超声波测距器课程设计
超声波测距课程设计

超声波测距课程设计一、教学目标本节课的教学目标是让学生掌握超声波测距的基本原理和方法,能够运用超声波测距技术解决实际问题。
具体来说,知识目标包括:了解超声波的基本特性;掌握超声波发射、接收和反射的原理;理解超声波测距的数学模型。
技能目标包括:能够使用超声波测距仪器进行测量;能够根据测量数据计算距离;能够分析测量结果的误差和可靠性。
情感态度价值观目标包括:培养学生的科学探究精神;培养学生的团队合作能力;使学生认识到超声波技术在生产和生活中的应用和价值。
二、教学内容本节课的教学内容主要包括三个部分:超声波的基本概念、超声波测距的原理和超声波测距的应用。
首先,介绍超声波的定义、特点和应用领域;其次,讲解超声波测距的原理,包括发射、接收和反射的过程;最后,介绍超声波测距在生产和生活中的应用案例。
三、教学方法为了实现教学目标,本节课采用多种教学方法相结合的方式。
首先,运用讲授法,清晰地讲解超声波的基本概念和测距原理;其次,采用讨论法,引导学生分组讨论超声波测距的应用场景,增强学生的参与感和合作意识;再次,利用实验法,让学生亲自动手操作超声波测距仪器,提高学生的实践能力;最后,运用案例分析法,分析实际案例中超声波测距技术的应用,帮助学生将理论知识与实际应用相结合。
四、教学资源为了支持教学内容和教学方法的实施,本节课准备了丰富的教学资源。
教材方面,选用《物理》课本中关于超声波测距的相关章节;参考书方面,推荐学生阅读《超声波技术与应用》等书籍;多媒体资料方面,准备了一些关于超声波测距的实验视频和动画演示;实验设备方面,准备了超声波测距仪器、计算机等设备,以便学生进行实际操作和数据处理。
通过这些教学资源,旨在丰富学生的学习体验,提高教学效果。
五、教学评估为了全面、客观地评估学生的学习成果,本节课采用多元化的评估方式。
首先,通过课堂讨论、提问等形式的平时表现评估,考查学生的参与度和理解程度;其次,通过作业评估,检验学生对超声波测距原理和应用的掌握情况;最后,通过课后实验报告和考试,评估学生的实践操作能力和理论知识的运用水平。
超声波测距离课程设计

超声波测距离课程设计一、课程目标知识目标:1. 让学生了解超声波的基本概念,理解超声波测距的原理;2. 掌握超声波测距的公式及其在实际应用中的计算方法;3. 了解超声波测距仪器的构造、功能及使用方法。
技能目标:1. 培养学生动手操作超声波测距仪器的技能,能熟练进行距离测量;2. 培养学生运用物理知识解决实际问题的能力,能根据测量数据进行分析和计算;3. 培养学生通过团队合作,进行超声波测距实验的能力。
情感态度价值观目标:1. 培养学生对物理学科的兴趣,激发学习热情;2. 培养学生严谨的科学态度,注重实验数据的准确性;3. 培养学生将物理知识应用于实际生活的意识,增强实践操作能力。
课程性质:本课程为物理学科实验课程,旨在让学生通过实际操作,深入理解超声波测距的原理和实际应用。
学生特点:学生具备一定的物理基础知识,对实验操作感兴趣,但可能对超声波相关知识较为陌生。
教学要求:注重理论与实践相结合,强调实验操作技能的培养,引导学生运用所学知识解决实际问题。
在教学过程中,将课程目标分解为具体的学习成果,以便进行教学设计和评估。
二、教学内容1. 理论知识:- 超声波基本概念及其传播特性;- 超声波测距原理及公式推导;- 超声波测距仪器的构造、功能及使用方法。
参考教材章节:第五章“声现象”第3节“超声波及其应用”。
2. 实践操作:- 超声波测距仪器的操作步骤;- 实际距离测量及数据记录;- 数据分析及计算方法。
3. 教学大纲安排:- 第一课时:导入超声波基本概念,讲解超声波传播特性,介绍测距原理;- 第二课时:推导超声波测距公式,讲解测距仪器的构造及使用方法;- 第三课时:分组进行实践操作,学生动手测量距离,记录数据;- 第四课时:分析测量数据,总结实验结果,讨论实际应用。
教学内容确保科学性和系统性,注重理论与实践相结合,使学生在掌握基础知识的同时,提高实践操作能力。
教学进度安排合理,确保学生充分消化吸收所学内容。
课程设计实验报告-超声波测距仪的设计

超声波测距仪的设计一、设计目的本设计利用超声波传输中距离与时间的关系,采用STC51单片机进行控制和数据处理,设计出能够精确测量两点间距离的超声波测距仪。
同时了解单片机各脚的功能,工作方式,计数/定时,I/O口的相关原理,并稳固学习单片机的相关内容知识。
二、设计要求1.设计一个超声波测距仪,能够用四段数码管准确显示所测距离2.精度小于1CM,测量距离大于200CM三、设计器材元器件数量STC51单片机 1个超声波测距模块URF-04 1个电阻〔1K 200 4.7K〕 3 个晶振〔12MHz〕 1 个共阳极四位数码管 1 个极性电容〔33pF〕 2 个非极性电容〔22uF〕 1 个四、超声波测距系统原理331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以到达毫米级。
超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米〔15℃时〕。
X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,那么有340m×0.03S=10.2m。
由于在这10.2m 的时间里,超声波发出到遇到返射物返回的距离如下:图1 测距原理超声波测距器的系统框图如下列图所示:图2 系统框图五、设计方案及分析〔包含设计电路图〕4.1硬件电路设计4.1.1 单片机最小系统控制模块设计与比拟方案二:采用STC51单片机控制。
STC51单片机是一种低功耗、高性能CMOS8位微控制器,具有 8KB的系统可编程Flash 存储器。
AT89S52具有以下标准功能: 8k字节Flash,256字节RAM, 32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路,能够满足题目设计的所有要求,而且我们对STC51单片机也比拟熟悉,因此我们选择方案二。
最小系统电路图如图3所示图3 单片机最小系统显示模块设计采用四位共阳极数码管显示,连接电路简单,显示电路连接图如图4所示图4 数码管显示电路超声波测距模块a.本系统采用超声波模块URF04进行测距,该模块使用直流5V供电,理想条件下测距可达500cm,广泛应用于超声波测距领域,模块性能稳定,测度距离精确,盲区〔2cm〕超近。
超声波测距课程设计

目录.、八、-刖言1课题设计目的及意义-------------------------------- 11.1设计的目的------------------------------------- 11.2设计的意义------------------------------------- 1 1.3课题设计的任务和要求正文1课程的方案设计---------------------------------- 21.1系统整体方案----------------------------------- 21.2系统整体方案的论证------------------------------- 22 系统的硬件结构设计-------------------------------- 22.1 51系列单片机的功能特点及测距原理----------------------- 32.1.1 51 系列单片机的功能特点-------------------------- 32.1.2单片机实现测距原理----------------------------- 32.2超声波电路结构---------------------------------- 42.3超声波测距系统的硬件电路设计------------------------- 42.4 PCB版图设计---------------------------------- 53系统软件的设计-----------3.1超声波测距仪的算法设计-3.2主程序流程图--------------3.3单片机部分C语言程序 -----3.4超声波测距部分C语言程序4实物制作------------------------------------- 174.1电路板焊接及连线图------------------------------- 174.2实物调试效果图---------------------------------- 184.3焊接电路板时所遇问题------------------------------ 195总结--------------------------------------- 6致谢-------------------------------------2020 --- 6-——77-----8——11附录20、八、亠刖言1课题设计目的及意义1.1设计的目的随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。
超声波测距器课程设计

添加标题
添加标题
添加标题
添加标题
误差分析:对测量结果的影响及误 差范围
实验与测试:通过实验数据验证误 差分析及优化效果
总结与展望
课程设计总结
超声波测距原理: 介绍了超声波测距 的基本原理和实现 方法。
系统设计:详细阐述 了超声波测距器的系 统设计,包括硬件和 软件的设计方案。
实验结果:展示了实 验数据和结果,验证 了超声波测距器的准 确性和可靠性。
测试方案与步骤
测试环境搭建:确保 测试环境符合要求, 包括超声波测距器、 接收器、信号发生器 等设备的连接和调试。
据处理与分析:对 测试数据进行处理和 分析,评估超声波测 距器的性能和精度。
测试结果总结:根据 测试结果,对超声波 测距器的性能和精度 进行总结和评价。
信号转换:将模拟 信号转换为数字信 号,便于处理和传 输
显示模块设计
显示模块的作用:实时显示测量距 离和测量结果
显示模块的接口:与主控板相连, 接收主控板的信号并显示
添加标题
添加标题
添加标题
添加标题
显示模块的组成:LED显示屏、驱 动芯片和排线
显示模块的设计要点:考虑显示效 果、功耗和稳定性等方面的要求
测试结果分析
测试环境:详细描述测试的环 境、设备、条件等
测试过程:简述测试的具体步 骤和操作流程
测试数据:记录和分析测试过 程中的各项数据和结果
结果分析:对测试数据进行分 析和解释,得出结论和经验教 训
误差分析与优化
误差来源:设备精度、环境因素、 操作不当等
优化方法:提高设备精度、改进测 量方法、加强操作规范等
感谢您的观看
汇报人:
超声波测距器软 件设计
超声波测距课程设计

目录前言1课题设计目的及意义----------------------------------------------- 1 1.1设计的目的----------------------------------------------------- 1 1.2设计的意义----------------------------------------------------- 1 1.3课题设计的任务和要求------------------------------------------- 1正文1 课程的方案设计-------------------------------------------------2 1.1系统整体方案--------------------------------------------------- 2 1.2系统整体方案的论证-------------------------------------------- 22系统的硬件结构设计------------------------------------- 22.1 51系列单片机的功能特点及测距原理------------------------------ 32.1.1 51系列单片机的功能特点------------------------------------- 32.1.2 单片机实现测距原理 ----------------------------------------- 32.2 超声波电路结构------------------------------------------------ 42.3 超声波测距系统的硬件电路设计---------------------------------- 42.4 PCB版图设计---------------------------------------------------- 53 系统软件的设计----------------------------------------- 63.1 超声波测距仪的算法设计---------------------------------------- 73.2 主程序流程图--------------------------------------------------- 7 3.3单片机部分C语言程序-------------------------------------------- 8 3.4超声波测距部分C语言程序-------------------------------------- 114 实物制作------------------------------------------------ 17 4.1电路板焊接及连线图--------------------------------------------- 17 4.2实物调试效果图------------------------------------------------ 18 4.3焊接电路板时所遇问题------------------------------------------- 195总结------------------------------------------------- 206 致谢-------------------------------------------------- 20附录-------------------------------------------------------------20前言1课题设计目的及意义1.1设计的目的随着科学技术的快速发展,超声波将在测距仪中的应用越来越广。
超声波测距仪课程设计

超声波测距仪课程设计一、课程目标知识目标:1. 学生能理解超声波的基本概念,掌握超声波在空气中的传播速度及计算方法。
2. 学生能描述超声波测距仪的原理,了解其组成部分及工作过程。
3. 学生能运用数学知识,根据超声波的反射时间计算出距离。
技能目标:1. 学生能够使用超声波测距仪进行实验操作,并正确读取数据。
2. 学生能够通过小组合作,进行简单的超声波测距仪组装和调试。
3. 学生能够运用所学的知识,设计并实施简单的距离测量实验。
情感态度价值观目标:1. 学生能够培养对物理现象的好奇心,提高对科学技术的兴趣。
2. 学生通过动手实践,培养解决问题的能力和创新精神。
3. 学生能够认识到超声波测距技术在现实生活中的应用,提高学习的社会责任感。
分析课程性质、学生特点和教学要求:本课程为物理学科实验课,适用于八年级学生。
学生在前期已经学习了声音的传播、速度计算等基础知识。
课程以实验操作为主,注重培养学生的动手能力和实际应用能力。
教学要求以学生为主体,教师为主导,引导学生主动探究,发挥学生的主观能动性。
二、教学内容1. 理论知识:- 声波基本概念复习:声波传播、速度计算。
- 超声波特性:频率、波长、传播速度。
- 超声波测距原理:回声定位、时间差法。
2. 实践操作:- 超声波测距仪的构造:探头、发射接收器、显示屏。
- 实验步骤:安装、调试、测量、数据处理。
- 实验注意事项:安全操作、数据准确性。
3. 教学大纲安排:- 第一课时:复习声波知识,介绍超声波特性。
- 第二课时:讲解超声波测距原理,展示测距仪构造。
- 第三课时:分组实验,动手操作超声波测距仪。
- 第四课时:分析实验数据,讨论测量误差原因。
4. 教材章节:- 《物理》八年级下册:第二章 声现象,第四节 声的利用。
- 《物理实验》八年级下册:实验十二 超声波测距。
教学内容确保科学性和系统性,结合课程目标,注重理论与实践相结合,提高学生对超声波测距技术的理解和应用能力。
八年级物理上册《超声波测距》教案、教学设计

4.布置适量的练习题,涵盖超声波测距的基本概念、原理和应用,要求学生在课后独立完成。此作业有助于巩固所学知识,提高学生的解题能力。
5.鼓励学生进行拓展研究,了解超声波在除测距以外的其他领域(如医疗、工业等)的应用,并撰写一篇研究报告。此作业旨在培养学生的自主学习能力和科研意识。
(三)情感态度与价值观
1.培养学生对物理科学的兴趣和好奇心,激发学生学习物理的热情。
2.引导学生关注科技发展,了解超声波测距技术在生活中的应用,增强学生的科技意识。
3.培养学生尊重事实、严谨求实的科学态度,养成勇于探索、善于质疑的学习习惯。
4.通过学习超声波测距技术,使学生认识到科学技术对人类社会发展的作用,培养学生的社会责任感和创新精神。
4.知识拓展:介绍超声波测距在生活中的其他应用,如工业检测、建筑测量等,拓宽学生的知识视野。
5.总结与评价:对本节课所学内容进行总结,巩固学生对超声波测距的理解。鼓励学生发表自己的观点,培养学生的创新意识。
6.课后作业:布置与超声波测距相关的练习题,巩固所学知识。同时,鼓励学生进行拓展研究,了解超声波在其他领域的应用。
教学设计:
1.导入:以生活中的实际例子引出超声波测距,如汽车倒车雷达、盲人导航仪等,激发学生学习兴趣。
2.新课导入:介绍超声波的基本概念、产生、传播和接收过程,引导学生了解超声波的特性。
3.理论学习:讲解超声波测距的原理,通过示意图和实际操作,使学生理解超声波测距的原理和方法。
4.实践操作:组织学生分组进行超声波测距实验,让学生亲身体验超声波测距的过程,提高学生的实践能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微机原理及应用》课程设计超声波测距器的设计学生姓名郝强学号***********学院名称机电工程学院专业名称机械电子工程指导教师王前2013年12月27日摘要随着科学技术的快速发展,超声波将在科学技术中的应用越来越广。
本文对超声波传感器测距的可能性进行了理论分析,利用模拟电子、数字电子、微机接口、超声波换能器、以及超声波在介质的传播特性等知识,采用以AT89C51单片机为核心的低成本、高精度、微型化数字显示超声波测距仪的硬件电路和软件设计方法在此基础上设计了系统的总体方案,最后通过硬件和软件实现了各个功能模块。
相关部分附有硬件电路图、程序流程图。
为了保证超声波测距传感器的可靠性和稳定性,采取了相应的抗干扰措施。
就超声波的传播特性,超声波换能器的工作特性、超声波发射、接收、超声微弱信号放大、波形整形、速度变换、语音提示电路及系统功能软件等做了详细说明。
关键词:超声波;传感器;测量距离;控制目录摘要 (2)目录 (3)1.设计目的 (4)2.总体方案 (4)3.硬件设计 (5)3.1 超声波测距器硬件电路设计 (5)3.2.1单片机芯片的选择 (6)3.2.2AT89C51定时计数应用电路 (6)3.3超声波发射电路设计 (6)3.3.1选择超声波发生器类型 (6)3.3.2 超声波发射电路设计 (7)3.4超声波接收电路设计 (8)3.5超声波显示电路设计 (9)4.软件设计 (9)4.1波测距器的算法设计 (10)4.2系统的主控制程序设计 (11)4.3发生子程序设计 (12)4.4接收中断程序设计 (13)4.5显示程序设计 (14)4.6距离计算程序 (15)5.结论 (17)参考文献 (18)1.设计目的超声波测距器,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。
要求测量范围在0.10~4.00m,测量精度1 cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。
2.总体方案硬件部分主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。
采用AT89C1或其兼容系列来实现对CX20106A红外接收芯片和74LS04系列超声波发射模块的控制。
单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。
计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。
软件部分主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序等部分。
3.硬件设计3.1 超声波测距器硬件电路设计超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离。
路程、波速、时间之间的关系,可用下列简单的公式表示:==⨯/2()/2d s c t上式中,d为超声波传播单边的路程,s为超声波来回的路程, c为超声波波速, t为超声波来回所用的时间。
当声速确定后,只要测得超声波往返的时间,即可求得距离。
这就是超声波测距的原理。
超声波测距的原理如图所示。
3.1超声波测距原理根据超声波测距原理,超声波测距器需要有超声波发生器、超声波接收器、超声波传播的计时器。
按照系统设计功能的要求,硬件电路由单片机计时及控制电路、超声波发射电路、超声波检测接收电路、显示电路及电源五部分组成。
系统原理总框图见图。
3.2超声波测距器的原理总框图3.2.1 单片机芯片的选择89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Pro grammable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
89C2051是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的89C51是一种高效微控制器,89C2051是它的一种精简版本。
89C单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。
3.2.2AT89C51定时计数应用电路AT89C51单片机片内集成有两个可编程的定时/计数器T0和T1[4]。
它们既可以工作于定时模式,也可以工作于外部事件计数模式。
本设计采用定时计数器T0,根据需要,让其工作于方式1。
方式1的计数位数是16位,由TL0作为低8位,TH0作为高8位,组成16位加1计数器。
其初值在65 535~0范围,计数范围为1~65 536。
具体应用见程序设计部分。
3.3 超声波发射电路设计3.3.1选择超声波发生器类型压电式超声波换能器利用压电晶体的谐振来工作,其内部结构如图所示。
超声波换能器有两个压电晶片和一个共振板。
当它的两极外加电脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将发生共振,从而带动共振板振动,产生超声波。
反之,如果在共振板上外加适当的机械振动,使压电晶片发生共振,将在压电晶片之间产生交变的电信号。
这时它就成为了超声波接收器。
本设计选用压电式超声波换能器TCT40—l0Fl作超声波发射器。
使用时注意分清器件,因为它与接收换能器在结构上稍有不同。
3.3超声波换能器内部结构图3.3.2 超声波发射电路设计超声波发射电路主要由反向器74LS04和超声波发射换能器T 构成,如图所示。
图中T 为超声波发射器,采用TCT40—l0Fl ,外型尺寸Φ15 。
输出端采用两个反向器并联,用以提高驱动能力。
上拉电阻R 2,R 3一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡的时间。
工作时,单片机的定时器T0产生40 KHz 方波信号,从P1.3端口输出,一路经过一级反向器后送到超声波发射器T 的一个电极,另一路经过两极反向器后送到超声波发射器T 的另一个电极,从而将40 KHz 电脉冲信号加到超声波发射器T ,使T 发射超声波。
电路采用推挽形式,向超声波发射器T 提供电脉冲信号,可以提高超声波的发射强度。
T 12U4A 74LS0434U4B74LS0456U4C 74LS0498U4D74LS041110U4E R21K R31Kp1.3 3.4超声波发射电路原理图3.4 超声波接收电路设计超声波接收电路主要由超声波接收换能器R和超声波检测接收模块构成,如图所示。
图中R为超声波接收器,采用TCT40—l0Sl,外型尺寸Φ15 。
U5是超声波检测接收模块,设计时选用了红外线检波接收专用集成电路芯片CX20106A。
选用的原因是CX20106A常用的载波频率为38KHz,与测距的超声波频率40KHz较为接近,可以将发射的超声波之频率控制为38KHz。
电路中设置的电容C4,适当更改其大小,可以改变接收电路的抗干扰能力;适当改变电路中的电容C6,可改变电路的灵敏度。
工作时,接收的超声波信号经R转换为电信号,加到CX20106A的输入端(1脚),处理后由CX20106A的输出端(7脚)送达单片机的中断口INT0,申请CPU处理。
3.5超声波检测接收电路3.5超声波显示电路设计显示电路采用LED数码管显示。
LED数码管显示有静态显示方式和动态显示方式,本系统采用并行输出的动态显示方式。
显示电路结构根据本超声波测距器显示测距数据的需要,采用4位LED动态显示电路。
其中2位显示小数部分,2位显示整数部分。
显示信息输入部分由单片机P0输出端,连接74LS244相应输入端,驱动器输出端经限流电阻连接相应字段码端;字位控制部分分别由三极管驱动,选用PNP型晶体管9012,其基极经限流电阻连接单片机的P2口相关端子,集电极连接数码管的共用端,发射极连接电源。
显示电路如图所示[5]。
3.6超声波测距动态显示电路4软件设计超声波测距器的软件主要由主程序,超声波发生子程序,超声波接收中断程序以及显示子程序组成。
4.1波测距器的算法设计从前面距离的计算公式可知,c为声速,对于超声波,在常温20℃时,其数值为344米/秒;若能准确测量出超声波从发射到返回所用时间,则可以计算出发射点到被测障碍物之间的距离。
测量距离时,由超声波测距器的主控制器中定时器记录时间,设计中要求超声波测距时精确计算程序运行时间。
测量超声波来回所用的时间,当送出一个超声波脉冲后,需要延时约0.1ms ,才打开外中断0接收返回的超声波信号,这是为了避免超声波从发射器直接传送到接收器引起直射波触发。
单片机工作时晶振频率为12MHz ,计数器每计1个数就是1 μs ,当主程序检测到接收成功的标志位后,将停止计数器T0计数。
计算距离,将计数器T0中的计数值T0带入距离的计算公式计算,即可得被测物体与测距器之间的距离。
具体为60/2(344)/2(172)/10d s t T ==⨯=⨯计算的结果,以十进制BCD 码方式送往LED 显示,显示时间约0.5s ,然后再发超声波脉冲重复测量过程。
4.2系统的主控制程序设计主程序包括对系统环境初始化,设置定时器T0工作模式,调用超声波发生子程序,等待反射超声波,计算距离,显示距离;重复。
主程序流程图如图。
4.1主程序流程图※※※※※※主程序※※※※※※START: MOV SP, #4FHMOV R0, #40H ;40H~43H为显示数据存放单元(40H为最高位)MOV R7, #0BHCLEARDISP: MOV @R0, #00HINC R0DJNZ R7, CLEARDISPMOV 20H, #00HMOV TMOD, #21H ;T1为8位自动重装模式,T0为16位定时器MOV TH0, #00H ;65ms初值MOV TL0, #00HMOV TH1, #0F2H ;40kHz初值MOV TL1, #0F2HMOV P0, #0FFHMOV P1, #0FFHMOV P2, #0FFHMOV P3, #0FFHMOV R4, #04H ;超声波脉冲个数控制(为赋值的一半)SETB PX0SETB ET0SETB EASETB TR0 ;开启测试定时器START1: LCALL DISPLAYJNB 00H, START1 ;收到反射信号时标志位为1CLR EALCALL WORKSETB EACLR 00HSETB TR0 ;重新开启测试定时器MOV R2, #64H ;测量间隙控制(约4ms×100=400ms)LOOP: LCALL DISPLAYDJNZ R2,LOOPSJMP START14.3发生子程序设计超声波发生子程序,主要功能是单片机控制,通过P1.3端口发送2个左右超声波脉冲信号,频率为约40kHz的方波,其脉冲宽度为12μs左右,同时把计数器T0打开进行计时。