平行线的性质 优质课教案
七年级数学上册《平行线的性质》教案、教学设计

(三)学生小组讨论,500字
1.教师将学生分成若干小组,每组选择一个具有挑战性的问题进行讨论,如:如何利用平行线性质求解角度或线段长度。
2.学生在小组内展开讨论,互相交流想法,共同解决问题。
3.教师巡回指导,参与学生讨论,引导学生深入思考,拓展思维。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结平行线的定义、性质和应用规律。
2.学生分享学习心得,交流学习方法,提高学习效率。
3.教师强调平行线在几何学习中的重要性,激发学生学习几何的兴趣。
4.布置课后作业,要求学生在课后对所学知识进行巩固和拓展,为下一节课的学习做好准备。
五、作业布置
3.结合平行线的性质,让学生尝试证明以下几何问题:在三角形中,若两边平行,则这两边所对的角相等。
4.完成一份关于平行线性质的思维导图,要求涵盖平行线的定义、判定方法、性质及应用等方面,培养学生系统梳理知识的能力。
5.针对本节课的学习内容,写一篇学习心得体会,要求学生从知识掌握、能力提升、情感态度等方面进行反思,以提高学生的学习自我监控能力。
为了巩固本节课所学的平行线性质,提升学生的几何素养,特布置以下作业:
1.完成课本第chapter页的练习题,包括选择题、填空题和解答题,要求学生在理解平行线性质的基础上,熟练运用相关知识解决问题。
2.设计一道实际生活中的问题,让学生运用平行线的性质进行求解。例如:在学校的操场上,有一条跑道和两条平行的跳远沙坑,如果已知跑道的宽度为w米,求跳远沙坑的宽度。
6.预习下一节课内容,了解平行线与相交线之间的关系,为后续学习奠定基础。
请同学们认真完成作业,及时发现问题,通过自主学习、合作交流等方式解决疑惑,不断提升自己的几何素养。教师将根据作业完成情况,给予针对性的指导和评价,助力学生成长。
平行线的性质教案

平行线的性质教案课题:平行线的性质一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点:平行线的性质公理及平行线性质定理的推导.(二)难点:平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排:1课时五、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.六、教学过程(一)创设情境,复习导入1.如图1,(1)∵ (已知),∴ ().(2)∵ (已知),∴ ().(3)∵ (已知),∴ ().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:[板书]平行线的性质【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.(二)探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线AB 的平行线CD ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位。
平行线的性质教案设计

平行线的性质教案设计一、教学目标:知识与技能:1. 理解平行线的定义及性质。
2. 学会使用直尺和圆规作图,验证平行线的性质。
过程与方法:1. 通过观察、思考、交流,培养学生探索平行线性质的能力。
2. 培养学生运用几何知识解决实际问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣和自信心。
2. 培养学生的团队合作精神,提高学生表达、交流能力。
二、教学重点与难点:重点:1. 平行线的性质。
2. 运用直尺和圆规作图验证平行线的性质。
难点:1. 理解并证明平行线的性质。
2. 灵活运用平行线的性质解决实际问题。
三、教学准备:教师准备:1. 教学PPT。
2. 直尺、圆规、白纸等作图工具。
学生准备:1. 笔记本、作图工具。
四、教学过程:环节一:导入新课1. 利用PPT展示生活中的平行线现象,引导学生关注平行线。
2. 提问:什么是平行线?平行线有哪些性质?环节二:探索平行线性质环节三:验证平行线性质1. 学生利用直尺和圆规作图,验证平行线的性质。
2. 教师巡回指导,解答学生疑问。
环节四:巩固练习1. 学生独立完成练习题,巩固平行线性质。
2. 教师点评答案,讲解解题思路。
环节五:课堂小结2. 教师补充并强调平行线性质的应用。
五、课后作业:1. 完成课后练习题,巩固平行线性质。
2. 运用平行线性质解决实际问题,下节课分享。
六、教学策略与方法:1. 采用问题驱动法,引导学生主动探索平行线的性质。
2. 运用合作学习法,鼓励学生分组讨论,培养团队协作能力。
3. 利用几何作图工具,让学生亲自动手操作,提高实践能力。
4. 采用启发式教学法,教师提问引导学生思考,激发学生学习兴趣。
七、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成作业的质量,评估学生对平行线性质的掌握程度。
3. 实践应用:评估学生在实际问题中运用平行线性质的能力。
八、教学拓展与延伸:1. 探讨平行线在现实生活中的应用,如交通、建筑等领域。
《平行线的性质》优秀教案

74 平行线的性质1.认识平行线的三条性质定理,能熟练运用这三条定理进行几何证明.2.进一步理解和总结证明的步骤、格式、方法.3.了解判定定理和性质定理在条件和结构上的区别,体会正逆的思维过程.自学指导:阅读课本P175-177,完成下列问题知识探究1.教材P175“两直线平行,同位角相等”这个定理是用到什么方法去证明?解:反正法2.教材P176“两直线平行,内错角相等”这个定理的证明过程以两直线平行,同位角相等理论依据.你可以用同样的方法证明“两直线平行,同旁内角互补”吗?3.由P176的例子可以得出:平行于同一条直线的两条直线平行自学反馈1如图6-31所示,已知∠3=∠4,若要使∠=∠2,则需A.∠=∠3 B ∠2=∠3C ∠=∠4 D.AB∥CD2你能测量如右图所示的斜坡的倾斜程度吗工人师傅是这样做的:将量角器斜放在坡面上,取中心点引直线BC,当BC平行于水平面时,这时得到的角β的度数就是坡角α的度数,请说出这样做的理由活动1 小组讨论例1如图,已知:AD∥BC,∠A=∠C,求证:AB∥CD证明:∵AD∥BC已知,∴∠A=∠ABF两直线平行,内错角相等.又∵∠A=∠C已知,∴∠C=∠ABF等量代换.∴AB∥CD同位角相等,两直线平行.例2下列各图中,已知AB∥EF,点C任意选取在AB、EF之间,又在BF的左侧请测量各图中∠B、∠C、∠F的度数并填入表格∠B∠F∠C∠B与∠F度数之和图1图2通过上述实践,试猜想∠B、∠F、∠C之间的关系,写出这种关系,并加以说明教师投影题目:学生依据题意,画出类似图1、图2的图形,测量并填表,猜想:∠B∠F=∠C在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助?教师视学生情况进一步引导:①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角,不能确定它们之间的关系②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这一点吗?以上分析后,学生先推理说明,师生交流,教师给出说理过程解:作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF两条直线都与第三条直线平行,这两条直线也互相平行所以∠F=∠FCD两直线平行,内错角相等因为CD∥AB,所以∠B=∠BCD两直线平行,内错角相等所以∠B∠F=∠BCF活动2 跟踪训练1 某商品的商标可以抽象为如图所示的三条线段,其中AB∥CD,∠EAB=45°,则∠FDC的度数是.A.30°B.45°C.60°D.75°2如图所示,直线AB,CD相交于点E,DF∥AB,若∠AEC=100°,则∠D等于A.70°B.80°C.90°D.100°3如图,AB∥CD,CE平分∠ACD,若∠1=25°,那么∠2的度数是________.4已知如图所示,C,P,D在同一直线上,∠BAP与∠APD互补,∠1=∠2.求证∠E=∠F.课堂小结1熟练运用平行线的三条性质定理进行几何证明教学至此,敬请使用《名校课堂》部分【预习导学】自学反馈1D2两直线平行,内错角相等活动2 跟踪训练1B 2D 350°4证明:∵∠BAP与∠APD互补已知,∴AB∥CD同旁内角互补.两直线平行.∴∠BAP=∠APC两直线平行,内错角相等.∵∠1=∠2已知,∴∠EAP=∠BAP-∠2=∠APC-∠1=∠APF等式的性质.∴AE∥FP内错角相等,两直线平行.∴∠E=∠F两直线平行,内错角相等.。
《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。
2. 通过实例让学生熟练掌握平行线的性质。
3. 培养学生的空间观念和逻辑思维能力。
二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。
2. 教学难点:如何理解和应用平行线的性质。
三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。
- 提出问题,引导学生思考平行线的相关知识。
2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。
- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。
- 鼓励学生动手操作,亲自验证平行线的性质。
4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。
- 对学生的解答进行点评,帮助他们改正错误,加深理解。
5. 小结与反思:
- 引导学生总结本节课的学习内容。
- 鼓励学生分享自己的学习心得,提出疑问或困惑。
四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。
五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。
- 思考如何改进教学方法,提高教学质量。
《平行线的性质》教案

一、教学目标:知识与技能:1. 理解平行线的概念,能够识别和判断平行线;2. 掌握平行线的性质,能够运用平行线的性质解决实际问题。
过程与方法:1. 通过观察、操作、思考等活动,培养学生的观察能力和思维能力;2. 学会用画图工具绘制平行线,提高学生的动手操作能力。
情感态度价值观:1. 培养学生对数学的兴趣,激发学生学习数学的积极性;2. 培养学生的团队合作精神,学会与他人交流和分享。
二、教学重点与难点:重点:1. 平行线的概念及性质;2. 运用平行线的性质解决实际问题。
难点:1. 平行线的判断;2. 运用平行线的性质解决复杂问题。
三、教学准备:教师准备:1. 平行线的图片或实物;2. 画图工具(如直尺、三角板等);3. 教学课件或黑板。
学生准备:1. 课本及相关学习资料;2. 画图工具。
四、教学过程:1. 导入:1.1 教师出示平行线的图片或实物,引导学生观察并说出平行线的特点;2. 探究平行线的性质:2.1 教师引导学生通过观察、操作、思考等活动,发现平行线的性质;3. 应用平行线的性质:3.1 教师出示实际问题,引导学生运用平行线的性质解决问题;3.2 学生独立思考,小组交流,展示解题过程,教师进行点评和指导。
五、作业布置:1. 练习课本上的相关题目;2. 运用平行线的性质解决实际问题,并将解题过程和答案写在作业本上。
教学反思:本节课通过观察、操作、思考等活动,让学生掌握了平行线的性质,并能运用平行线的性质解决实际问题。
在教学过程中,注意引导学生主动参与,培养学生的观察能力、思维能力和动手操作能力。
通过小组合作,培养学生的团队合作精神。
但在教学过程中,也发现部分学生对平行线的判断仍存在困难,需要在今后的教学中加强练习和指导。
六、教学拓展:1. 引导学生思考:还有哪些几何图形的性质可以运用到实际问题中?2. 学生举例说明,教师进行点评和指导。
七、课堂小结:八、课后反思:1. 教师对本节课的教学效果进行反思,分析学生的掌握情况;2. 针对学生的薄弱环节,制定相应的教学措施。
七年级数学《平行线的性质》教案

七年级数学《平行线的性质》教案一、教学目标1. 知识与技能:(1)能够识别同位角、内错角和同旁内角。
(2)理解平行线的性质,能够运用平行线的性质解决实际问题。
2. 过程与方法:(1)通过观察、操作、交流等活动,培养学生直观表达能力和逻辑思维能力。
(2)学会用平行线的性质解释生活中的现象。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,提高学生学习数学的积极性。
(2)渗透“处处留心皆学问”的思想,培养学生的观察能力和思考能力。
二、教学重点与难点1. 教学重点:(1)平行线的性质。
(2)运用平行线的性质解决实际问题。
2. 教学难点:(1)平行线性质的推导和理解。
(2)在实际问题中灵活运用平行线的性质。
三、教学方法1. 采用情境导入、观察、操作、交流、总结等教学方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
四、教学过程1. 导入新课:(1)利用课件展示生活中的平行线现象,引导学生观察。
(2)提问:这些现象中,平行线有哪些特殊的性质呢?2. 探索平行线的性质:(1)学生分组讨论,观察同位角、内错角和同旁内角的变化。
(2)各组汇报讨论结果,教师总结并板书。
3. 实践应用:(1)学生自主设计练习题,运用平行线的性质解决问题。
(2)教师挑选题目进行讲解,引导学生总结解题方法。
五、课堂小结1. 学生总结本节课所学内容,分享自己的收获。
2. 教师对学生的总结进行点评,强调平行线性质的重要性。
六、课后作业1. 完成练习册相关题目。
2. 观察生活中更多的平行线现象,下节课分享。
七、教学反思教师在课后对自己的教学进行反思,针对学生的掌握情况,调整教学策略,为的教学做好准备。
八、教学评价1. 学生对平行线性质的理解和运用。
2. 学生在课堂上的参与度和合作意识。
3. 学生完成作业的质量。
九、教学拓展1. 探索更多生活中的平行线现象。
2. 了解平行线在几何学中的应用。
十、教学资源1. 多媒体课件。
2. 练习册。
《平行线的性质》教案

《平行线的性质》教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。
2. 培养学生观察、思考、推理的能力。
3. 培养学生运用几何知识解决实际问题的能力。
二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:a. 平行线上的任意一对对应角相等。
b. 平行线之间的任意一对内错角相等。
c. 平行线之间的任意一对同位角相等。
三、教学重点与难点1. 教学重点:平行线的性质及应用。
2. 教学难点:平行线性质的证明及运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。
2. 运用几何画板软件,直观展示平行线的性质。
3. 小组讨论法,培养学生合作学习的能力。
五、教学步骤1. 导入新课:通过生活实例引入平行线的概念,引导学生思考平行线的特点。
2. 探究平行线的性质:让学生自主尝试证明平行线性质,教师给予引导和指导。
4. 练习巩固:布置适量练习题,让学生运用平行线性质解决问题。
5. 拓展延伸:引导学生思考平行线在实际生活中的应用,如交通标志、建筑设计等。
六、教学评估1. 课堂问答:通过提问方式检查学生对平行线概念和性质的理解。
2. 练习批改:对学生的练习题进行批改,了解学生对平行线性质的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作学习和解决问题的能力。
七、课后作业1. 请学生绘制一组平行线,并标出相应的角度。
2. 选择一道与平行线性质相关的练习题,进行解答。
八、课程拓展1. 邀请建筑师或交通工程师,讲解平行线在实际工程中的应用。
2. 组织学生进行实地考察,观察生活中的平行线现象。
九、教学反思1. 反思本节课的教学效果,检查教学目标是否达成。
2. 分析学生的学习情况,调整教学方法,以提高学生的学习兴趣和效果。
十、课程资源1. 几何画板软件:用于展示平行线的性质。
2. 教学PPT:用于辅助教学,展示平行线的性质和实例。
3. 练习题库:用于课后作业和课堂练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究度量法验证
∠1= ∠2探究一:两直线平行,同位角有什么关系?
如图,直线a∥b,∠1和∠2在位置上是什么
角?你测量∠1和∠2的大小有何关系?
学生用量角器
验证:∠1=∠2
培养学生的动
手能力和猜测
的能力。
叠合法验证
∠1= ∠2师生共同用
叠合法验证:
∠1=∠2
培养学生
的观察能力和
亲自体会知识
的生成。
用平移和像的知识
证明了:两直线平行,同位角相等在老师的引导下证
明了:两直线平行,
同位角相等
培养学生对
知识的来源
的严谨性问
题。
归纳平行线的性质1 平行线的性质1:两条平行线被第三条直线所
截,同位角相等.
简写为:两直线平行,同位角相等.
符号语言表述: ∵a∥b(已知)
∴∠2=∠3(两直线平行,同位角相等)
学生归纳回答
平行线的性质1
提高学生的
几何书写能
力
教师提问
猜想: 两直线平行,内错角、同旁内角有怎
么关系呢?(学生举手大胆猜想)
学生猜想并回答
类比思想,
和知识的迁移
归纳平行线的三条性质师生共同完成,巩固知识,形成技能。
师生
互动
典型
例题
示范共同完成
知识应用
知识巩固:(1)如图在四边形ABCD中,已知AB∥CD,
∠B = 60. 求∠C的度数?
解: ∵ AB∥CD(已知),
∴∠B + ∠C= 180(两直线平行,同旁内角互补).
又∵∠B = 60 (已知),
∴∠C = 180 — 60=120
(2)如图,在汶川大地震当中,一辆抗震救灾汽车经过一条公路两次
拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一
次拐的角∠B等于142,第二次拐的角∠C是多少度?为什么?
解:∵AB∥CD (已知)∴∠C=∠B=142(两直线平行,内错角相等).
(3)小明昨天在纸上画了一个角∠A,但今天用量角器来测量它的
度数时,却发现纸片被人撕破,只剩下如图的一部分,如果不能延长
DC、FE的话,你能帮他设计出多少种方法可以测出∠A的度数?
分析:通过构造同位角:分别以点C 或点E为固定点作GE和CG的平行线,
则所成的角即为所求∠A的度数。
也以构造内错角、同旁内角求出∠A的度数
由学生举手
回答,检查学
生的学习情
况和运用知
识解决问题
的能力,特别
是第三题:培
养学生的发
散思维和转
化能力。
小结师生共同完
成
作业
必做题:教材 88页. 1、3题
选做题:教材 89页. 5、7题
巩固知识巩固练习:。