ,求A的值;6〔 2〕假设cos A 1, b3c ,求sin C的值. 3- 1 -534. ABC中,D为边BC上的一点,BD 33, sin B, cos ADC,求AD.13515.在ABC 中,角A, B,C的对边分别是a, b, c , a 1,b 2,cosC.4(1〕求ABC的周长;(2〕求cos( A C)的值 .6 在ABC 中,角A, B,C的对边分别是a, b, c .且 2a sin A (2b c) sin B (2c b) sin C .(1〕求A的值;(2〕求sin B sin C的最大值 .- 2 -7 在 ABC 中,角 A, B,C 的对边分别是 a, b, c , cos 2C 1.〔 1〕求 sin C 的值; 4〔 2〕当 a 2,2 sin Asin C 时,求 b, c 的长 .8 在 ABC 中,角 A, B,C 的对边分别是a, b, c ,且满足 cosA2 5, AB AC 3 .25〔 1〕求 ABC 的面积; 〔 2〕假设 b c 6 ,求 a 的值 .9 在ABC 中,角 A, B,C 的对边分别是a, b, c , cos(C) cos(C) 2 .442〔 1〕 求角 C 的大小;〔 2〕假设 c 2 3 , sin A2 sin B ,求 a,b .- 3 -10 在ABC 中,角A, B,C的对边分别是a, b, c,且. a cosC 1c b 2(1〕求角A的大小;(2〕假设a 1,求ABC的周长l的取值范围 .11 在ABC 中,角A, B, C的对边分别是a,b,c ,且 2( a2b2c2 ) 3ab.〔 1〕求sin2AB ;2〔 2〕假设c 2 ,求ABC 面积的最大值.- 4 -12 在ABC 中,角A, B, C 的对边分别是a,b, c , sin 2 2C sin 2C sin C cos2C 1 ,且a b 5 ,c7 .(1〕求角C的大小;(2〕求ABC的面积 .13 在ABC中,角A, B, C的对边分别是a, b,c,且满足cos A ( 3 sin A cos A)1 .〔 1〕求角A的大小;2〔 2〕假设a 2 2, S ABC 2 3 ,求b, c的长.- 5 -14 在ABC 中,角A, B, C的对边分别是a, b,c ,且 b cosC (3a c) cos B .〔 1〕求sin B的值;〔 2〕假设b2 ,且a c ,求ABC 的面积.15 在ABC 中,角A, B, C的对边分别是a, b,c , a sin Asin B b cos2 A2a .〔 1〕求b;a〔 2〕假设c2b23a2,求角B.- 6 -。

历年高考文科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划

历年高考文科数学真题汇编+答案解析(1):集合、复数、框图、简单逻辑、推理、平面向量、不等式与线性规划

A. {0}
B. {1}
【解析】∵ A {x | x 1} ,∴ A B {1,2} .
C. {1, 2}
D. {0,1, 2}
【答案】C
7(2017 全国 I 卷文 1)已知集合 A= x|x 2 ,B=x|3 2x 0 ,则
A.
A
B=
x|x
3
2
B. A B
C.
A
B
x|x
a
|
0、| b
|
0
.

D.
6

(a
b)
b
,∴
(a
b)
b
a
b
|
b
|2
0
,即
a
b
|
b
|2
.

a
与b
之间的夹角为
,则
cos
|
aa||bb
|
|
|b |2 a || b
|
| |
ba
| |
,∵ |
a
|
2|
b
| ,∴
cos
1 2
.
∵ 0 π ,∴ π . 3
【答案】B 3.(2019 全国 II 卷文 3)已知向量 a=(2,3),b=(3,2),则|a-b|=
【解析】 (1 i)(2 i) 3 i .
C. 3 i D. 3 i
【答案】D 7.(2017 全国 I 卷文 3)下列各式的运算结果为纯虚数的是
A. i(1 i)2
B. i2 (1 i)
C. (1 i)2
D. i(1 i)
【解析】A: i(1 i)2 i 2i 2 ,B: i2 (1 i) (1 i) i 1,

高三文科数学试卷(含答案)经典题

高三文科数学试卷(含答案)经典题

高三文科数学试卷一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}24M x x =<,{}2230N x x x =--<,且M N =A .{}2x x <-B .{}3x x >C .{}12x x -<<D .{}23x x << 2.若函数2()log f x x =,则下面必在()f x 反函数图像上的点是反函数图像上的点是A .(2)aa , B .1(2)2-,C .(2)a a ,D .1(2)2-,3.右图为某几何体三视图,按图中所给数据,该几何体的体积为右图为某几何体三视图,按图中所给数据,该几何体的体积为A .64+163B . 16+334C .163D . 16 4.在各项都为正数的等比数列}{n a 中,首项为3,前3项和为项和为21,则=++543a a a ( )A .33 B .72 C .84 D .189 5. 将函数)32sin(p+=x y 的图像向右平移12p=x 个单位后所得的图像的一个对称轴是:个单位后所得的图像的一个对称轴是:A. 6p=x B. 4p=x C. 3p=x D. 2p=x6. 若以连续抛掷两次骰子分别得到的点数m ,n 作为点P 的坐标,则点P 落在圆落在圆1022=+y x 内(含边界)的概率为内(含边界)的概率为A .61 B .41 C .92D .3677.下列有关命题的说法正确的是.下列有关命题的说法正确的是A .“21x =”是“1-=x ”的充分不必要条件”的充分不必要条件 B .“2=x ”是“0652=+-x x ”的必要不充分条件.”的必要不充分条件. C .命题“x R $Î,使得210x x ++<”的否定是:“x R "Î, 均有210x x ++<”.D .命题“若x y =,则sin sin x y =”的逆否命题为真命题.”的逆否命题为真命题.P T O ,m)三点共线, 则m的值为 ..程序框图(即算法流程图)如图所示,其输出结果是 . a b b a a b 2的值为 .p所得的弦长为所得的弦长为. pp .开始开始 a =1 a =3a +1 a >100? 结束结束是否a =a +1 输出a33]3型号型号 甲样式甲样式 乙样式乙样式 丙样式丙样式 500ml2000 z 3000 700ml3000 4500 5000 A B C 2a0AF F F 13OF QN MQ a b a 21n +722p)ppp3122p]1 333222,0),(2,0),2a a --22,a 2)2a a a -22a -22a -222123a a -- QN MQ )33x x-1a£ïíïx=>上恒成立,0x >\只要24aa ì£ïí解:(1)由121n n na a a +=+得:1112n na a +-=且111a=,所以知:数列1n a ìüíýîþ是以1为首项,以2为公差的等差数列,为公差的等差数列, …………2分所以所以1112(1)21,21n nn n a a n =+-=-=-得:; ------------4分(2)由211n n b a =+得:212112,n n n n b b n=-+=\= , 从而:11(1)n n b b n n +=+ ------------6分则 122311111223(1)n n n T b b b b b b n n +=+++=+++´´+=11111111()()()()1223341n n -+-+-++-+ 1111nn n =-=++ ------------9分(3)已知)1()1)(1)(1(12531-++++=n nb b b b P 246213521n n =····- 22212(4)(4)1,221n nn n n n +<-\<- 设:nn T n 2124523+´´´= ,则n n T P >从而:nn n n T P P n n n 2121223423122+´-´´´´=> 21n =+故:故: 21n T n >+ ------------14分。

2024年高考文科数学全国甲卷+答案详解

2024年高考文科数学全国甲卷+答案详解

2024年高考文科数学全国甲卷+答案详解(试题部分)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4B .{}1,2,3C .{}3,4D .{}1,2,92.设z =,则z z ⋅=( ) A .-iB .1C .-1D .23.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2−B .73C .1D .295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .236.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A .4B .3C .2D7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16BC .12D. 8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A.1 B.1 CD.110.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A .32BCD二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 13.已知1a >,8115log log 42a a −=−,则=a . 14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 . 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =−−+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x −<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值. 20.实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.2024年高考文科数学全国甲卷+答案详解(答案详解)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4 B .{}1,2,3C .{}3,4D .{}1,2,9【答案】A【解析】根据题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=. 故选A2.设z =,则z z ⋅=( ) A .-i B .1C .-1D .2【答案】D【解析】根据题意得,z =,故22i 2zz =−=. 故选D3.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−【答案】D【解析】实数,x y 满足43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,作出可行域如图:由5z x y =−可得1155y x z =−,即z 的几何意义为1155y x z =−的截距的15−, 则该直线截距取最大值时,z 有最小值,此时直线1155y x z =−过点A , 联立43302690x y x y −−=⎧⎨+−=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =−⨯=−. 故选D.4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2− B .73C .1D .29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【解析】方法1:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选D方法2:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=. 故选D方法3:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选D5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【解析】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选B6.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )A.4 B .3 C .2 D 【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】根据题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF =,26PF ,则1221064a PF PF =−=−=,则28224c e a ===. 故选C.7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16B C .12D . 【答案】A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =−−=−,故切线的横截距为13,纵截距为1−,故切线与坐标轴围成的面积为1111236⨯⨯=故选A.8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .【答案】B【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【解析】()()()()()22e e sin e e sin x x x xf x x x x x f x −−−=−+−−=−+−=,又函数定义域为[]2.8,2.8−,故该函数为偶函数,AC 错误, 又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=−+−>−+−=−−>−> ⎪ ⎪⎝⎭⎝⎭, D 错误.故选B.9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A .1B .1CD .1【答案】B 【分析】先将cos cos sin αα−α弦化切求得tan α,再根据两角和的正切公式即可求解.【解析】因为cos cos sin ααα=−11tan =−α,tan 1⇒α=,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪−α⎝⎭, 故选B.10.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误;③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC.2D【答案】C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可. 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 根据余弦定理可得:22294b a c ac ac =+−=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +. 故选C. 二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【解析】()πsin 2sin 3f x x x x ⎛⎫==− ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤−∈−⎢⎥⎣⎦,当ππ32x −=时,即5π6x =时,()max 2f x =.答案为:2 13.已知1a >,8115log log 42a a −=−,则=a . 【答案】64【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【解析】由题28211315log log log 4log 22a a a a −=−=−,整理得()2225log 60log a a −−=, 2log 1a ⇒=−或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==答案为:64.14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 .【答案】()2,1−【分析】将函数转化为方程,令()2331x x x a −=−−+,分离参数a ,构造新函数()3251,g x x x x =+−+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【解析】令()2331x x x a −=−−+,即3251a x x x =+−+,令()()32510,g x x x x x =+−+>则()()()2325351g x x x x x =+−=+−',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==−,因为曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈−.答案为:()2,1− 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.【答案】(1)153n n a −⎛⎫= ⎪⎝⎭(2)353232n⎛⎫− ⎪⎝⎭ 【分析】(1)利用退位法可求公比,再求出首项后可求通项; (2)利用等比数列的求和公式可求n S .【解析】(1)因为1233n n S a +=−,故1233n n S a −=−,所以()12332n n n a a a n +=−≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =−=⨯−=−,故11a =,故153n n a −⎛⎫= ⎪⎝⎭.(2)根据等比数列求和公式得5113353523213n nnS ⎡⎤⎛⎫⨯−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==− ⎪⎝⎭−. 16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离. 【答案】(1)见详解;【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V −−=即可求解. 【解析】(1)因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ; (2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM 中点,所以OB =ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,等体积法可得M ABF F ABM V V −−=,2112333F ABM ABM V S FO −=⋅=⋅=△,2222222cos2FA AB FBFAB FAB FA AB+−+−∠===∠=⋅11sin 222FAB S FA AB FAB =⋅⋅∠==△,设点M 到FAB 的距离为d ,则1133M FAB F ABM FAB V V S d d −−==⋅⋅==△解得d =M 到ABF17.已知函数()()1ln 1f x a x x =−−+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x −<恒成立.【答案】(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性; (2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x −−++>即可.【解析】(1)()f x 定义域为(0,)+∞,11()ax f x a x x'−=−= 当0a ≤时,1()0ax f x x −'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减. 综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减. (2)2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x −−−−=−−+−≥−++,令1()e 21ln (1)x g x x x x −=−++>,下证()0g x >即可.11()e 2x g x x −'=−+,再令()()h x g x '=,则121()e x h x x−'=−,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=−=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=−+=,即()g x 在(1,)+∞上单调递增, 故0()(1)e 21ln10g x g >=−++=,问题得证18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b = 所以椭圆方程为22143x y +=. (2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−− ()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k k x x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值. 【答案】(1)221y x =+ (2)34a =【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩C 的直角方程. (2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值; 法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【解析】(1)由cos 1ρρθ=+,将cos x ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+. (2)对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R . 将其代入221y x =+中得()221)210s a s a +−+−=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=−−=−,且()()22Δ818116160a a a =−−−=−>,故1a <,12AB s s ∴=−2=,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +−+−=,()22Δ(22)41880a a a =−−−=−+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=−=−,则AB =2=, 解得34a = 20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【解析】(1)因为()()2222222022a b a ab b a b b a −+=−−++=≥, 当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;(2)222222222222()a b b a a b b a a b a b −+−≥−+−=+−+ 22222()()()()(1)326a b a b a b a b a b a b =+−+≥+−+=++−≥⨯=。

数列-高考真题文科数学分项汇编(原卷版)

数列-高考真题文科数学分项汇编(原卷版)

专题 12 数列1.【2020年高考全国Ⅰ卷文数】设{a n }是等比数列,且a 1 a 2 a 3 1, a 2 a 3+a 4 2,则 a 6a 7 a 8A .12B .24C .30D .32S2.【2020年高考全国Ⅱ卷文数】记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则 n =a nA .2 n–1B .2–21–nC .2–2n –1D .21–n–13.【2020年高考北京】在等差数列a n 中,a 9,a 31.记T n a 1a 2…a n (n1,2,…),则数列1T nA .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项a 1d4.【2020年高考浙江】已知等差数列{a n }的前n 项和为S n ,公差 d 0,且 1.记b 1 S2,b n1S 2n2– S 2n ,n N,下列等式不可能成立的是... A . 2a 4 a 2 a 6 B .2b 4 b 2 b 6D .b 4C .a 42a 2a 82 b 2b 85.【2019年高考全国 III 卷文数】已知各项均为正数的等比数列a n的前 4项和为 15,且则a 3a 3a 3 4a 1,5A .16 C .4B .8 D . 26.【2019年高考浙江卷】设 a ,b ∈R ,数列{a n }满足 a 1=a ,a n+1=a n +b ,n N ,则2A .当 b1 ,a 10 10B .当 b1 ,a 10 102 4 C .当 b2,a 1010D .当 b4,a 10107.【2018年高考浙江卷】已知 a 1,a 2,a 3,a 4成等比数列,且 a 1 a 2a 3 a 4ln(a 1a 2a 3).若 a 1 1,则A . a 1a 3,a 2 a 4C . a 1 a 3,a 2 a 4 B . a 1a 3,a 2 a 4D .a 1 a 3,a 2 a 48.【2018年高考北京卷文数】设 a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的A .充分而不必要条件 C .充分必要条件B .必要而不充分条件 D .既不充分也不必要条件9.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比 例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音, 从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于 则第八个单音的频率为 12 2 .若第一个单音的频率为 f ,A . C . 3 2 fB . D . 32 f2122 5f122 f710.【2020年高考全国Ⅱ卷文数】记S n 为等差数列{a n }的前n 项和.若a 1=−2,a 2+a 6=2,则S 10=__________. 11.【2020年高考全国Ⅰ卷文数】数列{a n }满足a n2a 3n 1,前 16项和为 540,则(1)nna 1.12.【2020年高考浙江】我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列{n(n 1)}2就是二阶等差数列.数列{n(n 1)}(n N *)的前 3项和是_______.213.【2020年高考江苏】设{a n }是公差为 d 的等差数列,{b n }是公比为 q 的等比数列.已知数列{a n +b n }的前 n 项和 S nn n 21(n N ),则 d+q 的值是 2n▲ .14.【2020年新高考全国Ⅰ卷】将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前 n 项和为________.15.【2019年高考全国 I 卷文数】记 S n 为等比数列{a n }的前 n 项和.若a 1 1,S 3 3,则 S 4=___________.416.【2019年高考全国 III 卷文数】记S n 为等差数列a n 的前n 项和,若a 35,a 7 13,则S 10 ___________.17.【2019年高考江苏卷】已知数列{a n }(n N*)是等差数列,S n 是其前 n 项和.若a 2a 5 a 8 0,S 927,则 S 8的值是__________. 18.【2018年高考江苏卷】已知集合 A{x | x2n 1,nN }, B {x | x2 ,nN }.将 A B 的所 * n *有元素从小到大依次排列构成一个数列 {a n }.记 S n 为数列{a n }的前 n 项和,则使得 S n 12a n 1成立的 n 的最小值为___________.19.【2020年高考全国Ⅲ卷文数】设等比数列{a n }满足 a 1 a 2 4,a 3 a 1 8.(1)求{a n }的通项公式;(2)记 S n 为数列{log 3a n }的前 n 项和.若 S mS m1S m 3,求 m .20.【2020年高考江苏】已知数列a n (n N *)的首项 a 1=1,前 n 项和为 S n .设λ与 k 是常数,若对一切正11 1成立,则称此数列为“λ~k ”数列. 整数 n ,均有 S k n 1 S nka nk1(1)若等差数列a n 是“λ~1”数列,求λ的值;(2)若数列a n是“ 3 ~2 ”数列,且 a n 0,求数列a n的通项公式;3(3)对于给定的λ,是否存在三个不同的数列a n为“λ~3”数列,且a n 0?若存在,求λ的取值范围;若不存在,说明理由. 21.【2020年新高考全国Ⅰ卷】已知公比大于1的等比数列{a n }满足 a 2 a 4 20,a 3 8.(1)求{a n }的通项公式;(2)记b m 为{a n }在区间(0,m](m N )中的项的个数,求数列{b m }的前100项和 S 100.*22.【2020年高考天津】 已知a n 为等差数列,b n 为等比数列,a 1 b 1 1,a 5 5a 4 a 3,b 5 4b 4b 3.(Ⅰ)求a n和b n的通项公式;(Ⅱ)记a n n的前项和为S n ,求证:S n S n 2 S 2n 1n N *;3a n 2b n ,n 为奇数,(Ⅲ)对任意的正整数n ,设c n a n a n 2求数列c n 的前2n 项和.a n 1 ,n 为偶数.b n 1b n23.【2020年高考浙江】已知数列{a n },{b n },{c n }满足 a 1 b 1c 11,c n a n1a n ,c n 1 c n ,n N *.b n 2(Ⅰ)若{b n }为等比数列,公比 q 0,且b 1 b 2 6b 3,求 q 的值及数列{a n }的通项公式; (Ⅱ)若{b n }为等差数列,公差 d 0,证明:c 1 c 2c 3c n 1 1 ,n N *.d24.【2020年高考北京】已知a n是无穷数列.给出两个性质:a i2 ①对于a n 中任意两项 a ,a j (ij),在a n中都存在一项a im ,使a a m ; ja (n 3),在a n 中都存在两项a k ,a l (kl).使得a n a 2②对于a n中任意项k .n a l(Ⅰ)若a n n(n 1,2,),判断数列a n是否满足性质①,说明理由;(Ⅱ)若a n 2n 1(n 1,2,),判断数列a n是否同时满足性质①和性质②,说明理由;(Ⅲ)若a n 是递增数列,且同时满足性质①和性质②,证明: a n为等比数列.25.【2019年高考全国 I 卷文数】记 S n 为等差数列{a n }的前 n 项和,已知 S 9=-a 5.(1)若 a 3=4,求{a n }的通项公式;(2)若 a 1>0,求使得 S n ≥a n 的 n 的取值范围.26.【2019年高考全国 II 卷文数】已知{a n }是各项均为正数的等比数列,a 12,a 3 2a 2 16 .(1)求{a n }的通项公式; (2)设b nlog 2 a n ,求数列{b n }的前 n 项和.27.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且 a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前 n 项和为 S n ,求 S n 的最小值.28.【 2019年高考天津卷文数】设 {a n }是等差数列, {b n }是等比数列,公比大于 0 ,已知a 1b 1 3,b 2 a 3,b 3 4a 2 3 .(1)求{a n }和{b n }的通项公式;1,n 为奇数,(2)设数列{c n }满足c nb n ,n 为偶数.求a 1c 1 a 2c 2 a 2n c 2n (n N *) .2 29.【2019年高考江苏卷】定义首项为 1且公比为正数的等比数列为“M -数列”.)满足:a 2a 4a 5,a 3 4a 2 4a 1 0,求证:数列{a n }为“M -数列”;(1)已知等比数列{a n }(n N 满足:b 11, 1 22(2)已知数列{b n }(nN ) ①求数列{b n }的通项公式;,其中 S n 为数列{b n }的前 n 项和.S b b n 1 n n②设 m 为正整数,若存在“M -数列”{c n }(n N 立,求 m 的最大值.),对任意正整数 k ,当 k ≤m 时,都有c k b k c k 1成30.【2019年高考浙江卷】设等差数列 {a n }的前 n 项和为 S n ,a 3 4,a 4 S 3,数列{b n }满足:对每个n N ,S n b n ,S n 1 b n ,S n 2 b n 成等比数列.(1)求数列{a n },{b n }的通项公式;a n(2)记c n,n N ,证明:c 1 c 2+c n 2 n,n N . 2b n31.【2018年高考全国 I 卷文数】已知数列a n 满足 a 1 1, na n 1 2n1a n ,设b na n . n(1)求b 1,b 2,b 3; (2)判断数列b n 是否为等比数列,并说明理由;(3)求a n 的通项公式.32.【2018年高考全国 III 卷文数】等比数列{a n }中,a 11,a 5 4a 3.(1)求{a n }的通项公式;{a n } 的前项和.若(2)记 S n 为 n S m 63,求m .33.【2018年高考全国 II 卷文数】记S 为等差数列a n 的前项和,已知 n a 1 7,S 3 15.n (1)求a n的通项公式;(2)求 S n ,并求 S n 的最小值. 34.【2018年高考北京卷文数】设a n 是等差数列,且a 1 ln2,a 2 a 3 5ln2 .(1)求a n的通项公式;(2)求e ae a e a.2n 1 35.【2018年高考天津卷文数】设{a n }是等差数列,其前 n 项和为 S n (n ∈N* );{b n }是等比数列,公比大于0,其前 n 项和为 T n (n ∈N ).已知 b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.*(1)求 S n 和 T n ; (2)若 S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数 n 的值.36.【2018年高考浙江卷】已知等比数列{a n}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,数列{(b n+1−b n)a n}的前n项和为2n +n.2(1)求q的值;(2)求数列{b n}的通项公式.37.【2018年高考江苏卷】设{a n}是首项为a1,公差为d的等差数列,{b n}是首项为b1,公比为q的等比数列.(1)设a1 0,b1 1,q 2,若| a n b n | b1对n 1,2,3,4均成立,求d的取值范围;(2)若a1 b1 0,m N ,q(1, 2],证明:存在 d R,使得| a n b n | b1对n 2,3,,m1均成立,*m并求d的取值范围(用b1,m,q表示).。

高考文科数学大题解析全

高考文科数学大题解析全

高考文科数学一轮复习大题篇----导数的综合应用【归类解析】题型一 证明不等式【解题指导】 (1)证明f (x )>g (x )的一般方法是证明h (x )=f (x )-g (x )>0(利用单调性),特殊情况是证明f (x )min >g (x )max (最值方法),但后一种方法不具备普遍性.(2)证明二元不等式的基本思想是化为一元不等式,一种方法为变换不等式使两个变元成为一个整体,另一种方法为转化后利用函数的单调性,如不等式f (x 1)+g (x 1)<f (x 2)+g (x 2)对x 1<x 2恒成立,即等价于函数h (x )=f (x )+g (x )为增函数. 【例】设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x <x .(1)解 由题设知,f (x )的定义域为(0,+∞), f ′(x )=1x-1,令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减. (2)证明 由(1)知,f (x )在x =1处取得极大值也为最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x<x .【训练】已知函数f (x )=x ln x -e x +1. (1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)证明:f (x )<sin x 在(0,+∞)上恒成立. (1)解 依题意得f ′(x )=ln x +1-e x ,又f (1)=1-e ,f ′(1)=1-e ,故所求切线方程为y -1+e =(1-e)(x -1),即y =(1-e)x . (2)证明 依题意,要证f (x )<sin x , 即证x ln x -e x +1<sin x , 即证x ln x <e x +sin x -1.当0<x ≤1时,e x +sin x -1>0,x ln x ≤0, 故x ln x <e x +sin x -1,即f (x )<sin x .当x >1时,令g (x )=e x +sin x -1-x ln x , 故g ′(x )=e x +cos x -ln x -1. 令h (x )=g ′(x )=e x +cos x -ln x -1, 则h ′(x )=e x -1x -sin x ,当x >1时,e x -1x >e -1>1,所以h ′(x )=e x -1x -sin x >0,故h (x )在(1,+∞)上单调递增.故h (x )>h (1)=e +cos 1-1>0,即g ′(x )>0, 所以g (x )在(1,+∞)上单调递增, 所以g (x )>g (1)=e +sin 1-1>0, 即x ln x <e x +sin x -1,即f (x )<sin x . 综上所述,f (x )<sin x 在(0,+∞)上恒成立. 题型二 不等式恒成立或有解问题【解题指导】 利用导数解决不等式的恒成立问题的策略 (1)首先要构造函数,利用导数求出最值,求出参数的取值范围. (2)也可分离变量,构造函数,直接把问题转化为函数的最值问题. 【例】已知函数f (x )=1+ln xx.(1)若函数f (x )在区间⎝⎛⎭⎫a ,a +12上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥kx +1恒成立,求实数k 的取值范围.【解】 (1)函数的定义域为(0,+∞), f ′(x )=1-1-ln x x 2=-ln xx2, 令f ′(x )=0,得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )单调递增; 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以x =1为函数f (x )的极大值点,且是唯一极值点, 所以0<a <1<a +12,故12<a <1,即实数a 的取值范围为⎝⎛⎭⎫12,1. (2)当x ≥1时,k ≤x +11+ln xx 恒成立,令g (x )=x +11+ln xx (x ≥1),则g ′(x )=⎝⎛⎭⎫1+ln x +1+1x x -x +11+ln xx 2=x -ln xx2.再令h (x )=x -ln x (x ≥1),则h ′(x )=1-1x ≥0,所以h (x )≥h (1)=1,所以g ′(x )>0,所以g (x )为单调增函数,所以g (x )≥g (1)=2, 故k ≤2,即实数k 的取值范围是(-∞,2].【训练】已知函数f (x )=ax +ln x ,x ∈[1,e],若f (x )≤0恒成立,求实数a 的取值范围. 【解】 ∵f (x )≤0,即ax +ln x ≤0对x ∈[1,e]恒成立, ∴a ≤-ln xx,x ∈[1,e].令g (x )=-ln xx ,x ∈[1,e],则g ′(x )=ln x -1x 2,∵x ∈[1,e],∴g ′(x )≤0,∴g (x )在[1,e]上单调递减, ∴g (x )min =g (e)=-1e ,∴a ≤-1e .∴实数a 的取值范围是⎝⎛⎦⎤-∞,-1e . 题型三 求函数零点个数【解题指导】 (1)可以通过构造函数,将两曲线的交点问题转化为函数零点问题. (2)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况.【例】设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x ,当m ≥1时,讨论f (x )与g (x )图象的交点个数.【解】 令F (x )=f (x )-g (x ) =-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数. F ′(x )=-x -1x -mx ,当m =1时,F ′(x )≤0,函数F (x )为减函数, 注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,若0<x <1或x >m ,则F ′(x )<0; 若1<x <m ,则F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增, 注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象总有一个交点. 【训练】设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.【解】 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型四 根据函数零点情况求参数范围【解题指导】 函数的零点个数可转化为函数图象的交点个数,确定参数范围时要根据函数的性质画出大致图象,充分利用导数工具和数形结合思想.【例】已知函数f (x )=2ln x -x 2+ax (a ∈R ).若函数g (x )=f (x )-ax +m 在⎣⎡⎦⎤1e ,e 上有两个零点,求实数m 的取值范围. 【解】 g (x )=2ln x -x 2+m , 则g ′(x )=2x-2x =-2x +1x -1x.因为x ∈⎣⎡⎦⎤1e ,e ,所以当g ′(x )=0时,x =1. 当1e ≤x <1时,g ′(x )>0;当1<x ≤e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝⎛⎭⎫1e =m -2-1e 2,g (e)=m +2-e 2, g (e)-g ⎝⎛⎭⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝⎛⎭⎫1e , 所以g (x )在⎣⎡⎦⎤1e ,e 上的最小值是g (e). g (x )在⎣⎡⎦⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g 1=m -1>0,g ⎝⎛⎭⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e 2, 所以实数m 的取值范围是⎝⎛⎦⎤1,2+1e 2. 【训练】已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )=2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 【解】 由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x (x >0),所以h ′(x )=1+2x -3x2=x +3x -1x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下:x ⎝⎛⎭⎫1e ,11 (1,e) h ′(x ) - 0 +h (x )极小值又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2. 且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2, 所以实数a 的取值范围为4<a ≤e +2+3e ,即a 的取值范围为⎝⎛⎦⎤4,e +2+3e .专题突破训练1.已知函数f (x )=ln x +x ,g (x )=x ·e x -1,求证:f (x )≤g (x ). 【证明】 令F (x )=f (x )-g (x )=ln x +x -x e x +1(x >0), 则F ′(x )=1x +1-e x -x e x =1+x x -(x +1)e x=(x +1)⎝⎛⎭⎫1x -e x .令G (x )=1x -e x ,可知G (x )在(0,+∞)上为减函数,且G ⎝⎛⎭⎫12=2-e>0,G (1)=1-e<0,∴存在x 0∈⎝⎛⎭⎫12,1,使得G (x 0)=0,即1x 0-0e x =0. 当x ∈(0,x 0)时,G (x )>0,∴F ′(x )>0,F (x )为增函数; 当x ∈(x 0,+∞)时,G (x )<0, ∴F ′(x )<0,F (x )为减函数. ∴F (x )≤F (x 0)=ln x 0+x 0-x 00e x+1,又∵1x 0-0e x =0,∴1x 0=0e x,即ln x 0=-x 0,∴F (x 0)=0,即F (x )≤0,∴f (x )≤g (x ).2.已知f (x )=e x -ax 2,若f (x )≥x +(1-x )·e x 在[0,+∞)恒成立,求实数a 的取值范围. 【解】 f (x )≥x +(1-x )e x ,即e x -ax 2≥x +e x -x e x , 即e x -ax -1≥0,x ≥0.令h (x )=e x -ax -1(x ≥0),则h ′(x )=e x -a (x ≥0), 当a ≤1时,由x ≥0知h ′(x )≥0, ∴h (x )≥h (0)=0,原不等式恒成立. 当a >1时,令h ′(x )>0,得x >ln a ; 令h ′(x )<0,得0≤x <ln a . ∴h (x )在[0,ln a )上单调递减, 又∵h (0)=0,∴h (x )≥0不恒成立, ∴a >1不合题意.综上,a 的取值范围为(-∞,1].3.已知函数f (x )=ax -e x (a ∈R ),g (x )=ln x x .(1)求函数f (x )的单调区间;(2)∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x 成立,求a 的取值范围. 【解】 (1)因为f ′(x )=a -e x ,x ∈R . 当a ≤0时,f ′(x )<0,f (x )在R 上单调递减; 当a >0时,令f ′(x )=0,得x =ln a .由f ′(x )>0,得f (x )的单调递增区间为(-∞,ln a ); 由f ′(x )<0,得f (x )的单调递减区间为(ln a ,+∞).综上所述,当a ≤0时,f (x )的单调递减区间为(-∞,+∞),无单调递增区间; 当a >0时,f (x )的单调递增区间为(-∞,ln a ),单调递减区间为(ln a ,+∞). (2)因为∃x ∈(0,+∞),使不等式f (x )≤g (x )-e x ,则ax ≤ln x x ,即a ≤ln xx 2.设h (x )=ln xx 2,则问题转化为a ≤⎝⎛⎭⎫ln x x 2max , 由h ′(x )=1-2ln xx 3,令h ′(x )=0,得x = e. 当x 在区间(0,+∞)内变化时,h ′(x ),h (x )随x 变化的变化情况如下表:由上表可知,当x =e 时,函数h (x )有极大值,即最大值为12e ,所以a ≤12e .故a 的取值范围是⎝⎛⎦⎤-∞,12e . 4.设函数f (x )=ax 2-x ln x -(2a -1)x +a -1(a ∈R ).若对任意的x ∈[1,+∞),f (x )≥0恒成立,求实数a 的取值范围.【解】 f ′(x )=2ax -1-ln x -(2a -1)=2a (x -1)-ln x (x >0), 易知当x ∈(0,+∞)时,ln x ≤x -1, 则f ′(x )≥2a (x -1)-(x -1)=(2a -1)(x -1). 当2a -1≥0,即a ≥12时,由x ∈[1,+∞)得f ′(x )≥0恒成立,f (x )在[1,+∞)上单调递增,f (x )≥f (1)=0,符合题意.当a ≤0时,由x ∈[1,+∞)得f ′(x )≤0恒成立,f (x )在[1,+∞)上单调递减, f (x )≤f (1)=0,显然不合题意,a ≤0舍去.当0<a <12时,由ln x ≤x -1,得ln 1x ≤1x -1,即ln x ≥1-1x,则f ′(x )≤2a (x -1)-⎝⎛⎭⎫1-1x =⎝⎛⎭⎫x -1x (2ax -1), ∵0<a <12,∴12a>1.当x ∈⎣⎡⎦⎤1,12a 时,f ′(x )≤0恒成立, ∴f (x )在⎣⎡⎭⎫1,12a 上单调递减, ∴当x ∈⎣⎡⎭⎫1,12a 时,f (x )≤f (1)=0, 显然不合题意,0<a <12舍去.综上可得,a ∈⎣⎡⎭⎫12,+∞.5.已知函数f (x )为偶函数,当x ≥0时,f (x )=2e x ,若存在实数m ,对任意的x ∈[1,k ](k >1),都有f (x +m )≤2e x ,求整数k 的最小值.【解】 因为f (x )为偶函数,且当x ≥0时,f (x )=2e x , 所以f (x )=2e |x |,对于x ∈[1,k ],由f (x +m )≤2e x 得2e |x+m |≤2e x ,两边取以e 为底的对数得|x +m |≤ln x +1,所以-x -ln x -1≤m ≤-x +ln x +1在[1,k ]上恒成立, 设g (x )=-x +ln x +1(x ∈[1,k ]), 则g ′(x )=-1+1x =1-xx ≤0,所以g (x )在[1,k ]上单调递减, 所以g (x )min =g (k )=-k +ln k +1,设h (x )=-x -ln x -1(x ∈[1,k ]),易知h (x )在[1,k ]上单调递减, 所以h (x )max =h (1)=-2,故-2≤m ≤-k +ln k +1, 若实数m 存在,则必有-k +ln k ≥-3,又k >1,且k 为整数,所以k =2满足要求,故整数k 的最小值为2. 7.已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 【解】 f ′(x )=(x )′ln x +x ·1x =x ln x +22x ,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2, 所以f (x )在(0,e -2)上单调递减, 在(e -2,+∞)上单调递增. f (x )min =f (e -2)=a -2e,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.8.已知f (x )=1x +e x e -3,F (x )=ln x +e xe -3x +2.(1)判断f (x )在(0,+∞)上的单调性; (2)判断函数F (x )在(0,+∞)上零点的个数. 【解】 (1)f ′(x )=-1x 2+e x e =x 2e x -ee x 2,令f ′(x )>0,解得x >1,令f ′(x )<0,解得0<x <1, 所以f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增. (2)F ′(x )=f (x )=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f (x )在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F (x )在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F (1)=0,x →0时,F (x )→-∞, x →+∞时,F (x )→+∞,画出函数F (x )的草图,如图所示.故F (x )在(0,+∞)上的零点有3个.9.已知函数f (x )=13x 3-12x 2-2x +c 有三个零点,求实数c 的取值范围.【解】 f ′(x )=x 2-x -2=(x +1)(x -2), 由f ′(x )>0可得x >2或x <-1, 由f ′(x )<0可得-1<x <2,所以函数f (x )在(-∞,-1),(2,+∞)上是增函数, 在(-1,2)上是减函数,所以函数f (x )的极大值为f (-1)=76+c ,极小值为f (2)=c -103.而函数f (x )恰有三个零点,故必有⎩⎨⎧76+c >0,c -103<0,解得-76<c <103,所以使函数f (x )恰有三个零点的实数c 的取值范围是⎝⎛⎭⎫-76,103. 10.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.【解】 (1)∵g (x )=x +e 2x ≥2e 2=2e(x >0),当且仅当x =e 2x 时取等号,∴当x =e 时,g (x )有最小值2e.∴要使g (x )=m 有零点,只需m ≥2e. 即当m ∈[2e ,+∞)时,g (x )=m 有零点.(2)若g (x )-f (x )=0有两个相异实根,则函数g (x )与f (x )的图象有两个不同的交点. 如图,作出函数g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1 =-(x -e)2+m -1+e 2, ∴其对称轴为x =e , f (x )max =m -1+e 2.若函数f (x )与g (x )的图象有两个交点,则m -1+e 2>2e ,即当m >-e 2+2e +1时,g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).11.已知函数f (x )=(3-a )x -2ln x +a -3在⎝⎛⎭⎫0,14上无零点,求实数a 的取值范围. 【解】 当x 从0的右侧趋近于0时,f (x )→+∞, 所以f (x )<0在⎝⎛⎭⎫0,14上恒成立不可能. 故要使f (x )在⎝⎛⎭⎫0,14上无零点,只需对任意的x ∈⎝⎛⎭⎫0,14,f (x )>0恒成立,即只需当x ∈⎝⎛⎭⎫0,14时,a >3-2ln xx -1恒成立.令h (x )=3-2ln xx -1,x ∈⎝⎛⎭⎫0,14, 则h ′(x )=2ln x +2x-2x -12,再令m (x )=2ln x +2x -2,x ∈⎝⎛⎭⎫0,14, 则m ′(x )=-21-x x 2<0,于是在⎝⎛⎭⎫0,14上, m (x )为减函数,故m (x )>m ⎝⎛⎭⎫14=6-4ln 2>0, 所以h ′(x )>0在⎝⎛⎭⎫0,14上恒成立, 所以h (x )在⎝⎛⎭⎫0,14上为增函数, 所以h (x )<h ⎝⎛⎭⎫14在⎝⎛⎭⎫0,14上恒成立. 又h ⎝⎛⎭⎫14=3-163ln 2, 所以a ≥3-163ln 2,故实数a 的取值范围是⎣⎡⎭⎫3-163ln 2,+∞.高考文科数学一轮复习大题篇----概率统计题型一 概率与统计的综合应用【例】某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图.记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (1)若n =19,求y 与x 的函数解析式;(2)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 【解】 (1)当x ≤19时,y =3 800;当x >19时,y =3 800+500(x -19)=500x -5 700. 所以y 与x 的函数解析式为y =⎩⎪⎨⎪⎧3 800,x ≤19,500x -5 700,x >19(x ∈N ). (2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n 的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1100(3 800×70+4 300×20+4 800×10)=4 000;若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1100(4 000×90+4 500×10)=4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【思维升华】概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性.【训练】某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.【解】(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030. (2)根据频率分布直方图,可知成绩不低于60分的频率为1-10×(0.005+0.010)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数为640×0.85=544.(3)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M ,则事件M 包含的基本事件有(A ,B ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共7个,故所求概率P (M )=715.题型二 概率与统计案例的综合应用【例】某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品 不喜欢甜品合计 南方学生 60 20 80 北方学生 10 10 20 合计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:P (χ2≥k 0) 0.100 0.050 0.010 k 02.7063.8416.635χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.【解】 (1)将2×2列联表中数据代入公式计算,得 χ2=100×60×10-20×10270×30×80×20=10021≈4.762. 由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)设这5名数学系的学生喜欢甜品的为a 1,a 2,不喜欢甜品的为b 1,b 2,b 3,从5名数学系的学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 2,b 3),(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)}. Ω由10个基本事件组成,且这些基本事件出现是等可能的.用A 表示“3人中至多有1人喜欢甜品”这一事件,则A ={(a 1,b 1,b 2),(a 1,b 2,b 3),(a 1,b 1,b 3),(a 2,b 1,b 2),(a 2,b 2,b 3),(a 2,b 1,b 3),(b 1,b 2,b 3)},A 由7个基本事件组成,因而P (A )=710.【思维升华】 统计以考查抽样方法、样本的频率分布、样本特征数的计算为主,概率以考查概率计算为主,往往和实际问题相结合,要注意理解实际问题的意义,使之和相应的概率计算对应起来,只有这样才能有效地解决问题.【训练】某校计划面向高一年级1 200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.(1)分别计算抽取的样本中男生、女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类的学生人数;(2)根据抽取的180名学生的调查结果,完成以下2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?选择自然科学类选择社会科学类合计 男生 女生 合计附:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2,其中n =a +b +c +d . P (χ2≥k 0)0.500 0.400 0.250 0.150 0.100 k 0 0.455 0.708 1.323 2.072 2.706 P (χ2≥k 0) 0.050 0.025 0.010 0.005 0.001 k 03.8415.0246.6357.87910.828【解】 (1)由条件知,抽取的男生有105人,女生有180-105=75(人).男生选择社会科学类的频率为45105=37,女生选择社会科学类的频率为4575=35.由题意,知男生总数为1 200×105180=700,女生总数为1 200×75180=500,所以估计选择社会科学类的人数为 700×37+500×35=600.(2)根据统计数据,可得列联表如下:选择自然科学类选择社会科学类总计 男生 60 45 105 女生 30 45 75 总计9090180则χ2=180×60×45-30×452105×75×90×90=367≈5.142 9>5.024, 所以在犯错误的概率不超过0.025的前提下能认为科类的选择与性别有关.专题突破训练1.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80的为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?P (χ2≥k 0) 0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828附:χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2.【解】 (1)由已知得,样本中有25周岁以上(含25周岁)组工人60名,25周岁以下组工人40名.所以样本中日平均生产件数不足60的工人中,25周岁以上(含25周岁)组工人有60×0.005×10=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40×0.005×10=2(人),记为B 1,B 2. 从中随机抽取2名工人,所有的可能结果共有10种,它们是(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上(含25周岁)组”中的生产能手有60×(0.02+0.005)×10=15(人),“25周岁以下组”中的生产能手有40×(0.032 5+0.005)×10=15(人), 据此可得2×2列联表如下:生产能手 非生产能手总计 25周岁以上(含25周岁)组 15 45 60 25周岁以下组15 25 40 总计3070100所以得χ2=nn 11n 22-n 12n 212n 1+n 2+n +1n +2=100×15×25-15×45260×40×30×70=2514≈1.79. 因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.2.某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东、西部各5个城市,得到观看该节目的人数的统计数据(单位:千人),并画出如下茎叶图,其中一个数字被污损.(1)求东部各城市观看该节目的观众的平均人数超过西部各城市观看该节目的观众的平均人数的概率;(2)该节目的播出极大地激发了观众对成语知识学习积累的热情,现从观看节目的观众中随机统计了4位观众学习成语知识的周均时间(单位:小时)与年龄(单位:岁),并绘制了如下对照表:根据表中数据,试求回归直线方程y ^=b ^x +a ^,并预测年龄为55岁的观众周均学习成语知识的时间. 参考公式:b ^=∑ni =1x i y i -n x y ∑ni =1x 2i -n x2,a ^ =y -b ^x .【解】 (1)设被污损的数字为a ,则a 有10种情况. 由88+89+90+91+92>83+83+87+90+a +99, 得a <8,∴有8种情况使得东部各城市观看该节目的观众的平均人数超过西部各城市观看该节目的观众的平均人数, 所求概率为810=45.(2)由表中数据,计算得x =35,y =3.5,b ^=∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=525-4×35×3.55 400-4×352=0.07,a ^=y -b ^ x =3.5-0.07×35=1.05. ∴y ^=0.07x +1.05.当x =55时,y ^=4.9.即预测年龄为55岁的观众周均学习成语知识的时间为4.9小时.3.长沙某购物中心在开业之后,为了解消费者购物金额的分布情况,在当月的电脑消费小票中随机抽取n 张进行统计,将结果分成6组,分别是[0,100),[100,200),[200,300),[300,400),[400,500),[500,600],制成如图所示的频率分布直方图(假设消费金额均在[0,600]元的区间内).(1)若按分层抽样的方法在消费金额为[400,600]元区间内抽取6张电脑小票,再从中任选2张,求这2张小票均来自[400,500)元区间的概率;(2)为做好五一劳动节期间的商场促销活动,策划人员设计了两种不同的促销方案. 方案一:全场商品打八折.方案二:全场购物满100元减20元,满300元减80元,满500元减120元,以上减免只取最高优惠,不重复减免,利用直方图的信息分析:哪种方案优惠力度更大,并说明理由(直方图中每个小组取中间值作为该组数据的替代值).【解】 (1)由题意知,在[400,500)元区间内抽4张,分别记为a ,b ,c ,d ,在[500,600]元区间内抽2张,分别记为E ,F ,设“2张小票均来自[400,500)元区间”为事件A ,从中任选2张,有以下选法:ab ,ac ,ad ,aE ,aF ,bc ,bd ,bE ,bF ,cd ,cE ,cF ,dE ,dF ,EF ,共15种.其中,2张小票均来自[400,500)元区间的有ab ,ac ,ad ,bc ,bd ,cd ,共6种, ∴P (A )=25.(2)方法一 由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05.方案一:购物的平均费用为0.8×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.8×275=220(元).方案二:购物的平均费用为50×0.1+130×0.2+230×0.25+270×0.3+370×0.1+430×0.05=228(元).∵220<228,∴方案一的优惠力度更大.方法二由频率分布直方图可知,各组频率依次为0.1,0.2,0.25,0.3,0.1,0.05,方案一:平均优惠金额为0.2×(50×0.1+150×0.2+250×0.25+350×0.3+450×0.1+550×0.05)=0.2×275=55(元).方案二:平均优惠金额为20×(0.2+0.25)+80×(0.3+0.1)+120×0.05=47(元).∵55>47,∴方案一的优惠力度更大.4.某校高三期中考试后,数学教师对本次全部数学成绩按1∶30进行分层抽样,随机抽取了20名学生的成绩为样本,成绩用茎叶图记录如图所示,但部分数据不小心丢失,同时得到如下表所示的频率分布表:(1)求表中a,b的值及成绩在[90,110)范围内的样本数,并估计这次考试全校高三学生数学成绩的及格率(成绩在[90,150]内为及格);(2)若从茎叶图中成绩在[100,130)范围内的样本中一次性抽取两个,求取出两个样本数字之差的绝对值大于10的概率.【解】(1)由茎叶图知成绩在[50,70)范围内的有2人,在[110,130)范围内的有3人,∴a=0.1,b=3.成绩在[70,90)内的样本数为0.25×20=5.∴成绩在[90,110)内的样本数为20-2-5-5=8.估计这次考试全校高三学生数学成绩的及格率为P=1-0.1-0.25=0.65.(2)所有可能的结果为(100,102),(100,106),(100,106),(100,116),(100,118),(100,128),(102,106),(102,106),(102,116),(102,118),(102,128),(106,106),(106,116),(106,118),(106,128),(106,116),(106,118),(106,128),(116,118),(116,128),(118,128),共21个,取出的两个样本中数字之差的绝对值大于10的结果为(100,116),(100,118),(100,128),(102,116),(102,118),(102,128),(106,118),(106,128),(106,118),(106,128),(116,128),共11个,∴P(A)=1121.0高考文科数学一轮复习大题篇----立体几何题型一平行、垂直关系的证明【例】如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.【证明】(1)∵三棱柱ABC-A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵AD⊂平面ABC,∴AD⊥CC1.又∵AD⊥DE,DE∩CC1=E,DE,CC1⊂平面BCC1B1,∴AD⊥平面BCC1B1.∵AD⊂平面ADE,∴平面ADE⊥平面BCC1B1.(2)∵△A1B1C1中,A1B1=A1C1,F为B1C1的中点,∴A1F⊥B1C1.∵CC1⊥平面A1B1C1,A1F⊂平面A1B1C1,∴A1F⊥CC1.又∵B1C1∩CC1=C1,B1C1,CC1⊂平面BCC1B1,∴A1F⊥平面BCC1B1.又∵AD⊥平面BCC1B1,∴A1F∥AD.∵A1F⊄平面ADE,AD⊂平面ADE,∴直线A1F∥平面ADE.【思维升华】(1)平行问题的转化利用线线平行、线面平行、面面平行的相互转化解决平行关系的判定问题时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而应用性质定理时,其顺序正好相反.在实际的解题过程中,判定定理和性质定理一般要相互结合,灵活运用.(2)垂直问题的转化在空间垂直关系中,线面垂直是核心,已知线面垂直,既可为证明线线垂直提供依据,又可为利用判定定理证明面面垂直作好铺垫.应用面面垂直的性质定理时,一般需作辅助线,基本作法是过其中一个平面内一点作交线的垂线,从而把面面垂直问题转化为线面垂直问题,进而可转化为线线垂直问题.【训练】】如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面P AD⊥平面ABCD,P A ⊥PD,P A=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面P AB⊥平面PCD;(3)求证:EF∥平面PCD.【证明】(1)因为P A=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面P AD⊥平面ABCD,平面P AD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面P AD,又PD ⊂平面P AD , 所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,P A ,AB ⊂平面P AB , 所以PD ⊥平面P AB . 又PD ⊂平面PCD , 所以平面P AB ⊥平面PCD .(3)如图,取PC 的中点G ,连接FG ,DG .因为F ,G 分别为PB ,PC 的中点, 所以FG ∥BC ,FG =12BC ,因为四边形ABCD 为矩形,且E 为AD 的中点, 所以DE ∥BC ,DE =12BC .所以DE ∥FG ,DE =FG .所以四边形DEFG 为平行四边形, 所以EF ∥DG .又因为EF ⊄平面PCD ,DG ⊂平面PCD , 所以EF ∥平面PCD .题型二 立体几何中的计算问题【例】如图,在多面体ABCA 1B 1C 1中,四边形ABB 1A 1是正方形,△A 1CB 是等边三角形,AC =AB =1,B 1C 1∥BC ,BC =2B 1C 1.(1)求证:AB 1∥平面A 1C 1C ; (2)求多面体ABCA 1B 1C 1的体积.(1)【证明】 如图,取BC 的中点D ,连接AD ,B 1D ,C 1D , ∵B 1C 1∥BC ,BC =2B 1C 1,∴BD ∥B 1C 1,BD =B 1C 1,CD ∥B 1C 1,CD =B 1C 1, ∴四边形BDC 1B 1,CDB 1C 1是平行四边形, ∴C 1D ∥B 1B ,C 1D =B 1B ,CC 1∥B 1D , 又B 1D ⊄平面A 1C 1C ,C 1C ⊂平面A 1C 1C , ∴B 1D ∥平面A 1C 1C .在正方形ABB 1A 1中,BB 1∥AA 1,BB 1=AA 1, ∴C 1D ∥AA 1,C 1D =AA 1, ∴四边形ADC 1A 1为平行四边形, ∴AD ∥A 1C 1.又AD ⊄平面A 1C 1C ,A 1C 1⊂平面A 1C 1C , ∴AD ∥平面A 1C 1C ,∵B 1D ∩AD =D ,B 1D ,AD ⊂平面ADB 1, ∴平面ADB 1∥平面A 1C 1C ,又AB 1⊂平面ADB 1,∴AB 1∥平面A 1C 1C . (2)【解】 在正方形ABB 1A 1中,A 1B =2, ∵△A 1BC 是等边三角形,∴A 1C =BC =2,∴AC 2+AA 21=A 1C 2,AB 2+AC 2=BC 2,∴AA 1⊥AC ,AC ⊥AB .又AA 1⊥AB ,∴AA 1⊥平面ABC , ∴AA 1⊥CD ,易得CD ⊥AD ,又AD ∩AA 1=A ,∴CD ⊥平面ADC 1A 1.易知多面体ABCA 1B 1C 1是由直三棱柱ABD -A 1B 1C 1和四棱锥C -ADC 1A 1组成的, 直三棱柱ABD -A 1B 1C 1的体积为12×⎝⎛⎭⎫12×1×1×1=14,四棱锥C -ADC 1A 1的体积为13×22×1×22=16,∴多面体ABCA 1B 1C 1的体积为14+16=512.【思维升华】 (1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【训练】如图,已知多面体P ABCDE 的底面ABCD 是边长为2的菱形,P A ⊥底面ABCD ,ED ∥P A ,且P A =2ED =2.(1)证明:平面P AC ⊥平面PCE ;(2)若∠ABC =60°,求三棱锥P -ACE 的体积. (1)【证明】 如图,连接BD ,交AC 于点O , 设PC 的中点为F ,连接OF ,EF .易知O 为AC 的中点, 所以OF ∥P A ,且OF =12P A .因为DE ∥P A ,且DE =12P A ,所以OF ∥DE ,且OF =DE , 所以四边形OFED 为平行四边形, 所以OD ∥EF ,即BD ∥EF .因为P A⊥平面ABCD,BD⊂平面ABCD,所以P A⊥BD.因为四边形ABCD是菱形,所以BD⊥AC.因为P A∩AC=A,P A,AC⊂平面P AC,所以BD⊥平面P AC.因为BD∥EF,所以EF⊥平面P AC.因为EF⊂平面PCE,所以平面P AC⊥平面PCE.(2)【解】因为∠ABC=60°,所以△ABC是等边三角形,所以AC=2.又P A⊥平面ABCD,AC⊂平面ABCD,所以P A⊥AC.所以S△P AC=12P A×AC=2.因为EF⊥平面P AC,所以EF是三棱锥E-P AC的高.易知EF=DO=BO=3,所以三棱锥P-ACE的体积V三棱锥P-ACE=V三棱锥E-P AC=13S△P AC×EF=13×2×3=233.题型三立体几何中的探索性问题【例】如图,梯形ABCD中,∠BAD=∠ADC=90°,CD=2,AD=AB=1,四边形BDEF 为正方形,且平面BDEF⊥平面ABCD.(1)求证:DF⊥CE;(2)若AC与BD相交于点O,那么在棱AE上是否存在点G,使得平面OBG∥平面EFC?并说明理由.(1)【证明】连接EB.∵在梯形ABCD中,∠BAD=∠ADC=90°,AB=AD=1,DC=2,∴BD=2,BC=2,∴BD2+BC2=CD2,∴BC ⊥BD .又∵平面BDEF ⊥平面ABCD ,平面BDEF ∩平面ABCD =BD ,BC ⊂平面ABCD , ∴BC ⊥平面BDEF ,∴BC ⊥DF .又∵正方形BDEF 中,DF ⊥EB ,且EB ,BC ⊂平面BCE ,EB ∩BC =B , ∴DF ⊥平面BCE .又∵CE ⊂平面BCE ,∴DF ⊥CE .(2)【解】 在棱AE 上存在点G ,使得平面OBG ∥平面EFC ,且AG GE =12.理由如下:连接OG ,BG ,在梯形ABCD 中,∠BAD =∠ADC =90°,AB =1,DC =2, ∴AB ∥DC ,∴AO OC =AB DC =12.又∵AG GE =12,∴OG ∥CE .又∵正方形BDEF 中,EF ∥OB ,且OB ,OG ⊄平面EFC ,EF ,CE ⊂平面EFC , ∴OB ∥平面EFC ,OG ∥平面EFC . 又∵OB ∩OG =O ,且OB ,OG ⊂平面OBG , ∴平面OBG ∥平面EFC .【思维升华】 对于线面关系中的存在性问题,首先假设存在,然后在该假设条件下,利用线面关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论则否定假设.【训练】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC .(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.。

文科数学高考真题分类汇编 不等式综合应用

专题七不等式第二十一讲不等式综合应用2019年 1.(2019 天津文13)设0x >,0y >,24x y +=,则 (1)(21)x y xy++的最小值为__________.2010-2018年一、选择题1.(2018北京)设集合{(,)|1,4,2},A x y x y ax y x ay =−+>−≥≤则 A .对任意实数a , (2,1)A ∈ B .对任意实数a , (2,1)A ∉C .当且仅当0a <时, (2,1)A ∉D .当且仅当32a ≤时, (2,1)A ∉ 2.(2018)浙江已知1a ,2a ,3a ,4a 成等比数列,且 1234123 ln()a a a a a a a +++=++.若11a >,则A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >32017 .(天津)已知函数 ||2,1,()2 , 1.x x f x x x x+<⎧⎪=⎨+⎪⎩≥设a ∈R ,若关于x 的不等式 ()||2x f x a +≥在R 上恒成立,则a 的取值范围是A . [2,2]−B . [23,2]−C . [2,23]−D . [23,23]−4.(2015 福建)若直线 1(0,0)x y a b a b+=>>过点(1,1),则a b +的最小值等于 A 2 B 3 C 4 D 5. . ..52015 .( 湖南)若实数,a b 满足12ab a b+=,则ab 的最小值为 A .2 B 2 C 2..2 D 4.62014 .( 重庆)若 b a ab b a +=+则)(,log 43log 24的最小值是A . 326+B . 327+C . 346+D . 347+7.(2013 福建)若 122=+y x ,则y x +的取值范围是A .]2,0[B .]0,2[−C .),2[+∞− D . ]2,(−−∞ 82013.(山东)设正实数,,x y z 满足22 340x xy y z −+−=.则当xy z取得最大值时, 212x y z+−的最大值为 A 0 B 1 C . . .94D 3 . 9.(2013山东)设正实数z y x ,,满足04322 =−+−z y xy x ,则当z xy取得最大值时,2x y z +−的最大值为A 0B ..98C 2D ..9410.( 2012浙江)若正数,x y 满足35x y xy +=,则34x y +的最小值是A .245B .285C 5D 6 .. 11.(2012 陕西)小王从甲地到乙地的时速分别为a 和b (a b <),其全程的平均时速为v ,则A .a v ab <<B .v =abC .ab <v <2a b + D .v =2a b + 12.(2012 湖南)已知两条直线1l :y m = 和2l :y =821m +(0m >),1l 与函数2log y x =的图像从左至右相交于点,A B ,2l 与函数2log y x =的图像从左至右相交于,C D .记线段AC 和BD 在x 轴上的投影长度分别为,a b ,当m 变化时,b a 的最小值为 A . 162 B.82 C.384 D. 34413.( 2011陕西)设 0a b <<,则下列不等式中正确的是A .2a b a b ab +<<< B .2a b a ab b + <<< C .2a b a ab b + <<< D .2a b ab a b + <<< 14.( 2011上海)若,a b R ∈,且0ab >,则下列不等式中,恒成立的是A .222a b ab +>B .2a b ab +≥C . 112a b ab+> D .2b a a b +≥ 二、填空题15.(2018)天津已知,a b ∈R ,且 360a b −+=,则128a b+ 的最小值为. 16.(2018天津)已知a ∈R ,函数22 220() 220x x a x f x x x a x ⎧ ++−⎪=⎨−+−>⎪⎩ ,≤, ,.若对任意 [3,)x ∈−+∞, ()||f x x ≤恒成立,则a 的取值范围是____.17.( 2017天津)若,a b ∈R ,0ab >,则4441a b ab++ 的最小值为. 18.( 2017山东)若直线 1(00)x y a b a b+=>,>过点(1,2),则2a b +的最小值为. 192017 .(江苏)某公司一年购买某种货物吨,每次购买600 x 吨,运费为万元6 /次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费之和最小,则x 的值是.20.(2017北京)能够说明“设a ,b ,c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数a ,b ,c 的值依次为____________________.21.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+−+ 在区间,[14]上的最大值是5,则a 的取值范围是.22.(2017 江苏)在平面直角坐标系xOy 中, (12,0)A −,(0,6)B ,点P 在圆O :2250x y +=上,若20PA PB ⋅≤,则点P 的横坐标的取值范围是. 23.( 2015重庆)设,0a b >,5a b +=,则 1++3a b +的最大值为________.24.(2015)山东定义运算“⊗”:22x y x y xy−⊗=(,x y ∈R ,0xy ≠).当0x >, 0y >时, (2)x y y x ⊗+⊗的最小值为.25.( 2014浙江)已知实数,,a b c 满足0a b c ++=, 2221a b c ++=,则a 的最大值是__;26.(2014 辽宁)对于0c > ,当非零实数,a b 满足22 420aab b c −+−=,且使 |2|a b +最大时, 124a b c++的最小值为. 27.(2014 辽宁)对于0c >,当非零实数a ,b 满足224240a ab b c −+−=,且使 |2|a b +最大时, 345a b c−+的最小值为. 28.(2014 湖北)某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆小时)与车流速度/v (假设车辆以相同速度行驶,单v 位:米秒)、平均车长(单位:米)有关,其公式为/l 的值276000 1820v F v v l=++. ()如果不限定车型,Ⅰ 6.05l = ,则最大车流量为辆小时; /()如果限定车型,Ⅱ5l =,则最大车流量比(Ⅰ)中的最大车流量辆.增加 /小时29.( 2013天津)设a b + = 2,b >0,时, 则当a = 1|| 2||a ab +取得最小值. 30.( 2013四川)已知函数 ()4(0,0)a f x x x a x=+>>在3x =时取得最小值,则a =__.31.( 2011浙江)若实数,x y 满足22 1x y xy ++=,则x y +的最大值是____ . 32.( 2011湖南)设,x y R ∈,则222211 ()(4)x y y x++ 的最小值为. 33.( 2010安徽)若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是写出所有正确命题的编号. ()①1ab ≤;② 2a b +≤;③ 222a b +≥ ; ④333a b +≥;⑤ 112a b +≥.。

(完整版)高考文科数学重点题型(含解析).doc

高考最有可能考的50 题( 数学文课标版 )(30 道选择题 +20 道非选择题)一.选择题( 30 道)1.集合M { x | x2 2x 3 0} , N { x | 2x 2 0} ,则M N 等于A.( 1, 1) B .(1, 3) C. (0, 1) D. ( 1, 0)2.知全集 U=R,集合Ax | y 1 x ,集合B x |0 <x<2 ,则 (C U A) B A.1,) B. 1,C.0,+ ) D.0,+3.设a是实数,且 a 1 i是实数,则 a1 i 21C. 3A.1B. D.22 24.i是虚数单位,复数z 1 i ,则 z2 2zA.1 i B.1 i C.1 i D.1 i5.“ a=-1 ”是“直线a2x y 6 0 与直线4x (a 3)y 9 0 互相垂直”的A. 充分不必要条件B. 必要不充分条件C.充要条件 C. 既不充分也不必要条件6.已知命题p:“sin sin,且cos cos”,命题q:“”。

则命题p是命题q的A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分与不必要条件7.已知a R ,则“ a 2 ”是“a22a ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分也非必要条件8.执行如图所示的程序框图,若输出的结果是9,则判断框内m的取值范围是(A) (42 ,56](B) (56 ,72](C) (72 ,90](D) (42 ,90)9.如图所示的程序框图,若输出的S 是 30 ,则①可以为A.n 2? B . n 3?C.n 4? D . n 5?10.在直角坐标平面内,已知函数 f (x) log a ( x 2) 3(a 0 且 a 1) 的图像恒过定点P ,若角的终边过点 P ,则cos2 sin 2 的值等于()A.1 1 7D.7 2B . C.102 1011.已知点M, N 是曲线y sin x 与曲线y c os x 的两个不同的交点,则|MN| 的最小值为()A. 1B.2C.3D. 2.如图所示为函数f x 2sin x ( 0,0)的y12A2部分图像 , 其中A, B两点之间的距离为5,那么 f 1 ()O x2BA . 2B. 3 C .3D. 213. 设向量 a 、 b 满足 : a1 , b2 , a a b0 , 则 a 与 b 的夹角是() A . 30B. 60C. 90D. 12014. 如图, D 、 E 、 F 分别是 uuur uuur) DABC 的边 AB 、 BC 、CA 的中点,则 AF DB (uuur B . FC A . FDC . FED . BE15.一个体积为 12 3的正三棱柱的三视图如图所示,则该三棱柱的侧视图的面积为 ( )(A ) 6 3(B ) 8(C ) 8 3(D ) 1216. A, B,C, D 是同一球面上的四个点,其中 ABC 是正三角形, AD平面ABC , AD 2 AB 6 则该球的体积为()A . 32 3B . 48C .64 3D .16 317.已知集合A xxa 0 ,若1 A ,则实数 a 取值范围为()x aA ( , 1) [1, )B [-1,1]C ( , 1] [1,) D (-1,1]3 x3 y18.设 Mx yxy(其中 0 xy ),则 M , N , P 大小关系为(, N3 , P 3)2A . M N PB . NP MC . P M ND . P N M19. 若 a 是从集合 {0 ,1, 2, 3} 中随机抽取的一个数,b 是从集合 {0 , 1,2} 中随机抽取的一个数,则关于 x 的方程 x22ax b 2 0 有实根的概率是() A .5B .2C .7 D .36312420. 右图是 1, 2 两组各 7 名同学体重(单位: kg )数据的茎叶图.设1, 2 两组数据的平均数依次为 x 1 和 x 2 ,标准差依次为 s 1 和 s 2 ,那么( )(注:标准差 s1 [( x 1 x)2 ( x 2 x)2 L( x n x)2 ] ,n其中 x 为 x 1 , x 2 , L , x n 的平均数)(A )x 1 x 2 , s s( )x 1 x 2 , s s12B 12(C )x 1 x 2 , s s( ) x 1x 2, ss12D 1221.设 S 是等差数列a n 的前 n 项和,若 S 4 10, S 5 15,S 7 21 , 则 a 7 的取值区间为 ( )nA. (,7]B. [3,4]C. [4,7]D. [3,7]22. 若等比数列 {a n } 的前 n 项和 S a 3n2 ,则a 2nA.4B.12C.24D.3623. 抛物线 y 2= 2px ( p >0)的焦点为 F ,点 A 、B 在此抛物线上,且∠ AFB =90°,弦 AB的| MM ′| 中点 M 在其准线上的射影为 M ′,则 | AB | 的最大值为()2 3(A ) 2 ( B ) 2( C ) 1(D ) 324.已知双曲线2y 2 1 的焦点为 F ,F Muuuur uuuurx,点 在双曲线上,且1 2,则点2MF MF 0M 到 x 轴的距离为()A . 3B. 2 3C .4D .53 3325.若直线 x y 2 被 e C : ( x a)2y 24 所截得的弦长为 2 2 ,则实数 a 的值为()A. 1或 3B.1或 3C.2 或 6D.0 或 4( 1 x 8( x 0)3 )26. 设函数 f (x ),若 f ( a )> 1,则实数 a 的取值范围是( )x 2x 1(x0)A. ( 2,1)B. (, 2) ∪ (1,)C.( 1,+∞) D. ( , 1) ∪( 0,+∞)27.定义在 错误 ! 未找到引用源。

高考文科数学真题集合(含解析)

九年(2010-2018年)高考真题文科数学精选(含解析)专题一 集合与常用逻辑用语第一讲 集合一、选择题1.(2018全国卷Ⅰ)已知集合{0,2}=A ,{21012}=--,,,,B ,则A B =A .{0,2}B .{1,2}C .{0}D .{21012}--,,,, 2.(2018浙江)已知全集{1,2,3,4,5}U =,{1,3}A =,则=U A A .∅ B .{1,3} C .{2,4,5} D .{1,2,3,4,5}3.(2018全国卷Ⅱ)已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB = A .{3} B .{5}C .{3,5}D .{}1,2,3,4,5,74.(2018北京)已知集合{|||2}A x x =<,{2,0,1,2}B =-,则AB = A .{0,1} B .{–1,0,1}C .{–2,0,1,2}D .{–1,0,1,2}5.(2018全国卷Ⅲ)已知集合{|10}A x x =-≥,{0,1,2}B =,则AB = A .{0} B .{1}C .{1,2}D .{0,1,2}6.(2018天津)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}7.(2017新课标Ⅰ)已知集合{|2}A x x =<,{320}B x =->,则A .3{|}2A B x x =< B .A B =∅ C .3{|}2A B x x =< D .A B =R 8.(2017新课标Ⅱ)设集合{1,2,3}A =,{2,3,4}B =则A B =A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}9.(2017新课标Ⅲ)已知集合{1,2,3,4}A =,{2,4,6,8}B =,则AB 中元素的个数为A .1B .2C .3D .410.(2017天津)设集合{1,2,6}A =,{2,4}B =,{1,2,3,4}C =,则()A B C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{1,2,3,4,6}11.(2017山东)设集合{}11M x x =-<,{}2N x x =<,则M N = A .()1,1- B .()1,2- C .()0,2 D .()1,212.(2017北京)已知U =R ,集合{|22}A x x x =<->或,则U A = A .(2,2)- B .(,2)(2,)-∞-+∞ C .[2,2]- D .(,2][2,)-∞-+∞13.(2017浙江)已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q = A .(1,2)- B .(0,1) C .(1,0)- D .(1,2)14.(2016全国I 卷)设集合{1,3,5,7}A =,{|25}B x x =≤≤,则=A BA .{1,3}B .{3,5}C .{5,7}D .{1,7}15.(2016全国Ⅱ卷)已知集合{123}A =,,,2{|9}B x x =<,则A B =A .{210123}--,,,,,B .{21012}--,,,,C .{123},,D .{12},16.(2016全国Ⅲ)设集合{0,2,4,6,8,10},{4,8}A B ==,则A B =A .{48},B .{026},,C .{02610},,,D .{0246810},,,,,17.(2015新课标2)已知集合}21|{<<-=x x A ,}30|{<<=x x B ,则A B =A .)3,1(-B .)0,1(-C .)2,0(D .)3,2( 18.(2015新课标1)已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为A .5B .4C .3D .219.(2015北京)若集合{|52}A x x =-<<,{|33}B x x =-<<,则A B =A .{|32}x x -<<B .{|52}x x -<<C .{|33}x x -<<D .{|53}x x -<< 20.(2015天津)已知全集{1,2,3,4,5,6}U =,集合{}2,3,5A =,集合{1,3,4,6}B =,则集合U A B =A .{3}B .{2,5}C .{1,4,6}D .{2,3,5}21.(2015陕西)设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N = A .[0,1] B .(0,1] C .[0,1) D .(-∞,1]22.(2015山东)已知集合{}24A x x =<<,{}(1)(3)0B x x x =--<,则AB = A .()1,3 B .()1,4C .()2,3D .()2,423.(2015福建)若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于 A .{}0 B .{}1 C .{}0,1,2 D .{}0,124.(2015广东)若集合{}1,1M =-,{}2,1,0N =-,则M N =A .{}0,1-B .{}1C .{}0D .{}1,1-25.(2015湖北)已知集合22{(,)|1,,}A x y x y x y Z =+∈≤,{(,)|||2,B x y x =≤ ||2,,}y x y Z ∈≤,定义集合12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .3026.(2014新课标)已知集合A ={x |2230x x --≥},B ={x |-2≤x <2},则A B = A .[-2, -1] B .[-1,1] C .[-1,2) D .[1,2)27.(2014新课标)设集合M ={0,1,2},N ={}2|320x x x -+≤,则M N = A .{1} B .{2} C .{0,1} D .{1,2}28.(2014新课标)已知集合A ={-2,0,2},B ={x |2x -x -20=},则A B =A . ∅B .{}2C .{}0D .{}2-29.(2014山东)设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA . [0,2]B .(1,3)C . [1,3)D . (1,4)30.(2014山东)设集合2{|20},{|14}A x x x B x x =-<=≤≤,则AB =A .(0,2]B .(1,2)C .[1,2)D .(1,4)31.(2014广东)已知集合{1,0,1}M =-,{0,1,2}N =,则MN = A .{0,1} B .{1,0,2}- C .{1,0,1,2}- D .{1,0,1}-32.(2014福建)若集合{|24}P x x =<≤,{|3}Q x x =≥,则P Q 等于A .}{34x x ≤<B .}{34x x <<C .}{23x x ≤<D .}{23x x ≤≤33.(2014浙江)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则U A =A .∅B . }2{C . }5{D . }5,2{34.(2014北京)已知集合2{|20},{0,1,2}A x x x B =-==,则AB = A .{0} B .{0,1}C .{0,2}D .{0,1,2}35.(2014湖南)已知集合{|2},{|13}A x x B x x =>=<<,则A B =A .{|2}x x >B .{|1}x x >C .{|23}x x <<D .{|13}x x <<36.(2014陕西)已知集合2{|0},{|1,}M x x N x x x R =≥=<∈,则MN = A .[0,1] B .[0,1) C .(0,1] D .(0,1)37.(2014江西)设全集为R ,集合2{|90},{|15}A x x B x x =-<=-<≤, 则()R A B =A .(3,0)-B .(3,1)--C .(3,1]--D .(3,3)-38.(2014辽宁)已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U A B =A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<39.(2014四川)已知集合2{|20}A x x x =--≤,集合B 为整数集,则AB = A .{1,0,1,2}- B .{2,1,0,1}--C .{0,1}D .{1,0}-40.(2014湖北)已知全集{1,2,3,4,5,6,7}U =,集合{1,3,5,6}A =,则U A = A .{1,3,5,6} B .{2,3,7} C .{2,4,7} D . {2,5,7}41.(2014湖北)设U 为全集,B A ,是集合,则“存在集合C 使得A C ⊆,U B C ⊆”是“∅=B A ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件42.(2013新课标1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则A .A ∩B =∅ B .A ∪B =RC .B ⊆AD .A ⊆B 43.(2013新课标1)已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则AB =A .{}14,B .{}23,C .{}916,D .{}12, 44.(2013新课标2)已知集合(){}2|14,M x x x R =-<∈,{}1,0,1,2,3N =-, 则M N =A .{}0,1,2B .{}1,0,1,2- C .{}1,0,2,3- D .{}0,1,2,3 45.(2013新课标2)已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN = A .{2,1,0,1}-- B .{3,2,1,0}--- C .{2,1,0}-- D .{3,2,1}---46.(2013山东)已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =,{1,2}B =,则U AB = A .{3} B .{4}C .{3,4}D .∅ 47.(2013山东)已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .948.(2013安徽)已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=A .{}2,1--B .{}2-C .{}1,0,1-D .{}0,149.(2013辽宁)已知集合{}{}4|0log 1,|2A x x B x x A B =<<=≤=,则A .()01,B .(]02,C .()1,2D .(]12, 50.(2013北京)已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-51.(2013广东)设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈, 则S T =A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-52.(2013广东)设整数4n ≥,集合{}1,2,3,,X n =,令集合{(,,)|,,S x y z x y z X =∈, 且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉53.(2013陕西)设全集为R , 函数2()1f x x =-的定义域为M , 则C M R 为A . [-1,1]B . (-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-54.(2013江西)若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或4 55.(2013湖北)已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或 56.(2012广东)设集合{1,2,3,4,5,6},{1,3,5}U M ==;则U C M =A .{,,}246B .{1,3,5}C .{,,}124D .U57.(2012浙江)设全集{}1,2,3,4,5,6U =,设集合{}1,2,3,4P =,{}3,4,5Q =, 则U P Q ⋂=A .{}1,2,3,4,6B .{}1,2,3,4,5C .{}1,2,5D .{}1,258.(2012福建)已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是A .N M ⊆B .M N M =C .MN N = D .{2}M N = 59.(2012新课标)已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .AB B .B AC .A B =D .A B =∅60.(2012安徽)设集合A ={|3213x x --},集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=A .(1,2)B .[1,2]C .[ 1,2)D .(1,2 ]61.(2012江西)若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为A .5B .4C .3D .262.(2011浙江)若{|1},{|1}P x x Q x x =<=>-,则A .P Q ⊆B .Q P ⊆C .R C P Q ⊆D .R Q C P ⊆63.(2011新课标)已知集合M ={0,1,2,3,4},N ={1,3,5},P M N =⋂,则P 的子集共有A .2个B .4个C .6个D .8个64.(2011北京)已知集合P =2{|1}x x ≤,{}M a =.若PM P =,则a 的取值范围是A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1][1,+∞) 65.(2011江西)若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂66.(2011湖南)设全集{1,2,3,4,5}U M N =⋃=,{2,4}U M C N ⋂=,则N =A .{1,2,3}B .{1,3,5}C .{1,4,5}D .{2,3,4}67.(2011广东)已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .168.(2011福建)若集合M ={-1,0,1},N ={0,1,2},则M ∩N 等于A .{0,1}B .{-1,0,1}C .{0,1,2}D .{-1,0,1,2}69.(2011陕西)设集合{}22||cos sin |,M y y x x x R ==-∈,1{|||2,N x x i =-<}i x R ∈为虚数单位,,则M N ⋂为A .(0,1)B .(0,1]C .[0,1)D .[0,1]70.(2011辽宁)已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N I M =∅,则=N MA .MB .NC .ID .∅ 71.(2010湖南)已知集合{}1,2,3M =,{}2,3,4N =,则A .M N ⊆B .N M ⊆C .{}2,3M N =D .{}1,4M N =72.(2010陕西)集合A ={}|12x x -≤≤,B ={}|1x x <,则()R A B ⋂=A .{}|1x x >B .{}|1x x ≥C .{}|12x x <≤D .{}|12x x ≤≤73.(2010浙江)设P ={x ︱x <4},Q ={x ︱2x <4},则A .P Q ⊆B .Q P ⊆C .R P Q ⊆D .R Q P ⊆ 74.(2010安徽)若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =RA .2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭B .2,2⎛⎫+∞ ⎪ ⎪⎝⎭C .2(,0][,)2-∞+∞D .2[,)2+∞ 75.(2010辽宁)已知,A B 均为集合U ={1,3,5,7,9}的子集,且{3}AB =,{9}U B A =,则A =A .{1,3}B .{3,7,9}C .{3,5,9}D .{3,9}二、填空题 76.(2018江苏)已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B = .77.(2017江苏)已知集合{1,2}A =,2{,3B a a =+},若{1}AB =,则实数a 的 值为____.78.(2015江苏)已知集合{}123A =,,,{}245B =,,,则集合A B 中元素的个数为 .79.(2015湖南)已知集合U ={}1,2,3,4,A ={}1,3,B ={}1,3,4,则A (U B )= .80.(2014江苏)已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A .81.(2014重庆)设全集{|110}U n N n =∈≤≤,{1,2,3,5,8}A =,{1,3,5,7,9}B =, 则()U A B ⋂= .82.(2014福建)若集合},4,3,2,1{},,,{=d c b a 且下列四个关系:①1=a ;②1≠b ; ③2=c ;④4≠d 有且只有一个是正确的,则符合条件的有序数组),,,(d c b a 的个数是_________.83.(2013湖南)已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()U A B = .84.(2010湖南)若规定{}1210,,...,E a a a =的子集{}12,,...,n i i i a a a 为E 的第k 个子集,其中k =12111222n i i i ---++⋅⋅⋅+,则(1){}1,3,a a 是E 的第____个子集;(2)E 的第211个子集是_______.85.(2010江苏)设集合{1,1,3}A =-,2{2,4}B a a =++,{3}AB =,则实数a =__.专题一 集合与常用逻辑用语第一讲 集合答案部分1.A 【解析】由题意{0,2}A B =,故选A .2.C 【解析】因为{1,2,3,4,5}U =,{1,3}A =,所以=U A {2,4,5}.故选C .3.C 【解析】因为{}1,3,5,7A =,{}2,3,4,5B =,所以{3,5}A B =,故选C . 4.A 【解析】{|||2}(2,2)A x x =<=-,{2,0,1,2}B =-,∴{0,1}AB =,故选A . 5.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}AB =.故选C . 6.C 【解析】由题意{1,0,1,2,3,4}A B =-,∴(){1,0,1}A B C =-,故选C .7.A 【解析】∵3{|}2B x x =<,∴3{|}2AB x x =<, 选A . 8.A 【解析】由并集的概念可知,{1,2,3,4}AB =,选A . 9.B 【解析】由集合交集的定义{2,4}AB =,选B . 10.B 【解析】∵{1,2,4,6}A B =,(){1,2,4}A BC =,选B .11.C 【解析】{|02}M x x =<<,所以{|02}MN x x =<<,选C . 12.C 【解析】{|22}U A x x =-≤≤,选C .13.A 【解析】由题意可知{|12}P Q x x =-<<,选A .14.B 【解析】由题意得,{1,3,5,7}A =,{|25}B x x =,则{3,5}A B =.选B . 15.D 【解析】易知{|33}B x x =-<<,又{1,2,3}A =,所以{1,2}AB =故选D . 16.C 【解析】由补集的概念,得{0,2,6,10}A B =,故选C .17.A 【解析】∵(1,2)A =-,(0,3)B =,∴(1,3)A B =-.18.D 【解析】集合{|32,}A x x n n N ==+∈,当0n =时,322n +=,当1n =时, 325n +=,当2n =时,328n +=,当3n =时,3211n +=,当4n =时, 3214n +=,∵{6,8,10,12,14}B =,∴A B 中元素的个数为2,选D .19.A 【解析】{|32}A B x x =-<<. 20.B 【解析】{2,5}UB =,∴UAB {2,5}.21.A 【解析】∵{0,1}M =,{|01}N x x ≤=<,∴M N =[0,1].22.C 【解析】因为{|13}B x x ,所以(2,3)A B =,故选C . 23.D 【解析】∵{0,1}M N .24.B 【解析】{1}MN =.25.C 【解析】由题意知,22{(,)1,,}{(1,0),(1,0),(0,1),(0,1)}A x y x y x y =+≤∈=--Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,所以由新定义集合A B ⊕可知,111,0x y =±= 或110,1x y ==±.当111,0x y =±=时,123,2,1,0,1,2,3x x +=---, 122,1,0,1,2y y +=--,所以此时A B ⊕中元素的个数有:7535⨯=个;当110,1x y ==±时,122,1,0,1,2x x +=--,123,2,1,0,1,2,3y y +=---,这种情形下和第一种情况下除12y y +的值取3-或3外均相同,即此时有5210⨯=, 由分类计数原理知,A B ⊕中元素的个数为351045+=个,故应选C . 26.A 【解析】{}|13A x x x =-≤或≥,故A B =[-2, -1].27.D 【解析】{}|12N x x =≤≤,∴M N ={1,2}. 28.B 【解析】∵{}1,2B =-,∴AB ={}2.29.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =.∴[1,3)A B =.30.C 【解析】∵(0,2)A =,[1,4]B =,所以AB =[1,2).31.C 【解析】{}{}{}1,0,10,1,21,0,1,2M N ⋃=-⋃=-,选C . 32.A 【解析】PQ =}{34x x ≤<.33.B 【解析】由题意知{|2}U x N x =∈≥,{|5}A x N x =∈≥,所以UA ={|25}x N x ∈<≤,选B .34.C 【解析】∵{}{}2|200,2A x x x =-==.∴A B =={}0,2.35.C 【解析】AB ={|23}x x <<.36.B 【解析】∵21x <,∴11x -<<,∴M N ={}|01x x <≤,故选B .37.C 【解析】{}|3,3A x x =-<,{}|15RB x x x =->≤或,∴()R AB ={}|31x x --≤≤.38.D 【解析】由已知得,{=0AB x x ≤或}1x ≥,故()UA B ={|01}x x <<.39.A 【解析】{|12}A x x =-≤≤,Z B =,故A B ={1,0,1,2}-.40.C 【解析】{}2,4,7UA =.41.C 【解析】“存在集合C 使得,UA CBC ⊆⊆”⇔“∅=B A ”,选C .42.B 【解析】A =(-∞,0)∪(2,+∞),∴A B =R ,故选B .43.A 【解析】{}1,4,9,16B =,∴{}1,4A B =. 44.A 【解析】∵(1,3)M =-,∴{}0,1,2MN =.45.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C .46.A 【解析】由题意{}1,2,3AB =,且{1,2}B =,所以A 中必有3,没有4,{}3,4UB =,故UA B ={}3.47.C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个.48.A 【解析】A :1->x ,{|1}RA x x =-≤,(){1,2}R A B =--,所以答案选A49.D 【解析】由集合A ,14x <<;所以(1,2]A B =.50.B 【解析】集合B 中含-1,0,故{}1,0AB =-.51.A 【解析】∵{}2,0S =-,{}0,2T =,∴ST ={}0.52.B 【解析】特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B .如果利用直接法:因为(),,x y z S ∈,(),,z w x S ∈,所以x y z <<…①,y z x <<…②,z x y <<…③三个式子中恰有一个成立;z w x <<…④,w x z <<…⑤,x z w <<…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时w x y z <<<,于是(),,y z w S ∈,(),,x y w S ∈;第二种:①⑥成立, 此时x y z w <<<,于是(),,y z w S ∈,(),,x y w S ∈;第三种:②④成立, 此时y z w x <<<,于是(),,y z w S ∈,(),,x y w S ∈;第四种:③④成立, 此时z w x y <<<,于是(),,y z w S ∈,(),,x y w S ∈. 综合上述四种情况,可得(),,y z w S ∈,(),,x y w S ∈. 53.D 【解析】()f x 的定义域为M =[-1,1],故RM =(,1)(1,)-∞-⋃+∞,选D54.A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =. 55.C 【解析】[)0,A =+∞,[]2,4B =,∴[0,2)(4,)RA B =+∞.56.A 【解析】UM ={,,}246.57.D 【解析】{}3,4,5Q =,∴U Q ={}1,2,6,∴UPQ ={}1,2.58.D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵MN ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D .59.B 【解析】A =(-1,2),故B ⊂≠A ,故选B .60.D 【解析】{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B AB =+∞⇒=.61.C 【解析】根据题意容易看出x y +只能取-1,1,3等3个数值.故共有3个元素. 62.D 【解析】{|1}P x x =< ∴{|1}RP x x =≥,又∵{|1}Q x x =>,∴RQ P ⊆,故选D .63.B 【解析】{1,3}P M N ==,故P 的子集有4个.64.C 【解析】因为PM P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.65.D 【解析】因为{1,2,3,4}M N =,所以()()U UM N =()UM N ={5,6}.66.B 【解析】因为UM N ⊂,所以()()()U UU U N NM N M ===[()]UU N M ={1,3,5}.67.C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}AB =,有2个元素. 68.A 【解析】集合{1,0,1}{0,1,2}={0,1}MN =-.69.C 【解析】对于集合M ,函数|cos 2|y x =,其值域为[0,1],所以[0,1]M =,根据复数模的计算方法得不等式212x +<,即21x <,所以(1,1)N =-, 则[0,1]MN =.70.A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.71.C 【解析】{}{}{}1,2,32,3,42,3M N ==故选C.72.D 【解析】{}{}|1,|12RRB x x A B x x ==≥≤≤73.B 【解析】{}22<<x x Q -=,可知B 正确,74.A 【解析】不等式121log 2x,得12112201log log ()2x >⎧⎪⎨⎪⎩,得22x , 所以R A =2(,0],2⎛⎫-∞+∞ ⎪ ⎪⎝⎭.75.D 【解析】因为{3}AB =,所以3∈A ,又因为{9}UB A =,所以9∈A ,所以选D .本题也可以用Venn 图的方法帮助理解. 76.{1,8}【解析】由集合的交运算可得AB ={1,8}.77.1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =. 78.5【解析】{1,2,3}{2,4,5}{1,2,3,4,5}A B ==,5个元素. 79.{1,2,3}【解析】{2}UB ,A(UB )={1,2,3}.80.{}1,3-【解析】=B A {}1,3-.81.{}7,9【解析】{}1,2,3,4,5,6,7,8,9,10U =,{}4,6,7,9,10UA =,{}()7,9U A B =.82.6【解析】因为①正确,②也正确,所以只有①正确是不可能的;若只有②正确,①③④都不正确,则符合条件的有序数组为(2,3,1,4),(3,2,1,4);若只有③正确,①②④都不正确,则符合条件的有序数组为(3,1,2,4);若只有④正确,①②③都不正确,则符合条件的有序数组为(2,1,4,3),(3,1,4,2),(4,1,3,2).综上符合条件的有序数组的个数是6. 83.{}6,8【解析】()UA B ={6,8}{2,6,8}{6,8}=.84.【解析】(1)5 根据k 的定义,可知1131225k --=+=;(2)12578{,,,,}a a a a a 此时211k =,是个奇数,所以可以判断所求集中必含元素1a ,又892,2均大于211,故所求子集不含910,a a ,然后根据2j(j =1,2,⋅⋅⋅7)的值易推导出所求子集为12578{,,,,}a a a a a .85.1【解析】考查集合的运算推理.3∈B ,23a +=,1a =.。

近五年高考数学文科真题汇总

近五年高考数学文科真题汇总高考,对于每一位学子来说,都是人生中的一次重要挑战。

数学作为其中的关键学科,更是备受关注。

在文科数学的领域中,近五年的高考真题呈现出了一定的规律和特点。

让我们先从函数部分说起。

函数一直是高考数学的重点,在文科数学中也不例外。

近五年的真题中,对于函数的单调性、奇偶性、周期性以及函数的图像和性质的考查屡见不鲜。

例如,会给出一个具体的函数表达式,让考生判断其单调性或者奇偶性,或者根据函数的性质来求解函数的最值、值域等问题。

在三角函数方面,诱导公式、三角函数的图像和性质、解三角形等内容是常考的知识点。

像通过已知的三角形边长和角度,利用正弦定理、余弦定理来求解未知的边长或者角度,这是比较常见的题型。

而且,对于三角函数的周期性和对称性的考查也时有出现。

数列也是文科数学的重要组成部分。

等差数列和等比数列的通项公式、前 n 项和公式是必须要掌握的基础知识。

真题中常常会要求考生根据给出的数列条件,求出通项公式或者前 n 项和,或者判断数列的单调性等。

概率与统计部分,会涉及到古典概型、几何概型、抽样方法、用样本估计总体等内容。

可能会给出一个实际的情境,让考生计算某个事件发生的概率,或者通过样本数据来分析总体的特征。

立体几何主要考查空间几何体的结构特征、表面积和体积的计算,以及线面位置关系的证明。

考生需要具备一定的空间想象能力,能够准确画出图形,进行推理和计算。

解析几何在文科数学中也占有一定的比重,主要包括直线与圆的方程、椭圆、双曲线、抛物线的方程和性质。

经常会要求考生根据已知条件求出曲线的方程,或者研究直线与曲线的位置关系。

在不等式方面,基本不等式的应用是常考点,通过给定的条件,利用基本不等式求最值或者证明不等式。

近五年的高考文科数学真题在难度上整体保持了相对的稳定性。

大部分题目都是对基础知识和基本技能的考查,同时也会有一些具有一定区分度的题目,以选拔出不同层次的学生。

对于考生来说,研究近五年的真题有着重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档