超声波传感器测距仪设计报告(全)-张哲铭
超声波测距实验报告

超声波测距实验报告1. 实验目的1.掌握超声波测距的基本原理;2.熟悉超声波测距仪器的使用;3.培养实验操作能力和数据处理能力。
2. 实验原理超声波测距是利用超声波在空气中的传播速度和反射原理,通过测量超声波发射和接收之间的时间间隔来计算被测物体与测距仪之间的距离。
超声波在空气中的传播速度约为 340 m/s。
3. 实验器材与步骤3.1 器材1.超声波测距仪;2.连接线;3.测量物体。
3.2 步骤1.连接超声波测距仪与电源;2.打开超声波测距仪,进行自检;3.将测量物体放置在合适的位置;4.调整超声波测距仪的测量范围;5.记录测量数据;6.分析数据,计算距离。
4. 实验数据与分析本实验共进行五次测量,记录数据如下:序号 | 测量距离(cm) | 误差(cm) |— | ———— | ——– |1 | 150.0 | 2.0 |2 | 152.5 | 1.5 |3 | 148.0 | 2.0 |4 | 151.0 | 1.0 |5 | 149.5 | 1.5 |平均距离 = (150.0 + 152.5 + 148.0 + 151.0 + 149.5) / 5 = 150.0 cm最大误差 = 2.0 cm最小误差 = 1.0 cm5. 实验总结本次实验掌握了超声波测距的基本原理和操作方法,通过对测量数据的分析,得出被测物体与测距仪之间的平均距离为 150.0 cm,最大误差为 2.0 cm,最小误差为 1.0 cm。
实验结果表明,超声波测距技术在实际应用中具有较高的准确性和可靠性。
6. 建议与改进1.在实验过程中,要确保测量物体与测距仪之间的距离在测距仪的测量范围内;2.提高实验操作技巧,减小人为误差;3.后续可以尝试使用不同类型的超声波测距仪进行实验,比较其性能和精度。
7. 实验拓展7.1 超声波测距的应用领域超声波测距技术广泛应用于工业、农业、医疗、交通、安防等领域,例如:1.工业领域:测量物体的尺寸、厚度、距离等;2.农业领域:测量土壤湿度、作物高度等;3.医疗领域:测量人体内部器官的距离、厚度等;4.交通领域:车辆测距、速度检测等;5.安防领域:监控设备、报警系统等。
超声测距实验报告

超声测距实验报告一、实验目的本次超声测距实验的主要目的是研究和掌握利用超声波进行距离测量的原理和方法,并通过实际操作和数据分析,评估测量系统的精度和可靠性。
二、实验原理超声波是一种频率高于 20kHz 的机械波,其在空气中传播时具有良好的指向性和反射特性。
超声测距的基本原理是利用超声波在发射后遇到障碍物反射回来的时间差来计算距离。
具体计算公式为:距离=(超声波传播速度×传播时间)/ 2 。
在常温常压下,空气中超声波的传播速度约为 340 米/秒。
通过测量超声波从发射到接收的时间间隔 t,就可以计算出距离。
三、实验仪器与材料1、超声测距模块:包括发射探头和接收探头。
2、微控制器:用于控制超声模块的工作和处理数据。
3、显示设备:用于显示测量结果。
4、电源:为整个系统供电。
5、障碍物:用于反射超声波。
四、实验步骤1、硬件连接将超声测距模块的发射探头和接收探头正确连接到微控制器的相应引脚。
连接电源,确保系统正常供电。
将显示设备与微控制器连接,以便显示测量结果。
2、软件编程使用相应的编程语言,编写控制超声模块工作和处理数据的程序。
实现测量时间的计算和距离的换算,并将结果输出到显示设备。
3、系统调试运行程序,检查系统是否正常工作。
调整发射功率和接收灵敏度,以获得最佳的测量效果。
4、测量实验将障碍物放置在不同的距离处,进行多次测量。
记录每次测量的结果。
五、实验数据与分析以下是在不同距离下进行多次测量得到的数据:|距离(米)|测量值 1(米)|测量值 2(米)|测量值 3(米)|平均值(米)|误差(米)||||||||| 05 | 048 | 052 | 050 | 050 | 000 || 10 | 095 | 105 | 100 | 100 | 000 || 15 | 148 | 152 | 150 | 150 | 000 || 20 | 190 | 205 | 195 | 197 | 003 || 25 | 240 | 255 | 245 | 247 | 003 || 30 | 290 | 305 | 295 | 297 | 003 |通过对实验数据的分析,可以看出在较近的距离(05 米至 15 米)内,测量误差较小,基本可以准确测量。
超声波测距仪实训报告

超声波测距仪实训报告一、实训目的本次超声波测距仪实训的主要目的是让我们深入了解超声波测距的原理和应用,通过实际操作和调试,掌握超声波测距仪的设计、制作和调试方法,提高我们的实践动手能力和解决问题的能力,同时培养我们的团队合作精神和创新思维。
二、实训原理超声波测距的原理是利用超声波在空气中的传播速度和往返时间来计算距离。
超声波发生器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
已知超声波在空气中的传播速度为 340 米/秒,根据计时时间 t 就可以计算出发射点距障碍物的距离 s,即 s = 340t/2。
三、实训设备与材料1、超声波传感器模块(包括发射探头和接收探头)2、单片机开发板3、显示屏4、杜邦线若干5、面包板6、电源适配器四、实训步骤1、硬件电路设计将超声波传感器模块与单片机开发板进行连接,使用杜邦线将发射探头连接到单片机的某个输出引脚,接收探头连接到单片机的某个输入引脚。
将显示屏连接到单片机的相应引脚,以便显示测量到的距离值。
2、软件编程选择合适的编程语言和开发环境,如 C 语言和 Keil 软件。
编写初始化程序,包括单片机引脚的配置、定时器的设置等。
编写超声波发射和接收的控制程序,实现超声波的发射和接收,并计算往返时间。
根据距离计算公式,将计算得到的距离值转换为合适的格式,并通过显示屏进行显示。
3、系统调试硬件调试:检查电路连接是否正确,电源是否正常,传感器是否工作正常等。
软件调试:通过单步调试、设置断点等方式,检查程序的执行流程和计算结果是否正确。
综合调试:将硬件和软件结合起来进行调试,不断修改和优化程序,直到系统能够稳定准确地测量距离。
五、实训过程中遇到的问题及解决方法1、测量误差较大问题描述:测量得到的距离值与实际距离存在较大偏差。
原因分析:可能是由于超声波在空气中的传播受到温度、湿度等环境因素的影响,也可能是由于硬件电路的干扰或者软件算法的不完善。
传感器大作业超声波测距离设计报告

传感器与检测技术大作业报告项目:基于AT89C51的超声波测距传感器目录一系统实现原理及功能 (2)实现功能 (2)二、系统设计方案 (3)硬件设计 (3)主要芯片功能介绍 (4)系统软件设计 (6)二、误差分析 (7)三、实验心得 (8)四、参考文献 (8)一系统实现原理及功能当单片机控制超声波传感器向某一方向发射波束的同时,单片机内部开始计时。
在传播过程中,超声波遇障碍物后反射回波。
传感器接收到第一个反射波后,停止计时。
由于超声波在空气中的传播速度是340m/s,根据计时时间及公式S=340t/2,即可得到发射点距障碍物的距离S。
实现功能本系统实现要求测量距离范围为0.1~3米,精度误差在1厘米以内,并用LCD1602显示所测距离。
二、系统设计方案硬件设计该系统硬件部分由发送模块、接收模块、显示模块、时间处理模块及电源模块组成。
发送模块主要由74LS04和超声波发射器组成;接收模块主要由超声波接收探头和CX20106A 组成;显示模块则有液晶显示器LCD1602及其辅助电路组成;时间处理模块是整个系统的中枢神经由AT89C51及其辅助电路组成。
1、发射部分采用反向器74HC04和超声波换能器T 构成震荡器、放大驱动电路。
电路简单,噪声小,稳定性高。
电路简单稳定,噪声小。
图1 超声波发射模块 图2 接收模块电路2、接收部分采用集成电路CX20106A 。
它是一款红外线检波接收的专用芯片,载波频率38KH Z 与测距的超声波40KH Z 较为接近,可以利用它制作超声波检测接受电路,且电路简单。
可满足项目中关于距离和精度的要求,电路简洁实用,易于调试,且价格低。
3、计时部分采用单片机芯片STC89C51内部定时器,无需额外器件花销,且计时准确,受干扰小。
图三主控及几计时模块4、显示部分显示部分使用LCD1602液晶显示板来完成显示的功能。
它可以显示两行,每行16个字符,采用单+5V电源供电,外围电路配置简单。
超声波传感器测试实验报告

超声波传感器测试实验报告一、实验目的本次实验的主要目的是对超声波传感器的性能进行全面测试,以了解其在不同条件下的工作特性和测量精度,为后续的应用提供可靠的数据支持。
二、实验原理超声波传感器是利用超声波的特性来测量距离和检测物体的。
它通过发射超声波脉冲,并接收反射回来的声波,根据发射和接收的时间差来计算距离。
超声波在空气中的传播速度约为 340 米/秒,通过测量发射和接收的时间间隔 t,距离 d 可以通过公式 d = v × t / 2 计算得出,其中 v 为超声波在空气中的传播速度。
三、实验设备与材料1、超声波传感器模块:型号为_____,工作频率为_____kHz。
2、微控制器:_____型号,用于控制传感器和处理数据。
3、电源:提供稳定的_____V 直流电源。
4、示波器:用于观测传感器的输出信号。
5、障碍物:不同材质和形状的物体,如木板、金属板、球体等。
6、测量工具:卷尺,精度为_____mm。
四、实验步骤1、连接电路将超声波传感器与微控制器按照说明书进行正确连接,确保电源供应稳定。
将示波器连接到传感器的输出端,以观察输出信号的波形和特征。
2、传感器校准在无障碍物的开阔空间中,对传感器进行初始校准,设置基准距离为 0 米。
3、距离测量实验放置传感器在固定位置,分别在距离为 01 米、02 米、05 米、1 米、2 米、3 米、4 米、5 米处放置障碍物,记录传感器测量的距离值。
每个距离点进行多次测量,取平均值以提高测量的准确性。
4、障碍物材质和形状影响实验分别使用木板、金属板、塑料板等不同材质的障碍物,在相同距离下进行测量,观察测量结果的差异。
更换不同形状的障碍物,如平面、曲面、球体等,研究其对测量结果的影响。
5、环境因素影响实验在不同的温度(如 10℃、20℃、30℃)和湿度(如 30%、50%、70%)条件下进行测量,分析环境因素对测量精度的影响。
在有噪声干扰的环境中进行测量,观察噪声对传感器输出信号的影响。
超声波测距报告

超声波测距系统——实物部分设计报告一、设计要求:用超声波传感器和其它器件设计一个反射式超声波测距系统。
1、测量距离不小于1.3米,数字显示,清晰,无数字叠加现象。
动态更新数字显示的测量结果,更新时间约0.5秒左右。
2、测量精度优于0.1米,显示精度0.01米。
3、距离小于0.3米时,用蜂鸣片发出间歇式的“滴一滴”声响报警。
4、测量距离超过1.0米时,给出达到测距要求的超量程指示。
二、设计思路:1、设计总的原理框图:超声波发射器㈠2Hz时钟信号产生电路:①分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,通过调整电阻和电容的值,得到所需频率的矩形波。
②单元电路图如右图。
③参数计算:④ 功能说明:数字显示的测量结果要求动态更新时间约0.5秒左右,所以要求一个频率约2Hz 的时钟信号来控制刷新数据,保证结果显示稳定不闪烁。
㈡ 40KHz 时钟信号产生电路:① 分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,通过调整电阻和电容的值,得到所需频率的方波。
② 单元电路如下图。
③ 参数计算:④ 功能说明:发送超声波需要一个可以微调的40KHz 的时钟信号作为驱动,1212121 1.43;(2)2,;2 1.52;1,300.pL pH f t t R R C f Hz F R R M R M R K ==++=∴+=Ω∴=Ω=Ω 又另C=470n 取123123231 1.43;(+2)40,+276.1;7.5,7.5,47pL pH f t t R R R C f KHz R R R K K R K R K ==++=∴+=Ω∴=Ω=ΩΩ 1又另C=470pF;取R 为的可变电阻器。
超声波以正弦波方式传输,所以超声波驱动模块的频率要求是接近40KHz 周期信号的方波。
㈢ 17KHz 时钟信号产生电路:① 分析:利用555定时器组成的多谐振荡器作为时钟信号的产生电路,通过调整电阻和电容的值,得到所需频率的矩形波。
超声波测距实验报告

超声波测距模块工作原理
超声波发射器发射 一组超声波脉冲
脉冲遇到物体后反 射回来
超声波接收器接收 反射回来的脉冲
通过计算发射和接 收脉冲之间的时间 差,得到物体与传 感器之间的距离
编写Arduino程序,控制 超声波传感器发送和接收 信号
连接Arduino板与电脑, 上传程序并运行
调整超声波传感器的角度 和位置,确保测量距离准 确
开始测量
准备超声波传感器和Arduino板 连接超声波传感器和Arduino板 编写程序,设置触发和接收引脚 启动Arduino板,开始测量距离
数据记录和处理
添加标题
添加标题
添加标题
添加标题
拓展应用场景:将超声波测距技术 应用于更多领域,如自动驾驶、智 能机器人等。
降低成本:通过优化设计和生产工艺, 降低超声波传感器和测距系统的成本, 使其更广泛地应用于各种领域。
感谢您的观看
汇报人:XX
实验步骤
准备实验器材
超声波传感器 添加标题
连接线 添加标题
添加标题 Arduino开发板
添加标题 面包板
跳线 添加标题
测量工具 添加标题
添加标题 电脑和软件
添加标题 实验环境
搭建实验装置
准备超声波传感器、 Arduino板、面包板、跳 线等材料
连接超声波传感器与 Arduino板的引脚
连接Arduino板与面包板 的引脚
学会使用超声波传感器进行距离测 量
学会分析实验数据,得出结论
掌握数据处理和分析技巧
学习如何使用超声波传感器进行距 离测量
超声波测距报警器实验报告

超声波测距报警器实验报告一、实验目的本实验旨在设计并实现一个基于超声波的测距报警器,通过测量物体与传感器之间的距离,当距离小于设定的阈值时,触发报警装置,以实现对特定区域的距离监测和预警功能。
二、实验原理超声波测距是通过测量超声波在空气中的传播时间来计算距离的。
超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,碰到障碍物后反射回来,接收器收到反射波就立即停止计时。
已知超声波在空气中的传播速度为 340 米/秒,根据计时器记录的时间 t,就可以计算出发射点距障碍物的距离 s,计算公式为:s = 340t/2 。
三、实验设备与材料1、超声波传感器模块(包括发射器和接收器)2、微控制器(如 Arduino 开发板)3、蜂鸣器4、显示屏(用于显示测量距离)5、杜邦线若干6、电源(如电池盒或 USB 电源)四、实验步骤1、硬件连接将超声波传感器的 VCC 引脚连接到电源的正极端,GND 引脚连接到电源的负极端。
将超声波传感器的 Trig 引脚连接到微控制器的数字输出引脚,Echo 引脚连接到微控制器的数字输入引脚。
将蜂鸣器的正极连接到微控制器的数字输出引脚,负极连接到电源的负极端。
将显示屏连接到微控制器的相应引脚。
2、软件编程使用 Arduino 开发环境编写控制程序。
首先,设置微控制器的引脚模式,包括输入和输出引脚。
然后,在主循环中,通过向 Trig 引脚发送一个短脉冲来触发超声波传感器发送超声波。
等待 Echo 引脚变为高电平,开始计时;当 Echo 引脚变为低电平时,停止计时,并根据时间计算距离。
将计算得到的距离与设定的阈值进行比较,如果小于阈值,驱动蜂鸣器报警,并在显示屏上显示距离和报警信息。
3、调试与测试编译并上传程序到微控制器。
进行实物测试,逐步调整传感器的位置和方向,以及阈值的大小,观察报警效果和距离测量的准确性。
五、实验结果与分析1、距离测量结果在不同距离下进行多次测量,记录测量值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机、传感器、印制电路板课程整合实训电子产品设计与制作技术报告(2013——2014 学年第二学期)项目名称:超声波测距仪设计指导教师:卢建声,曾庆波,代瑶专业:微电子技术班级:12微电子组长:张哲铭组员:高金阁,李雨泽,苏程龙黑龙江信息技术职业学院·电子工程系目录任务书...................................................................... 错误!未定义书签。
一、工作任务 ................................................................. 错误!未定义书签。
二、工作目标 (3)三、主要设计内容 (3)1.原理设计 (3)2.原理框图 (3)3原理图 (4)4元件清单 (4)五、提交成果 ................................................................. 错误!未定义书签。
一、原理设计与技术路线 .............................................. 错误!未定义书签。
1、原理图绘制......................................................... 错误!未定义书签。
2、PCB图绘制.......................................................... 错误!未定义书签。
3、单元电路设计..................................................... 错误!未定义书签。
4、整机设计 ............................................................ 错误!未定义书签。
(5) (6)六、总结报告 (10)附录 (13)超声波测距仪设计测距技术在物位检测、医疗探伤、汽车防撞等民用、工业领域应用广泛,由于超声波的速度相对于光速要小的多,其传播时间就比较容易检测,并且易于定向发射,方向性好,发射强度好控制,且不受电磁干扰影响,因而利用超声波测距是一种有效的非接触式测距方法。
但超声波在不同环境温度下传播速度不同,如忽略温度影响,将影响最终测量精度。
本文介绍的超声波测距仪采用渡越时间检测法。
制作好的实物如下图。
(作品展示)1、系统工作原理超声波测距原理如图1所示:图1式中c——超声波波速:t——从发射出超声波到接收到回波所用时间。
限制该系统的最大可测距离存在4个因素:超声波的幅度、反射的质地、反射和入射声波之间的夹角以及接收换能器的灵敏度。
接收换能器对声波脉冲的直接接收能力将决定最小的可测距离。
为了增加所测量的覆盖范围、减小测量误差,可采用多个超声波换能器分别作为多路超声波发射/接收的设计方法。
由于超声波属于声波范围,其波速c与温度有关,经过测量得出超声波的波速与温度的关系,如表1所示。
将测量的速度数据与温度数据进行一阶拟合得出:c=331.6+0.6107xT (2)式中T——当地温度。
在测距时,可通过温度传感器自动探测环境温度、确定其时的波速c。
波速确定后,只要测得超声波往返的时间t,即可求得距离H,这样能较精确地得出该环境下超声波经过的路程,提高了测量精确度。
本设计方案中使用渡越时间检测法,测距仪工作原理为:在由单片机发出驱动信号的同时,开启单片机中的计时器,开始计时。
发射探头发射出超声波,在由接收探头接收到第一回波的同时停止单片机计时器的计时,由于超声波在空气中的速度已知,根据公式即可求得探头与待测目标之间的距离。
而且,可以在较短时间内多次发出超声波测量,完成后计算平均值然后显示。
超声波在相同的传播媒体里(大气条件)传播速度相同,即在相当大的频率范围内声速不随频率变化,但其频率越高,衰减得越厉害,传播的距离也越短。
考虑实际工程测量要求,在设计超声波测距仪时,选用频率f=40kHz的超声波,波长为0.85cm。
2 、系统硬件设计本系统采用AT89C52单片机作为主控制器,使用3位数码管作为系统显示屏,超声波发射驱动需要的40 kHz脉冲由单片机P0.0发出,使用定时器进行计时和控制,超声波接收使用CX20106A作为接收主控芯片。
超声波测距器的系统原理图如图2所示。
图2 超声波测距仪_系统原理图2.1、超声波发射、接收电路设计超声波发送模块是由超声波发射探头组成的,单片机的P0.0端口直接发送40 kHz的信号,直接驱动压电晶片超声波换能器产生超声波,超声波发射电路如图3左侧电路所示。
超声波发射子程序的流程是,发射时首先装填计时器,并且开始计时,当超声波发射完毕时,定时器计时完毕,并且重新装填等待下次发射。
在接收电路中使用了红外线接收处理芯片CX20106A,因为它处理的是38 kHz的红外信号,而40 kHz的超声波信号和它比较接近,并且CX20106A芯片具有很强的抗干扰能力,这个芯片的外围电路很简单而且通过外围电阻调节它的中心处理频率,通过改变外围电路电容的大小也可以改变接收电路灵敏度和抗干扰能力。
经过试验后发现用单片机发40 kHz信号与使用CX20106A的电路搭配更加简单合理,使得时间的计算更为精确。
图3 超声波测距仪_超声波发送接收电路该系统的超声波接收模块是由超声波接收探头和红外线接收处理芯片CX20106A组成。
如图3所示。
超声波接收子程序的流程是,利用INT0中断检测回波信号,若有回波信号(INT0口低电平)就关闭外部中断,同时停止计时器的计时,将测距成功标志位标记为1(测距成功),同时提取时间值,计算待测距离,保存最终结果后打开外部中断,等待下次测量。
2.2、超声波测距显示电路在显示模块选择时有两种,一种是用液晶显示屏,其具有轻薄短小,分辨率高,可显示汉字等各种符号的优点。
但一般需要利用控制芯片创建字符库,编程工作量大;一种则是选用数码管,数码管具有低电耗、寿命长、易于维护的特点,同时精度比较高,称量快,精确可靠,编程容易,操作简单。
缺点是不能实现汉字及多数据多行显示。
综合考虑本次设计中选择了3位数码管显示。
用PNP型三极管驱动数码管,并连接到单片机AT89C52的P0口上作位选。
虽然显示上没有液晶显示屏那么完全,但是也能够完整直观地显示出需要的结果。
图4为超声波测距硬件设计的显示电路。
图4 超声波测距仪设计_数码管显示电路图2.3 、主电路原理图该系统主电路原理图如图5所示,单片机采用AT89C51系列,单片机使用外部时钟源,外接12MHZ的晶振,由P0.0口直接输出40 KHZ的驱动信号给放大电路。
接收到回波后,经由CX20106的滤波,产生中断信号,并由p3.2口输出进行中断。
显示电路采用简单实用的3位数码管,连接单片机AT89C51的P0口,而三极管连接P2口,作数码管的位选。
工作时,首先将系统初始化,启动计时器。
并由P0.0脚发出40KHZ的驱动信号,同时打开INT0中断,并且开始等待接收到的回波和中断信号,若接收到回波(单片机接收到中断信号),计时器停止计时,保存时间信息,并且根据温度补偿计算出当前环境下的声速,计算出当前待测距离后储存,并调用显示子程序。
测出距离后结果将以十进制BCD码方式传送到LED显示,然后再发超声波脉冲重复测量过程。
配套的超声波测距源程序可去这里找找。
图5 超声波测距仪设计_原理图图6 超声波测距设计_元件安装图图7 超声波测距设计_PCB布线图原理图绘制:PCB图绘制:(正面)实验总结首先我们每个人在面包板上布了局,了解了器件的性能,掌握了所有器件的摆放位置,尽而使整个布局完美,从而使我们了解到了数字温度计的工作过程。
相同点:每个人都进行了在面包板上的调试。
分工不同点以及处理方法:分工一处理人张哲铭分工二处理人高金阁分工三处理人李雨泽分工四处理人苏程龙分工一:裁切线的工艺心得——裁切线看似小问题实际上它影响着整块电路板的电气性能和布线的美观性以及检测的方便实用因此当裁线时我先是总体规划同样性质的线用同种颜色其次拔线时干净利落力度不能太大否则会导致导线内部断裂。
出现的问题:使用的信号线由于颜色一致,导致对后面的部分电路检测产生影响。
方法:选择信号线时需谨慎,对电路板上的线要裁剪适度。
分工二总体布局心得——在布局之前首先要研究全电路的电气性能因为这关系到电路能否正常工作以及工作的稳定性例如单片机系统的瓷片电容和晶振必须靠近单片机的18 19引脚。
问题:对数码管了解欠缺,进而使公共端又连在了一起,为了少放线,使元件的引脚留的过长。
使之发生短路。
方法:元件引脚应留适当,避免短路,使布局美观。
问题三焊接工艺心得——看似一个很小的焊点但往往电路故障就出现在在这不起眼的焊点上因此但我焊下每一个焊点时我都不会把它当做是一种简单的劳动我会想方设法把它打造的更精美尽量避免短路以及虚焊想象我会逐一检查。
问题:有漏焊虚焊放的焊锡过多使之俩焊点连一起,进而产生了短路现象。
方法:放锡要适量,并使焊点美观。
问题四元器件的检测心得——当领导元件的第一刻我首先就想到了万用表因为保障元件的可靠性是我的职责尤其重要的是核心元件的检测。
问题:对电阻的色环了解不深,实测值和标称值不一致。
方法:进行二次测量确定阻值。
结论:经过实测,本测距仪能够迅速的测出5m以内的短距离障碍物,在设计的15度环境温度下,测量范围在30—500cm 内,误差能控制在1cm以内,本设计具有简单实用,能耗低,成本低等特点,配套的超声波测距程序。
经过实际测试,发现系统的精度能满足普通需求,若需要进一步提高精度,可采用DS18B20测温后进行温度补偿。
※附:元件清单。