火花点火发动机的燃烧--车辆工程专业中英文翻译

合集下载

汽车发动机专业术语

汽车发动机专业术语

汽车发动机专业术语发动机engine内燃机intenal combusiton engine动力机装置power unit汽油机gasoline engine汽油喷射式汽油机gasoline-injection engine火花点火式发动机spark ignition engine压燃式发动机compression ignition engine往复式内燃机reciprocating internal combustion engine化油器式发动机carburetor engine柴油机diesel engine转子发动机rotary engine旋轮线转子发动机rotary trochoidal engine二冲程发动机two-stroke engine四冲程发动机four-stroke engine直接喷射式柴油机direct injection engine间接喷射式柴油机indirect injection engine增压式发动机supercharged engine风冷式发动机air-cooled engine油冷式发动机oil-cooled engine水冷式发动机water-cooled engine自然进气式发动机naturally aspirated engine煤气机gas engine液化石油气发动机liquified petroleum gas engine柴油煤气机diesel gas engine多种燃料发动机multifuel engine石油发动机hydrocarbon engine双燃料发动机duel fuel engine热球式发动机hot bulb engine多气缸发动机multiple cylinder engine对置活塞发动机opposed piston engine对置气缸式发动机opposed-cylinder engine十字头型发动机cross head engine直列式发动机in-line engine星型发动机radial engine筒状活塞发动机trunk-piston engine斯特林发动机stirling engine套阀式发动机knight engine气孔扫气式发动机port-scavenged engine倾斜式发动机slant engine前置式发动机front-engine后置式发动机rear-engine中置式发动机central engine左侧发动机left-hand engine右侧发动机right-hand engine短冲程发动机oversquare engine长冲程发动机undersquare engine等径程发动机square engine顶置凸轮轴发动机overhead camshaft engine双顶置凸轮轴发动机dual overhead camshaft engine V 形发动机V-engine顶置气门发动机valve in-head engine侧置气门发动机side valve engine无气门发动机valveless engine多气门发动机multi-valve engine卧式发动机horizontal engine斜置式发动机inclined engine立式发动机vertical engine W形发动机w-engine I形发动机I-engine L形发动机L-engine F形发动机F-engine。

2.1-2.2汽车工程专业英语翻译

2.1-2.2汽车工程专业英语翻译

INTERNAL COMBUSTION ENGINE2.1.能源与动力能源是用于生产电力。

化工能源转化为燃料的燃烧的热量,这个过程被称为燃烧。

如果发动机燃烧发生在汽缸内的地方,被称为发动机内部燃烧发动机。

如果燃烧发生在汽缸外的地方,被称为发动机外部燃烧发动机。

用于汽车的能源叫内部燃烧高能源高温能源在燃烧室里降低能缓解气体燃烧在汽缸室里的温度。

燃烧气体温度的升高引起气压变大。

燃烧室内发展应用到了活塞产生一个可用的机械力,然后将其转换成有用的机械能。

2.1.2发动机条款通过曲轴连杆连接活塞,造成气体轴旋转半转。

动力冲程“使用了”气压,意味着必须提供手段驱逐燃烧气体和回灌用新鲜的汽油和空气混合气体钢瓶:这种气体的运动控制是阀门的责任;一进气阀使新进入的混合物在适当的时间和一排气阀让燃烧后的气体在已完成了它的工作任务后排出,。

发动机条款(图2-1):TDC(上止点):曲轴对应活塞的位置时,活塞远离曲轴。

BDC(下死点):曲轴对应活塞的位置时,活塞最接近曲轴。

行程:下死点和上止点之间的距离;中风是由曲轴,行程是由曲轴控制。

缸径:圆柱的内部直径。

波及体积:下死点和上止点之间的音量。

发动机排量:这是所有的气缸容积,例如四汽缸发动机,有一个排量为2000㎝³的汽车,配有500㎝³气缸波及体积。

隙容积:上述内活塞的空间体积位于上止点以上。

压缩率E =(容积+间隙容积)/(间隙容积)二冲程:能量掌握在每一个运转的曲轴上。

四冲程:能量掌握在每一个其它的运转的曲轴上2.1.3火花点燃式发动机四冲程循环火花点火式发动机是一种内部与外部的点火器,它转换为动能,在燃料中的能量供应的燃烧。

在经营周期分布在四个活塞行程。

以完成整个周期需要两个曲轴的使命。

运行过程如(图2 - 2)1.进气行程(进气)向下移动的冰锥增加汽缸容积和新鲜的通过进气阀开启的空气燃料混合。

2.压缩行程向上移动的活塞减少了汽缸内体积和压缩的空气燃料混合物。

毕业设计论文外文文献翻译汽车专业汽修点火系统中英文对照

毕业设计论文外文文献翻译汽车专业汽修点火系统中英文对照

Ignition SystemThe purpose of the ignition system is to create a spark that will ignite the fuel-air mixture in the cylinder of an engine. It must do this at exactly the right instant and do it at the rate of up to several thousand times per minute for each cylinder in the engine. If the timing of that spark is off by a small fraction of a second, the engine will run poorly or not run at all.The ignition system sends an extremely high voltage to the spark plug in each cylinder when the piston is at the top of its compression stroke. The tip of each spark plug contains a gap that the voltage must jump across in order to reach ground. That is where the spark occurs.The voltage that is available to the spark plug is somewhere between 20,000 volts and 50,000 volts or better. The job of the ignition system is to produce that high voltage from a 12 volt source and get it to each cylinder in a specific order, at exactly the right time.The ignition system has two tasks to perform. First, it must create a voltage high enough (20,000+) to across the gap of a spark plug, thus creating a spark strong enough to ignite the air/fuel mixture for combustion. Second, it must control the timing of that the spark so it occurs at the exact right time and send it to the correct cylinder.The ignition system is divided into two sections, the primary circuit and the secondary circuit. The low voltage primary circuit operates at battery voltage (12 to 14.5 volts) and is responsible for generating the signal to fire the spark plug at the exact right time and sending that signal to the ignition coil. The ignition coil is the component that converts the 12 volt signal into the high 20,000+ volt charge. Once the voltage is stepped up, it goes to the secondary circuit which then directs the charge to the correct spark plug at the right time.The BasicsBefore we begin this discussion, let’’s talk a bit about electricity in general. I know that this is Before we begin this discussion, letbasic stuff, but there was a time that you didn’’t know about this and there are people who need basic stuff, but there was a time that you didnto know the basics so that they could make sense of what follows.All automobiles work on DC (Direct Current). This means that current move in one direction, form the positive battery terminal to the negative battery terminal. In the case of the automobile, the negative battery terminal is connected by a heavy cable directly to the body and the engine block of the vehicle. The body and any metal component in contact with it is called the ground. This means that a circuit that needs to send current back to the negative side of the battery can be connected to any part of the vehicle’’s metal body or the metal engine block.be connected to any part of the vehicleA good example to see how this works is the headlight circuit. The headlight circuit consists of a wire that goes from the positive battery terminal to the headlight switch. Another wire goes from the headlight switch to one of two terminals on the headlight bulb. Finally, a third wire goes from a second terminal on the bulb to the metal body of car. When you switch the headlight on, you are connecting the wire from the battery with the wire to the headlamps allowing battery current to go directly to the headlamp bulbs. Electricity passes through the filaments inside the bulb, then out the other wire to the metal body. From there, the current goes back to the negative terminal of the battery completing the circuit. Once the current is flowing through this circuit, the filament inside the headlamp gets hot and glows brightly. Let there be light.Now, back to the ignition system, the basic principle of the electrical spark ignition system has not changed for over 75 years. What has changed is the method by which the spark is created and how it is distribute.Currently, there are three distinct types of ignition system. The mechanical ignition systemwas used prior to 1975. It was mechanical and electrical and used no electronics. By understanding these early system, it will be easier to understand the new electronic andcomputer controlled ignition system, so don’’t skip over it. The electronic ignition system started computer controlled ignition system, so donfinding its way to production vehicles during the early 70s and became popular when better control and improved reliability became important with the advent of emission controls. Finally, the distributor less ignition system became available in the mid 80s. This system was always computer controlled and contained no moving parts, so reliability was greatly improved. Most of these systems required no maintenance except replacing the spark plugs at intervals from 60,000 to over 100,000 miles.Let’’s take a detailed look at each system and see how they work.LetThe Mechanical Ignition SystemThe distributor is the nerve center of the mechanical ignition system and has two tasks to perform. First, it is responsible for triggering coil to generate a spark at the precise instant that it is required (which varies depending how fast the engine is turning and how much load it is under). Second, the distributor is responsible for directing that spark to the proper cylinder (which is why it is called a distributor).The circuit that powers the ignition system is simple and straight forward. When you insert the key in the ignition switch and turn the key to the Run position, you are sending current from the battery through a wire directly to the positive (+) side of the ignition coil. Inside the coil is a series of copper windings that loop around the coil over a hundred times before exiting out the negative (-) side of the coil. From there, a wire takes this current over to the distributor and is connected to a special on/off switch, called the points. When the points are closed, this current goes directly to ground. When current flows from the ignition switch, through the windings in the coil, then to ground, it builds a strong magnetic field inside the coil.The points are made up of a fixed contact point that is fastened to a plate inside the distributor, and a movable contact point mounted on the end of a spring loaded arm. The movable point rides on a 4, 6, or 8 lobe cam (depending on the number of cylinder in the engine) that is mounted on a rotating shaft inside the distributor. This distributor cam rotates in time with the engine, making one complete revolution for every two revolutions of the engine. As it rotates, the cam pushes the points open and closed. Every time the points open, the flow of current is interrupted through the coil, thereby collapsing the magnetic field and releasing a high voltage surge through the secondary coil windings. This voltage surge goes out the top of the coil and through the high-tension coil wire.Now, we have the voltage necessary to fire the spark plug, but we still have to get it to the correct cylinder. The coil wire goes from the coil directly to the distributor cap. Under the cap is a rotor that is mounted on top of the rotating shaft. The rotor has a metal strip on the top that is in constant contact with the center terminal of the distributor cap. It receives the high voltage surge from the coil wire and sends it to the other end of the rotor which rotates past each spark plug terminal inside the cap. As the rotor turns on the shaft, it sends the voltage to the correct spark plug wire, which in turn sends it to the spark plug. The voltage enters the spark plug at the terminal at the top and travels down the core until it reaches the tip. It then jumps across the tip of the spark plug, creating a spark suitable to ignite the fuel-air mixture inside that cylinder. The description I just provided is the simplified version, but should be helpful to visualize the process, but we left out a few things that make up this type of ignition system. For instance, we didn’’t talk about the condenser that is connected to the point, nor did we talk about the system didnto advance the timing. Let’’s take a look at each section and explore it in more detail.to advance the timing. LetThe Ignition SwitchThere are two separate circuits that go from the ignition switch to the coil. One circuit runs through a resistor in order to step down the voltage about 15% in order to protect the points from premature wear. The other circuit sends full battery voltage to the coil. The only time this circuit is used is during cranking. Since the starter draws a considerable amount of current to crank the engine, additional voltage is needed to power the coil. So when the key is turned to the spring-loaded start position, full battery voltage is used. As soon as the engine is running, the driver releases the key to the run position which directs current through the primary resistor to the coil.On some vehicles, the primary resistor is mounted on the firewall and is easy to replace if it fails. On other vehicles, most notably vehicles manufactured by GM, the primary resister is a special resister wire and is bundled in the wiring harness with other wires, making it more difficult to replace, but also more durable.The DistributorWhen you remove the distributor cap from the top of the distributor, you will see the points and condenser. The condenser is a simple capacitor that can store a small amount of current. When the points begin to open the current, flowing through the points looks for an alternative path to ground. If the condenser were not there, it would try to jump across the gap of the point as they begin to open. If this were allowed to happen, the points would quickly burn up and you would hear heavy static on the car radio. To prevent this, the condenser acts like a path to ground. It really is not, but by the time the condenser is saturated, the points are too far apart for the small amount of voltage to jump across the wide point gap. Since the arcing across the opening points is eliminated, the points last longer and there is no static on the radio from point arcing.The points require periodic adjustments in order to keep the engine running at peek efficiency. This is because there is a rubbing block on the points that is in contact with the cam and this rubbing block wears out over time changing he point gap. There are two ways that the points can be measured to see if they need an adjustment. One way is by measuring the gap between the open points when the rubbing block is on the high point of the cam. The other way is by measuring the dwell electrically. The dwell is the amount, in degrees of cam rotation that the points stay closed.On some vehicles, points are adjusted with the engine off and the distributor cap removed. A mechanic will loosen the fixed point and move it slightly, then retighten it in the correct position using a feeler gauge to measure the gap. On other vehicles, most notably GM cars, there is a window in the distributor where a mechanic can insert a tool and adjust the points using a dwell meter while the engine is running. Measuring dwell is much more accurate than setting the points with a feeler gauge.Points have a life expectancy of about 10,000 miles at which time have to be replaced. This is done during a routine major tune up, points, condenser, and the spark plugs are replaced, the timing is set and the carburetor is adjusted. In some cases, to keep the engine running efficiently, a minor tune up would be performed at 5,000 mile increments to adjust the point and reset the timing.Ignition CoilThe ignition coil is nothing more that an electrical transformer. It contains both primary and secondary winding circuit. The coil primary winding contains 100 to 150 turns of heavy copper wire. This wire must be insulated so that the voltage does not jump from loop to loop, shortingit out. If this happened, it could not create the primary magnetic field that is required. The primary circuit wire goes into the coil through the positive terminal, loops around the primary windings, then exits through the negative terminal.The coil secondary winding circuit contains 15,000 to 30,000 turns of fine copper wire, which also must be insulated from each other. The secondary windings sit inside the loops of the primary windings. To further increase the coils magnetic field the windings are wrapped around a soft iron core. To withstand the heat of the current flow, the coil is filled with oil which helps keep it cool.The ignition coil is the heart of the ignition system. As current flows through the coil a strong magnetic field is build up. When the current is shut off, the collapse of this magnetic field to the secondary windings induces a high voltage which is released through the large center terminal. This voltage is then directed to the spark plugs through the distributor.Ignition Timing The timing is set by loosening a hold-down screw and rotating the body of the distributor. Since the spark is triggered at the exact instant that the points begin to open, rotating the distributor body (which the point are mounted on) will change the relationship between the position and the position of the distributor cam, which is on the shaft that is geared to the engine rotation.While setting the initial or base timing is important, for an engine to run properly, the timing needs to change depending on the speed of the engine and the load that it is under. If we can move the plate that the points are mounted on, or we could change the position of the distributor cam in relation to the gear that drives it, we can alter the timing dynamically to suit the needs of the engine.Ignition Wires These cables are designed to handle 20,000 to more than 50,000 volts, enough voltage to toss you across the room if you were to be exposed to it. The job of the spark plug wires is to get that enormous power to the spark plug without leaking out. Spark plug wires have to endure the heat of a running engine as well as the extreme changes in the weather. In order to do their job, spark plug wires are fairly thick, with most of that thickness devoted to insulation with a very thin conductor running down the center. Eventually, the insulation will succumb to the elements and the heat of the engine and begins to harden, crack, dry out, or otherwise break down. When that happens, they will not be able to deliver the necessary voltage to the spark plug and a misfire will occur. That is what is meant by “Not running on all cylinders cylinders””. To correct this problem, the spark plug wires would have to be replaced.Spark plug wires are routed around the engine very carefully. Plastic clips are often used to keep the wires separated so that they do not touch together. This is not always necessary, especially when the wires are new, but as they age, they can begin to leak and crossfire on damp days causing hard starting or a rough running engine.Spark plug wires go from the distributor cap to the spark plugs in a very specific order. This is called the is called the ““firing order firing order”” and is part of the engine design. Each spark plug must only fire at the end of the compression stroke. Each cylinder has a compression stroke at a different time, so it is important for the individual spark plug wire to be routed to the correct cylinder.For instance, a popular V8 engine firing order is 1, 8, 4, 3, 6, 5, 7, 2. The cylinders are numbered from the front to the rear with cylinder #1 on the front-left of the engine. So the cylinders on the left side of the engine are numbered 1, 3, 5, 7while the right side are numbered 2, 4, 6, 8. On some engine, the right bank is 1, 2, 3, 4 while the left bank is 5, 6, 7, 8. A repairmanual will tell you the correct firing order and cylinder layout for a particular engine.The next thing we need to know is what direction the distributor is rotating in, clockwise or counter-clockwise, and which terminal on the distributor caps that #1 cylinder is located. Once we have this information, we can begin routing the spark plug wires.If the wires are installed incorrectly, the engine may backfire, or at the very least, not run on all cylinders. It is very important that the wires are installed correctly.Spark PlugsThe ignition system system’’s sole reason for being is to service the spark plug. It must provide sufficient voltage to jump the gap at the tip of the spark plug and do it at the exact right time, reliably on the order of thousands of times per minute for each spark plug in the engine.The modern spark plug is designed to last many thousands of miles before it requires replacement. These electrical wonders come in many configurations and heat ranges to work properly in a given engine. The heat range of a spark plug dictates whether it will be hot enough to burn off any residue that collects on the tip, but not so hot that it will cause pre-ignition in the engine. Pre-ignition is caused when a spark plug is so hot, that it begins to glow and ignite the fuel-air mixture prematurely, before the spark. Most spark plugs contain a resistor to suppress radio interference. The gap on a spark plug is also important and must be set before the spark plug is installed in the engine. If the gap is too wide, there may not be enough voltage to jump the gap, causing a misfire. If the gap is too small, the spark may be inadequate to ignite a lean fuel-air mixture also causing a misfire.The Electronic Ignition SystemThis section will describe the main differences between the early point & condenser systems and the newer electronic systems. If you are not familiar with the way an ignition system works in general, I strongly recommend that you first read the previous section The Mechanical Ignition System.In the electronic ignition system, the points and condenser were replaced by electronics. On these systems, there were several methods used to replace the points and condenser in order to trigger the coil to fire. One method used a metal wheel with teeth, usually one for each cylinder. This is called an armature. A magnetic pickup coil senses when a tooth passes and sends a signal to the control module to fire the coil.Other systems used an electric eye with a shutter wheel to send a signal to the electronics that it was time to trigger the coil to fire. These systems still need to have the initial timing adjusted by rotating the distributor housing.The advantage of this system, aside from the fact that it is maintenance free, is that the control module can handle much higher primary voltage than the mechanical point. V control module can handle much higher primary voltage than the mechanical point. Voltage can oltage can even be stepped up before sending it to the coil, so the coil can create a much hotter spark, on the order of 50,000 volts that is common with the mechanical systems. These systems only have a single wire from the ignition switch to the coil since a primary resistor is not longer needed. On some vehicles, this control module was mounted inside the distributor where the points used to be mounted. On other designs, the control module was mounted outside the distributor with external wiring to connect it to the pickup coil. On many General Motors engines, the control module was inside the distributor and the coil was mounted on top of the distributor for a one piece unitized ignition system. GM called it high energy ignition or HEI for short.The higher voltages that these systems provided allow the use of a much wider gap on the spark plugs for a longer, fatter spark. This larger sparks also allowed a leaner mixture for betterfuel economy and still insure a smooth running engine.The early electronic systems had limited or no computing power, so timing still a centrifugal and vacuum advance built into the distributor.On some of the later systems, the inside of the distributor is empty and all triggering is performed by a sensor that watches a notched wheel connected to either the crankshaft or the camshaft. These devices are called crankshaft position sensor or camshaft position sensor. In these systems, the job of the distributor is solely to distribute the spark to the correct cylinder through the distributor cap and rotor. The computer handles the timing and any timing advance necessary for the smooth running of the engine.The Distributor Ignition SystemNewer automobiles have evolved from a mechanical system (distributor) to a completely solid state electronic system with no moving parts. These systems are completely controlled by the on-board computer. In place of the distributor, there are multiple coils that each serves one or two spark plugs. A typical 6 cylinder engine has 3 coils that are mounted together in a coil pack””. A spark plug wire comes out of each side of the individual coil and goes to the “packappropriate spark plug. The coil fires both spark plugs at the same time. One spark plug fires on the compression stroke igniting the fuel-air mixture to produce power while the other spark plug fires on the exhaust stroke and does nothing. On some vehicles, there is an individual coil for each cylinder mounted directly on top of the spark plug. This design completely eliminates the high tension spark plug wires for even better reliability. Most of these systems use spark plugs that are designed to last over 100,000 miles, which cuts down on maintenance costs.参考文献:[1] 王欲进,张红伟汽车专业英语[M]. 北京:北京大学出版社,中国林业出版社,2007.8,55—67点火系统点火系统的作用是产生点燃发动机气缸里可燃混合物的火花。

汽车专业英语全文翻译

汽车专业英语全文翻译

汽车工程专业英语全文翻译一当今的汽车一般都由15000 多个分散、独立且相互配合的零部件组成。

这些零部件主要分为四类:车身、发动机、底盘和电气设备。

Body:车身Engine:发动机Brakes:制动器Power train :传动系Steering:转向系Electrical:电器及电子设备Suspension:悬架Layout of a passenger car:乘用车总布置Layout of a commercial vehicle :商用车总布置1.1 车身汽车车身是由车窗、车门、发动机罩和行李箱盖焊接在金属板外壳发动机发动机作为动力装置。

最常见的发动机气缸的排列方式称为发动机配置。

直列式发动机的汽缸呈一列布置。

这个设计创造了一个简单的发动机缸体铸造。

在车辆应用中,汽缸数一般是2-6 缸,汽缸中心线与水平面垂直。

当汽缸数增多时,发动机尺寸和曲轴就成为一个问题。

解决这个问题的办法就是采用V 形(汽缸呈两列布置,且两列气缸之间夹角为V 形)发动机。

这个设计使发动机尺寸和曲轴都变得更短且更坚硬。

前置发动机纵向安装,既可前轮驱动也可后轮驱动。

后置发动机是将发动机安装在后轮后面。

发动机可横置或纵置,一般情况下为后轮驱动。

1.4 电气系统电气系统为起动机、点火系统、照明灯具、取暖器提供电能。

该电平由一个充电电路维护。

1.4.1 充电充电系统为所有汽车电子元件提供电能。

充电系统主要包括:蓄电池,交流发电机,电压调节器,即通常是交流发电机上不可或缺的,充电警告或指示灯和金属丝连成一个完整电路。

蓄电池为起动提供电能 ,然后发动机工作,交流发电机就为所有的电子元件提供电能。

同时也给蓄电池充电即用来使发动机起动。

电压调节器有过充保护作用。

1.4.2 起动起动系统包括:蓄电池、电缆、起动机、飞轮和换向器。

起动时,有两个动作同时运行,该起动机齿轮与飞轮齿圈啮合,并起动电机,然后运行传输到发动机曲轴。

起动机电机将起动机安装在发动机缸体上并由电池供电。

发动机专业英语词汇

发动机专业英语词汇

濮明2007年2月4日内燃机intenal combustion engine动力机装置power unit汽油机gasoline engine汽油喷射式汽油机gasoline-injection engine 火花点火式发动机spark ignition engine压燃式发动机compression ignition engine 往复式内燃机reciprocating internal combustion engine化油器式发动机carburetor engine柴油机diesel engine转子发动机rotary engine旋轮线转子发动机rotary trochoidal engine 二冲程发动机two-stroke engine四冲程发动机four-stroke engine直接喷射式柴油机direct injection engine间接喷射式柴油机indirect injection engine 增压式发动机supercharged engine风冷式发动机air-cooled engine油冷式发动机oil-cooled engine水冷式发动机water-cooled engine自然进气式发动机naturally aspirated engine 煤气机gas engine液化石油气发动机liquified petroleum柴油煤气机diesel gas engine多种燃料发动机multifuel engine石油发动机hydrocarbon engine双燃料发动机duel fuel engine热球式发动机hot bulb engine多气缸发动机multiple cylinder engine对置活塞发动机opposed piston engine对置气缸式发动机opposed-cylinder engine十字头型发动机cross head engine直列式发动机in-line engine星型发动机radial engine筒状活塞发动机trunk-piston engine斯特林发动机stirling engine套阀式发动机knight engine气孔扫气式发动机port-scavenge d engine倾斜式发动机slant engine前置式发动机front-engine后置式发动机rear-engine中置式发动机central engine左侧发动机left-hand engine右侧发动机right-hand engine短冲程发动机oversquare engine长冲程发动机undersquare engine等径程发动机square engine顶置凸轮轴发动机overhead camshaft engine双顶置凸轮轴发动机dual overhead camshaft engine V形发动机V-engine顶置气门发动机valve in-head engine侧置气门发动机side valve engine无气门发动机valveless engine多气门发动机multi-valve engine卧式发动机horizontal engine斜置式发动机inclined engine立式发动机vertical engineW形发动机w-engineI形发动机I-engineL形发动机L-engineF形发动机F-engine二冲程循环two-stroke cycle四冲程循环four-stroke cycle狄塞尔循环diesel cycle奥托循环otto cycle混合循环mixed cycle定容循环constant volume cycle工作循环working cycle等压循环constant pressure cycle理想循环ideal cycle热力循环thermodynamic cycle冲程stroke活塞行程piston stroke长行程long stroke上行程up stroke下行程down stroke进气行程intake stroke充气行程charging stroke压缩行程compression stroke爆炸行程explosion stroke膨胀行程expansion stroke动力行程power stroke排气行程exhaust stroke膨胀换气行程expansion-exchange stroke换气压缩行程exchange-compression stroke止点dead center上止点top dead center(upper dead center)下止点lower dead center(bottom dead center)上止点前budc(before upper dead center)上止点后atdc(after top dead cetner)下止点前bbdc(before bottom dead center)下止点后abdc(after bottom dead center)缸径cylinder bore缸径与行程bore and stroke空气室energy chamber气缸余隙容积cylinder clearance volume燃烧室容积combustion chamber volume气缸最大容积maximum cylinder volume压缩室compression chamber排气量displacement发动机排量engine displacement活塞排量piston swept volume气缸容量cylinder capacity单室容量single-chamber capacity容积法volumetry压缩比compression ratio临界压缩比critical compression ratio膨胀比expansion ratio面容比surface to volume ratio行程缸径比stroke-bore ratio混合比mixture ratio压缩压力compression pressure制动平均有效压力brake mean effective pressure(bmep) 空燃比air fuel ratio燃空比fuel air ratio燃料当量比fuel equivalence ratio扭矩torque单缸功率power per cylinder升功率power per liter升扭矩torque per liter升质量mass per liter减额功率derating power输出马力shaft horsepower马力小时,马力时horsepower-hour总马力gross horse power总功率gross power净功率net power燃油消耗量fuel consumption比燃料消耗率specific fuel consumption空气消耗率air consumption机油消耗量oil consumption有效马力net horse power额定马力rated horse power马力重量系数horsepower-weight factor制动功率brake horse power制动热效率brake thermal efficiency总效率overall efficiency排烟极限功率smoke limiting horsepower功率曲线power curve机械损失mechanical loss机械效率mechanical efficiency有效热效率effective thermal efficiency充气系数volumetric efficiency过量空气系数coefficient of excess air适应性系数adaptive coefficient扭矩适应性系数coefficient of torque adaptibility转速适应性系数speed adaptive coefficient强化系数coefficient of intensification校正系数correction factor换算系数conversion factor活塞平均速度mean piston speed发动机转速engine speed (rotational frequency)怠速转速idling speed经济转速economic speed起动转速starting speed最低稳定工作转速lowest continuous speed with load 最大扭矩转速speed at maximum torque最高空转转速maximum no load governed speed调速speed governing超速overspeed怠速idling转速波动率speed fluctuation rate工况working condition(operating mode)额定工况declared working condition变工况variable working condition稳定工况steady working condition空载no-load全负荷full load超负荷overload部分负荷part load充量(进气)charge旋转方向direction of rotation顺时针clockwise逆时针counter-clockwise左转left-hand rotation右转right-hand rotation外径major diameter中径pitch diameter内径minor diameter径向间隙radial clearance发动机性能engine performance加载性能loading performance起动性能starting performance加速性能acceleration performance动力性能power performance排放性能emission performance空转特性no load characteristics负荷特性part throttle characteristics调速特性governor control characteristics万有特性mapping characteristics稳定调速率steady state speed governing rate 气缸体和气缸盖cylinder block and head气缸体cylinder block整体铸造cast inblock (cast enblock)发动机罩engine bonnet气缸体加强筋engine block stiffening rib气缸cylinder(转子机)缸体stator缸径cylinder bore气缸体机架cylinder block frame气缸盖cylinder head配气机构箱valve mechanism casing气缸体隔片cylinder spacer气缸盖密封环cylinder head ring gasket气缸盖垫片cylinder head gasket气缸套cylinder liner(cylinder sleeve)干式缸套dry cylinder liner湿式缸套wet cylinder liner气缸水套water jacket膨胀塞expansion plug防冻塞freeze plug气缸壁cylinder wall环脊ring ridge排气口exhaust port中间隔板intermediate bottum导板guideway创成半径(转子机)generating radius缸体宽度(转子机)operating width机柱column燃烧室combustion chamber主燃烧室main combustion chamber副燃烧室subsidiary combustion chamber预燃室prechamber涡流燃烧室` swirl combustion chamber分开式燃烧室divided combustion chamber涡流式燃烧室turbulence combustion chamber半球形燃烧室hemispherical combustion chamber浴盆形燃烧室bathtub section combustion chamberL形燃烧室L-combustion chamber楔形燃烧室wedge-section combustion chamber开式燃烧室open combustion chamber封闭喷射室closed spray chamber活塞顶内燃烧室piston chamber爆发室explosion chamber燃烧室容积比volume ratio of combustion cahmber燃烧室口径比surface-volume ratio of combustion chamber 通道面积比area ratio of combustion chamber passage曲轴箱通气口crankcase breather凸轮轴轴承座camshaft bearing bush seat定时齿轮室罩camshaft drive(gear)cover曲轴箱检查孔盖crankcase door曲轴箱防爆门crankcase explosion proof door主轴承盖main bearing cap气缸盖罩valve mechanism cover飞轮壳flywheel cover扫气储器scavenging air receiver活塞piston裙部开槽活塞split skirt pistonU形槽活塞U-slot piston滚花修复活塞knurled piston圆顶活塞dome head piston平顶活塞flat head piston凸顶活塞crown head piston(convex head piston) 凹顶活塞concave head piston阶梯顶活塞step-head piston筒形活塞trunk piston椭圆形活塞oval piston抗热变形活塞autothermic piston不变间隙活塞constant clearance piston镶因瓦钢片活塞invar strut piston直接冷却式活塞direct-cooled piston间接冷却式活塞indirect cooled piston滑裙活塞slipper piston活塞速度piston speed活塞顶部piston head活塞裙部piston skirt整体活塞裙solid skirt活塞裙扩大衬簧piston skirt expander滑履式活塞裙slipper skirt隔热槽heat dam活塞标记piston mark活塞销piston pin活塞销孔piston pin boss活塞销衬套piston pin bushing全浮式活塞销full-floating piston pin半浮式活塞销semifloating piston pin固定螺钉式活塞销set screw piston pin活塞环piston ring组合式活塞环compound piston ring同心活塞环concentric piston ring偏心活塞环eccentric piston ring自由环free ring闭合环closed ring梯形环keystone ring半梯形环half keystone ring矩形环rectangular ring油环oil control ring开槽油环slotted oil control ring螺旋弹簧加载双坡口油环coil spring loaded slotted oil control ring 涨环expander双坡口油环double bevelled oil control ring内上坡口internal bevel top内下坡口internal bevel bottom边缘坡口油环bevelled-ege oil control ring刮油环scrapper ring钩形环napier ring镀铬活塞环chrome plated piston ring活塞衬环piston ring expander活塞环槽piston ring groove活塞环区ring zone活塞环岸piston ring land活塞环内表面back of ring曲柄连杆机构connecting rod中心曲柄连杆机构central-located connecting rod偏心曲柄连杆机构offset connecting rod铰接曲柄边杆机构hinged connecting rod连杆connecting rod连杆小头connecting rod small end连杆大头connnecting rod big end连杆杆身connecting rod shank副连杆slave connecting rod叉形连杆fork-and-blade connecting rod主连杆main connecting rod方形连杆boxed rod绞链式连杆hinged type connecting rod活节式连杆articulated connecting rod连杆盖connecting rod cap连杆轴承connecting rod bearing曲轴crankshaft整体式曲轴one-piece crankshaft组合式曲轴assembled crankshaft右侧曲轴right-hand crankshaft左侧曲轴left-hand crankshaft改变行程的曲轴stroked crankshaft曲轴前端crankshaft front end曲轴主轴颈crankshaft main journal轴颈重叠度shaft journal overlap圆角fillet主轴承main bearing曲轴止推轴承crankshaft thrust bearing薄臂轴瓦thin wall bearing shell曲轴油道crankshaft oil passage曲柄crank曲柄臂crank arm曲柄销crank pin轴套bush曲柄转角crank angle曲柄半径crank radius抛油圈oil slander角度轮degree wheel动平衡机dynamic balancer平衡重balancer weight扭振减振器torshional vibration damper扭振平衡器torsion balancer谐振平衡器harmonic balancer振动平衡器vibration balancer曲轴链轮crankshaft sprocket转子轴颈rotor journal偏心轴eccentric shaft曲轴箱crankcase闭式曲轴箱通风装置closed-crankcase ventilating system 飞轮flywheel飞轮齿圈flywheel ring gear飞轮芯棒cantilever飞轮芯轴flywheel spindle飞轮的惯量矩flywheel moment of inertia飞轮标记flywheel mark当量系统equivalent system当量轴长equivalent shaft length一级往复惯性力reciprocating inertia force,1st order二级往复贯性力reciprocating inertia force, 2nd order 离心惯性力centrifugal inertia force配气机构valve gear凸轮轴camshaft凸轮cam整体式凸轮轴one-piece camshaft组合式凸轮轴assembled camshaft凸轮轴驱动机构camshaft drive赛车用凸轮轴race camshaft凸轮轴轴颈camshaft bearing journal凸轮轴轴承camshaft bearing凸轮轴偏心轮camshaft eccentric凸轮轴链轮camshaft sprocket凸轮轴正时齿轮camshaft timing gear凸轮轴齿轮camshaft gear wheel进口凸轮inlet cam排气凸轮exhaust cam快升凸轮quick lift cam快升缓降凸轮quick lift gradual clsing cam 凸轮轮廓cam contour凸轮包角cam angle凸轮升程cam-lobe lift凸轮尖cam nose凸轮从动件cam follower齿轮传动机构gear drive正时齿轮timing gear链传动机构chain drive链轮sprocket wheel链轮盘chain sprocket正时链条timing chain带齿皮带toothed timing belt链条张紧轮chain tension gear半速齿轮half speed gear正时齿轮刻印记号timing gear punch mark 气门valve进气过程intake process换气过程gas exchange process扫气过程scavenging process给气比delivery ratio分层充气stratified charge充量系数volumetric efficiency涡流比swirl rate进气涡流intake swirl螺旋进气道进气helical duct intake导流屏式气门进气masked valve intake切向进气道进气tangential duct intake进气紊流intake trubulence进气提前角intake advance angle进气持续角intake duration angle进气迟后角intake lag angle进面值time-area value气门升程valve lift气门正时valve timing扫气口面积scavenging port area菌形气门mashroom valve, poppet valve钠冷却气门sodium filled valve(natrium cooled valve)双气门dual valve进气门intake valve (suction valve,inlet valve)排气门exhaust valve顶置气门overhead valve侧置气门side valve倾斜气门inclined overhead valve直立气门vertical overhead valve套筒式滑阀sleeve valve气门机构valve gear直接式气门驱动机构direct valve gear间接式气门驱动机构indirect valve gear气门杆valve stem加大气门杆oversize valve stem气门头valve head气门工作面valve face气门边限valve margin气门弹簧座valve-spring retainer气门锁片valve key气门间隙调节螺钉valve lash adjusting screw气门旋转器valve rotator气门室valve cage气门油封valve oil seal气门口valve port气门座valve seat气门座镶圈(嵌镶式气门座圈)valve seat insert(valve seat ring) 气门座锥角valve seat angle气门座宽度valve seat width气门挺杆valve tappet(valve lifter)液力挺杆hydraulic tappet(lifter)无间隙挺杆zero-rush tappet (non-clearance tappet)筒形挺杆barrel type tappet油压挺杆ooil tappet滚轮挺杆roller tappet(lifter)挺杆转位tappet rotation排气门挺杆exhaust valve lifter气门导管valve guide气门杆导管stem guide气门重叠度stem overlap气门开启持续时间valve duration气门正时标记valve timing sign气门弹簧valve spring气门内弹簧inner valve spring气门外弹簧outer valve spring刚性缓冲弹簧stiff buffer spring上紧弹簧energizing spring防振气门弹簧non-surging spring弹簧座圈spring retainer蝶形弹簧belleville spring滚柱roller气门室盖valve chamber cover摇臂rocker arm高升程摇臂high lift rocker arm摇臂轴rocker arm shaft推杆push-rod摇臂支架rocker arm bracket气门摇臂室罩valve rocker chamber cover导向轮guide wheel导杆slide bar导轨slide rail张紧轮tensioning wheel链条张紧调节装置assembly chain tension adjuster 张紧带轮tensioning pulley传动带张紧装置belt tensioner同步驱动皮带synchronous belt同步驱动皮轮synchronous belt pulley供油系fuel system控制燃烧系统controlled combustion system反湿气装置antipercolator电子燃油喷射electronic fuel injection蒸气回收装置vapor recovery system燃油蒸气回收系统fuel vapor recovery system液体回收装置liquid withdrawal system恒量净化管constant purge line碳罐净化管canister purge line供油量fuel delivery循环供油量fuel delivery per cycle额定供油量rated fuel delivery怠速供油量idling speed fuel delivery供油规律fuel supply rate curve油量调节装置fuel control unit供油提前角fuel supply advance angle进油计量inlet metering几何供油行程geometric fuel delivery stroke供油率fuel supply rate燃油通道fuel gallery有效行程effective stroke剩余行程remainder stroke变行程计量variable stroke metering等容卸载constant volume unloading变容卸载variable volume unloading收缩容积retraction volume燃油喷油装置fuel injection equipment燃油喷射泵fuel injection pump滚轮式燃油喷射泵roll fuel injection pump凸轮轴式燃油喷射泵camshaft fuel injection pump直列式燃油喷射泵in-line fuel injection pump伺服式燃油喷射泵servo fuel injection pump底部突缘安装燃油喷射泵base flanged mounted fuel injection pump 上部安装燃油喷射泵high flanged-mounted fuel injection pump侧向安装燃油喷射泵side-mounted fuel injection pump端部突缘安装式燃油喷射泵end flange-mounted fuel injection pump V形燃油喷射泵vee fuel injection pump脉动式燃油喷射泵jerk fuel injection pump螺纹安装燃油喷射泵screw-mounted fuel injection pump蓄能式燃油喷射泵accumulator fuel injection pump往复式燃油喷射泵reciprocating fuel injection pump驱动轴式燃油喷射泵driveshaft fuel injection pump单缸式燃油喷射泵single cylinder fuel injection pump圆柱式燃油喷射泵cylindrical fuel injection pump旋转式燃油喷射泵rotary fuel injection pump分配式燃油喷射泵distributor fuel injection pump多缸燃油喷射泵multicylinder fuel injection pump框架安装式燃油喷射泵cradle mounted injection pump喷油始点fuel injection beginning喷油终点fuel injection end喷油持续角fuel injection duration angle喷油延迟injection delay引燃喷射pilot injection启喷压力injection starting pressure峰值喷油扭矩peak injection torque峰值喷油压力peak injection pressure喷油泵油缸数目number of cylinders of an injection pump无气喷射solid injection喷射正时injection timing集中喷射group injection喷油器injector整体式喷油器unit injector喷嘴nozzle轴针式喷嘴pintle type nozzle环槽式喷嘴annular slot nozzle孔式喷嘴hole type nozzle长杆喷嘴long stem nozzle孔板式喷嘴orifice plate nozzle开式喷嘴open nozzle闭式喷嘴closed nozzle喷油提前器timing advance unit喷射泵壳体injection pump housing针阀needle芯轴central spindle喷嘴壳体nozzle body针阀升程needle lift喷嘴盖形螺母nozzle cap nut喷油器壳体nozzle holder突缘安装喷油器壳体flanged-mounted injection nozzle holder 燃油喷射泵传动装置transmision of an injection pump喷嘴锥体nozzle hole cone柱塞plunger柱塞套barrel柱塞行程plunger stroke喷孔spray orifice海拔控制器altitude control提前器飞锤flyweight喷孔长径比ratio of nozzle hole length nozzle diameter喷嘴液动力特性nozzle hydrokinetic characteristics动态相位dynamic phase喷孔面积nozzle hole area喷嘴流通特性nozzle flow characteristic喷油背压injection back pressure高压油管high pressure pipe平均喷油扭矩mean injection torque喷油总效率overall pumping efficiency峰值喷油压力injection peak pressure预行程prestroke收缩行程retraction stroke燃油箱fuel tank油箱盖fuel tank油位表fuel level gauge注油控制装置fill control system汽油箱gasoline tank( petrol tank)汽油供给管gasoline feed pipe加油管filler tube放油螺塞drain plug吸油管suction pipe刚性燃油管rigid fuel pipe进油孔fuel feed hole供油管supply pipe通气管bleeding pipe通气管bleeding pipe泄油阀spill valve泄油孔口spill port进油阀inlet valve最大油量限制器maximum fuel stop滴油dribble燃油表fuel gauge输油泵feed pump燃油泵fuel pump附装燃油箱中的电动燃油泵tank-mounted eletric fuel pump 机械式燃油泵mechanical fuel pump膜片式燃油泵diaphragm fuel supply pump叶片式供油泵vane fuel supply pump活塞式输油泵piston type fuel supply pump齿轮式输油泵gear fuel supply pump电动燃油泵eletric fuel pump带真空泵的汽油泵vacuum pump with fuel pump起动加油器primer起动给油杆primer lever燃油泵上体fuel pump body燃油泵下体fuel pump base燃油泵盖bowl cover进油口接头fuel inlet neck出油口接头fuel discharge port输出阀delivery valve泵油元件pump element回油阀部件fuel return valve assembly化油器carburetor化油器系统carburetor circuit简单化油器elementary carburetor单腔化油器single-barrel carburetor双腔并动化油器two-barrel dual carburetor双腔分动化油器two-barrel duplex carburetor四腔化油器four-barrel carburetor上吸式化油器updaught carburetor下吸式化油器downdraught carburetor平吸式化油器horizontal carburetor侧吸式化油器side-draft-carburetor高海拔补偿式化油器altitude compensating carburetor 化油器附加器adaptor carburetor双腔式化油器twin-choke carburetor固定喉管式化油器fixed venturi carburetor可变喉管化油器variable venturi carburetor化油器接头carburetor adaptor阻风门choke valve阻风活塞choke piston阻风板choke plate自动阻风门automatic choke阻风门拉钮choke button电控自动阻风门electric-assisted choke阻风管choke tube喉管venturi双重或三重喉管double & triple venturi阻风门拉线choke cable化油器小喉管booster venturi浮子系float system浮子float环形浮子annular float同心式浮子concentric float浮子支销float hinge pin浮子针阀float needle valve阀针valve needle浮子油面float level浮子臂float arm侧置浮子室式side float type怠速阀idle valve怠速针阀idle needle省油器economizer省油器阀economizer valve辅助空气阀auxiliary air-valve加速油井accelerating well加速泵accelerating pump加速泵喷嘴accelerating pump nozzle油门throttle手油门hand throttle节气门操纵手柄throttle control lever真空加浓器vacuum booster加浓器excess fuel device量孔体jet block怠速量孔idle metering jet主量孔main metering jet剂量阀活塞dosage valve piston空气量孔air jet燃油滤清器fuel filter沉淀杯sediment bowl串联过滤器in-line filter燃油箱内装过滤器in-tank filter调速器governor飞球式调速器flyball governor调速器governor飞球式调速器flyball governor液压调速器hydraulic governor真空转速调速器vacuum speed governor惯性调速器inertia governor离心调速器centrifugal governor调速器重锤governor weight空气滤清器及进排气系统air cleaner and intake and exhaust sytem 空气滤清器air filter冲压式空气滤清器ram air clearner恒温控制式空气滤清器thermostatic controlled air cleaner油浴式空气滤清器oil bath air cleaner纸质空气滤清器paper air clearner旋流管式空气滤清器swirl tube air filter滤清器滤芯filter element空气滤清器壳体air filter housing空气滤清器盖air filter cover滤清器密封圈filter seal ring滤网sieve滤纸盘或膜filter paper disc or membrane进气和排气系统intake and exhaust system排气管exhaust pipe排气抽气管exhaust extraction duct扫气泵scavenging pump进气预热装置intake preheater进气歧管intake manifold进气歧管真空度intake manifold vacuum冷式进气歧管cold manifold冲压式进气歧管ram intake manifold排气歧管exhaust manifold脉冲式排气歧管pulse exhaust manifold等压排气歧管constant pressrue exhaust manifold排气歧管热量控制阀exhaust manifold heat control valve 超高度歧管high-rise manifold升温横跨管道heat crossover排气横跨管道exhaust crossover预热点hot spot阻风门加热器choke heater热空气导流管hot air duct隔热板heat shield排气再循环阀exhaust -gas-recirculation消声器silencer进气消声器intake silencer排气消声器exhaust silencer金属垫片式消声器steel pack muffler玻璃丝消声器glass pack muffler空洞消声器gutted muffler前排气管front exhaust pipe尾管tail pipe消声器联接管intermediate pipe热空气管hot air pipe曲轴箱通风管crankcase bleed pipe隔声罩acoustic hood进气消声器元件silencer element真空泵vacuum pump指示功率indicated power指示热效率indicated thermal efficiency指示油耗率indicated specific energy consumption示功图indicator diagram冷却系cooling system风冷air cooling水冷water-cooling循环流冷却系cooling recovery system自然循环液冷却系统natural circulation type cooling system热流循环液冷却系统thermo-siphon circulation type cooling system 温差循环液冷却系统gravity circulation water cooling system压力式水冷却系统positive circulation cooling system加压式冷却法pressure type cooling水泵循环冷却系统pump circulation cooling system强制循环式化冷系统forced-feed water circulation system封闭式液冷系统sealed cooling system散热器radiator片式散热器finned radiator管式散热器tubular radiator蜂窝式散热器cellular radiator哈里逊式散热器Harrison type radiator带板式散热器ribbon type radiator上水箱upper tank下水箱lower tank涨溢箱expansion tank散热器芯radiator core之字形管散热器芯film core管-片式散热器芯fin and tube core散热器加水口盖radiator filter cap压力式水箱盖radiator-pressure cap蒸气-空气泄放阀vapor-air release valve散热器护罩radiator cowl散热器百叶窗radiator shutter散热器保温帘radiator roller blind散热片cooling fin缸盖散热片cylinder head fin缸体散热片cylinder block fin控温装置temperature regulating device恒温器thermostat恒温器主阀thermostat main valve恒温器旁通阀thermostat by-pass valve恒温器挠性波纹筒thermostat flexible bellows 液体冷却设备liquid cooling equipment水泵water pump水泵体pump casing水泵叶轮water pump impeller旁通进水口water by-pass inlet neck循环泵circulating pump主进水口water main inlet port出水口water outlet port自调式水封self-adjusting seal unit溢流管overflow pipe导流板deflector风扇fan(blower)轴流式风扇axial flow fan离心式风扇centrifugal fan风扇壳体blower casing风扇导流罩fan cowl风扇毂fan hub风扇叶片fan blade风扇叶轮blower impeller风扇导流定子blower stator风扇皮带轮fan pulley三角皮带v-belt风扇护罩fan shroud风扇叶轮叶片impeller vane冷却用空气cooling air风扇导流叶片stator vane强制风冷forced-air cooling自然风冷natural air cooling风道air ducting润滑系lubrication system润滑lubrication气缸上部润滑upper cylinder lubrication压力润滑pressure-feed lubrication压力润滑法forced lubrication自动润滑automatic lubrication飞溅润滑splash lubrication润滑周期lubrication interval边界润滑borderline lubrication曲轴箱机油油盘crankcase oil pan油底壳oil pan机油盘放油塞sump plug集油器oil collector机油泵oil pump计量式机油泵metering oil pump齿轮式机油泵gear type oil pump转子式机油泵rotor-type oil pump机油泵出油管oil pump outlet pipe放油口oil drain hole油道oil duct断油开关cut-off cock机油散热器oil cooler机油滤清器oil filter机油粗滤器primary oil filter机油精滤器secondary oil filter全流式机油滤清器full-flow oil filter分流式机油滤清器by-pass oil filter离心式机油滤清器centrifugal oil filter整体式滤芯integral filtering element细滤器滤芯filter element滤清器壳filter box滤片filtering disc机油减压器oil pressure relief valve旁通阀by-pass oil filter机油滤网oil strainer加机油孔oil filter cap滤芯轴filter shaft刮片组件cleaning edge机油量尺dipstick机油滤网oil strainer增压器supercharger增压和扫气装置pressure-charging and scavenging unit 增压装置supercharging device涡轮增压器turbo-charger气波增压器comprex pressure wave supercharger增压器阻风阀supercharger blast gate增压器调节容气量的旁通阀supercharger control bypass 增压器叶轮supercharger impeller惯性增压inertia supercharging机械增压mechanical supercharging涡轮增压turbo-charging增压比supercharge ratio增压压力boost pressure增压中冷inter-cooling中冷度inter-cooling level增压度supercharging level喘振surge喘振线surge line轴流式涡轮axial-flow turbine脉冲进气ram charging发动机试验engine test发动机试验规程engine test procedure发动机技术要求engine technical requirements标准大气状况standard atmospheric conditions大气压力atmospheric pressure进气温度inlet air temperature进气温度inlet air temperature功率校正power correction功率标定power rating功率换算power conversion校正系数correction factor换算系数performance test性能试验performance test起动性能试验starting ability test怠速试验idle running test道路负荷试验road load test各缸工作均匀性试验cylinder variation test背压试验back pressure test最低稳定工作转速试验lowest continuous speed test with load 背部泄漏试验back-leakage test调整试验adjustment test热平衡试验heat balance test快速磨损试验accelerated wear test热冲击试验thermo-shock test空载特性试验no-load characteristic test模拟增压试验simulated supercharging test停缸试验cylinder fuel-cut test增压机匹配试验turbo-charger matching test排气分析试验exhaust analysis test突变负荷试验sudden load change test稳定性试验stability test单缸熄火试验one cylinder shut off test例行检查试验routine inspection test验证试验verification test鉴定试验approval test可靠性试验reliability test耐久性试验durability test定型试验type approval test验收试验acceptance test现场试验field test出厂试验delivery test抽查试验spot check test复查试验re-check test台架试验bench test强化试验hop-up test发动机试验台engine test bed底盘测功机chassis dynamometer测功机dynamometer水力测功机hydraulic dynamometer电涡流测功机eddy current dynamometer电力测功机electric dynamometer扭矩仪torque meter转速表tachometer温度测量thermometry温度测量仪器thermometric instruments空气流量测量air flow measurement热线风速仪hot wire anemometer电子示功仪electronic indicator燃烧分析仪combustion analyzer压力传感器pressure transducer精密声级计precision sound level meter排放emission排放物emission排气污染物gaseous pollutant蒸发排放物evaporative emission曲轴箱排放物crankcase emission漏气blowby gas氨氧化物oxids of nitrogen一气化碳carbon monoxide碳氢化合物hydrocarbon甲烷methane无甲烷碳氢化合物non-methane hydrocarbons光化学活性碳氢化合物photochemically reactive hydrocarbons 微粒物particulated matter黑烟black smoke蓝烟blue smoke白烟white smoke碳烟soot光化学烟雾smog臭味odor丙烷propane排放浓度concentration of emission排气烟度exhaust smoke先期排气initial exhaust亚临界排气subcritical exhaust超临界排气supercritical exhaust强制排气forced exhaust自由排气free exhaust排气提前角exhaust advance angle排气迟后角exhaust lag angle排气热损失exhaust heat loss排气净化exhaust purification排气背压exhaust back pressure残余废气residual gas排气有害成分poisonous exhaust composition柴油机排烟diesel smoke综合排放浓度composite concentration of exhaust emission 综合排放质量composite mass of exhaust emission排放系数emission factor排放率emission index质量排放量mass emission比排放量brake specific emission排放物控制系统emission control system排气排放物控制系统exhaust emission control system二次空气secondary air二次空气分配歧管secondary air distribution二次空气控制阀secondary air control valve二次空气转换阀secondary air switching valve二次空气转流阀secondary air diverter valve二次空气喷射装置secondary air injection system二次空气喷射管secondary air injection tube二次空气喷射减速压阀secondary air injection relief valve 脉动空气装置pulsating air system二次空气泵secondary air pump曲轴箱排放物控制系统crankcase emission control system曲轴箱双通风系统crankcase closed system曲轴箱单通风系统crankcase sealed system曲轴箱强制通风装置positive crankcase ventilationPCV阀PCV valve蒸发排放物控制系统evaporative emission control system 活性碳罐贮存装置charcoal canister storage system活性碳罐charcoal canister曲轴箱贮存装置crankcase storage system空气滤清器贮存装置air filter storage system燃油箱止回阀fuel tank check valve油气分离器fuel and vapor separator清除阀furge valve催化转化系统catalytic converting system催化燃烧分析仪catalytic combustion analyzer催化剂catalyst转化器converter催化转化器catalytic converter轴流式转化器AXIAL FLOW TYPE CONVERTER径流式转化器RADIAL FLOW TYPE CONVERTER下流式转化器down flow type converter上流式转化器up flow type converter双床式转化器dual bed converter单床式转化器single bed converter氧化型催化剂oxidation catalyst还原型催化剂reduction catalyst三元催化剂three-way catalyst贵金属催化剂noble metal catalyst普通金属催化剂base metal catalyst稀土催化剂rare earth catalyst催化剂耗损catalyst attrition催化剂收缩catalyst shrinkage催化剂中毒catalyst poisoning比表面积specific surface area空速space velocity载体涂料washcoat双重催化系统dual -catalyst system催化箱catalyst container载体substrate整体式载体monolithic substrate颗粒式载体pelleted substrate转化效率conversion efficiency熄灯温度light-off temperature热态反应系统thermal reacting system热反应器thermal reactor反应式歧管reactive manifold过热保护装置over heating protection system过热警报装置over heating warning system排气口衬套exhaust port liner后燃器after burner排气再循环系EGR system排气再循环exhaust gas recirculation节气门前EGR系统above throttle valve EGR system节气门后EGR 系统below throttle valve EGR system空气比例式EGR系统air proportional EGR system负荷比例式EGR系统load proportional EGR system孔口真空控制式EGR 系统ported vacuum controlled EGR system喉管真空控制式EGR系统venturi vacuum controlled EGR system排气压力控制式EGR系统exhaust pressure controlled EGR system声速控制式EGR系统sonic controlled EGR system电子控制式EGR系统electronic controlled EGR system EGR冷却器EGR cooler EGR过滤器GER filter EGR控制阀EGR control valve EGR调压阀EGR pressure regulator再循环排气EGR gas再循环排气率EGR rate点火和喷油时刻控制系统ignition and injection timing control system 点火时刻控制系统ignition timing control system减速点火提前控制装置deceleration spark advance control推迟喷油时刻控制系统retarded injection timing control system转速控制的推迟喷油时刻retarded injection timing with speed负荷控制的推迟喷油时刻retarded injection timing with load燃油控制系统fuel control system反馈控制feedback control空燃比反馈控制系统air-fuel ratio feedback control system理论配比stoichiometric高效带window氧传感器oxygen sensor稀混合气lean mixture浓混合气rich mixture分层充气stratified charge温度补偿temperature compensating。

汽车工程专业英语全文翻译

汽车工程专业英语全文翻译

汽车工程专业英语全文翻译一当今的汽车一般都由15000多个分散、独立且相互配合的零部件组成。

这些零部件主要分为四类:车身、发动机、底盘和电气设备。

Body:车身Engine:发动机Brakes:制动器Power train:传动系Steering:转向系Electrical:电器及电子设备Suspension:悬架Layout of a passenger car:乘用车总布置Layout of a commercial vehicle:商用车总布置1.1 车身汽车车身是由车窗、车门、发动机罩和行李箱盖焊接在金属板外壳发动机发动机作为动力装置。

最常见的发动机气缸的排列方式称为发动机配置。

直列式发动机的汽缸呈一列布置。

这个设计创造了一个简单的发动机缸体铸造。

在车辆应用中,汽缸数一般是2-6缸,汽缸中心线与水平面垂直。

当汽缸数增多时,发动机尺寸和曲轴就成为一个问题。

解决这个问题的办法就是采用V形(汽缸呈两列布置,且两列气缸之间夹角为V形)发动机。

这个设计使发动机尺寸和曲轴都变得更短且更坚硬。

前置发动机纵向安装,既可前轮驱动也可后轮驱动。

后置发动机是将发动机安装在后轮后面。

发动机可横置或纵置,一般情况下为后轮驱动。

1.4 电气系统电气系统为起动机、点火系统、照明灯具、取暖器提供电能。

该电平由一个充电电路维护。

1.4.1 充电充电系统为所有汽车电子元件提供电能。

充电系统主要包括:蓄电池,交流发电机,电压调节器,即通常是交流发电机上不可或缺的,充电警告或指示灯和金属丝连成一个完整电路。

蓄电池为起动提供电能,然后发动机工作,交流发电机就为所有的电子元件提供电能。

同时也给蓄电池充电即用来使发动机起动。

电压调节器有过充保护作用。

1.4.2 起动起动系统包括:蓄电池、电缆、起动机、飞轮和换向器。

起动时,有两个动作同时运行,该起动机齿轮与飞轮齿圈啮合,并起动电机,然后运行传输到发动机曲轴。

起动机电机将起动机安装在发动机缸体上并由电池供电。

汽车研发与制造专业术语汇总(中英文对照)

汽车研发与制造专业术语汇总(中英文对照)

PP Production Proveout 生产验证TTO Tool Try-Out 工装设备试运行(J1) Job 1 整车投产DFMEA Design Failure Mode Effects Analysis 故障模式影响分析设计DVP Design Verification Plan 设计验证计划DVP&R Design Verification Plan & Report 设计验证计划和结果FMEA Failure Mode Effects Analysis 故障模式影响分析FPDS Ford Product Development System 福特产品开发系统GYR Green-Yellow-Red 绿-黄-红MRD Material Required Date 物料要求到厂日OTT OK-TO-TOOL 可以开模TKO Tooling-Kick-Off 工装启动OEM original Equipment Manufacturer 设备最初制造厂FtF/F2F Face To Face 面对面会议PV Production Validation 产品验证OTS Off-Tooling-Sample 完全工装样件QOS Quality Operating System 质量运作体系TS-16949 Technical Specification –16949 技术规范-16949APQP Advanced Product Quality Planning 先期产品质量计划IPD In Plant Date 进厂日PPM Parts per Million (applied to defective Supplier parts) 零件的百万分比率(适用于供应商不合格零件)PPAP Production Part Approval Process 生产件批准程序Pre-PV Pre -Production Validation 产品预先验证1PP- First Phase of Production Prove-Out 第一次试生产3C Customer(顾客导向)、Competition(竞争导向)、Competence(专长导向)4S Sale, Sparepart零配件, Service, Survey信息反馈5S 整理,整顿,清理,清洁,素养8D- 8 DisciplineABS Anti-lock Braking SystemAIAG 美国汽车联合会ANPQP Alliance New Product Quality ProcedureApportionment 分配APQP Advanced Product Quality PlanBacklite Windshield 后窗玻璃Benchmark Data 样件资料bloodshot adj.充血的, 有血丝的BMW Bavarian Motor WorksC.P.M Certified Purchasing manger 认证采购经理人制度CB- Confirmation Build 确认样车制造CC- Change CutOff 设计变更冻结CC\SC- critical/significant characteristicCCR Concern & Countermeasure RequestCCT Cross Company TeamCharacteristics Matrix 特性矩阵图COD Cash on Delivery 货到付现预付货款(T/T in advance) CP1- Confirmation Prototype 1st 第一次确认样车CP2- Confirmation Prototype 2nd 第二次确认样车Cpk 过程能力指数Cpk=Zmin/3CPO Complementary Parts orderCraftsmanship 精致工艺Cross-functional teams 跨功能小组CUV Car-Based Ultility VehicleD1:信息收集;8DD2:建立8D小组;D3:制定临时的围堵行动措施,避免不良品流出;D4:定义和证实根本原因,避免再发;D5:根据基本原因制定永久措施;D6:执行和确认永久措施;D7:预防再发,实施永久措施;D8:认可团队和个人的贡献。

车辆工程专业英语

车辆工程专业英语

UNIT 1 AUTOMOTIVE BASICSBody:车身chassis:底盘stream-lined:流线wind resistance:风阻Frame:车架the power train:传动系统the drive train:驱动系a unitized body:承载式车身unibody:整体式汽车车身suspension system:悬架系统steering system:转向系统braking system(制动系统)suspension system:悬架系统shock absorber:减振器control arm:控制臂、导向机构steering gears:转向器steering wheel:转向盘idler arm:随动臂tie rods:横拉杆power steering:动力转向Power booster:助力器master cylinder:制动主缸Disc brake:盘式制动drum brake:鼓式制动Brake pedal:制动踏板brake system:制动系统stopping power:制动力Hydraulic brakes:液压制动brake pedal:制动踏板brake fluid:制动液brake lines:制动管路cylinders:轮缸brake shoes:制动蹄drum:制动鼓disc brake:盘式制动器pliers:老虎钳squeeze:挤进,握紧;夹紧rotating disc:旋转制动盘Drum brake:鼓式制动器gasoline-burning piston engine:活塞式汽油发动机Diesel-fuel burning engines:柴油发动机Fuel system:供给系统exhaust system:排气系统Cooling system:冷却系统lubrication system:润滑系统ignition system:点火系统electric spark:电火花air-fuel mixture:可燃混合气cylinder:汽缸ignition switch:点火开关current:电流storage battery:蓄电池ignition coil:点火线圈Distributor:分电器spark plug:火花塞compression ignition engines:压燃式发动机charging circuit:充电电路regulator:电压调节器alternator (or generator):发电机mechanical energy:机械能electrical energy:电能maximum voltage:最大电压fuel system:燃料供给系统fuel pump:燃油泵Filter:滤清器carburetor:化油器fuel injection system:燃油喷射系统combustible mixture:可燃混合气manifold:进气管exhaust system:排气系统carbon monoxide:一氧化碳hydrocarbons(碳氢化合物)oxides of nitrogen:氮氧化合物emission control system:排放控制系统cooling system:冷却系统combustion chamber:燃烧室coolant:冷却液Radiator:散热器water pump:水泵hollow:空的、空洞的block:汽缸体head:汽缸盖Defroster:(除冰(或霜)装置)lubrication system:润滑系统lubricant:润滑剂piston rings:活塞环cylinder walls:汽缸壁oil filter:机油滤清器Transmission:变速器wheel bearings:车轮轴承differential:差速器steering linkage:转向链接机构power train:传动系统transmission:变速器shift lever:变速杆clutch:离合器Transmission:变速器torque:转矩Differential:差速器drive /propeller shaft:传动轴universal joints:万向节axle movement:轴向运动flexible universal joints:活动万向节Differential:差速器UNIT 2 AUTOMOTIVE ENGINEinternal combustion engine:内燃机liquefied petroleum gas(LPG):液化石油气Compressed natural gas(CNG):压缩天然气drive shaft:驱动轴rear-wheel-drive arrangement:后轮驱动布置形式front-wheel-drive arrangement:前轮驱动布置形式drive wheels:驱动轮mid-engine arrangement:发动机中置Pistons:活塞reciprocate:往复spark ignition engine:火花点燃式发动机compression ignition(CI) engine:压燃式发动机electric ignition system:电子点火系统spark plug:火花塞ignite:点燃cylinders:气缸combustion:燃烧compression-ignition engine:压燃式发动机diesel engine:柴油机Spray:喷入heavy-duty trucks:重型货车spark-ignition engine:火花点燃式发动机fuel system:燃料供给系统ignition system:点火系统lubricating system:润滑系统cooling system:冷却系统fuel system:燃料供给系统combustible mixture:可燃混合物air/fuel mixture:空气燃料混合气ignition system:点火系统spark plug:火花塞air/fuel mixture:可燃混合气lubricating oil:润滑油lubricating system:润滑系统oil pan:油底壳oil pump:机油泵reservoir:贮存器; 油箱exhaust gas:排气cooling system:冷却系统exhaust system:排气系统emission-control system:排放控制系统starting system:启动系统Crank:转动曲柄starting motor:启动马达internal combustion engine:内燃机chemical energy:化学能heat energy:热能mechanical energy:机械能air/fuel ratio:空燃比Diesel engines:柴油机intake:进气connecting rod:连杆crankshaft:曲轴reciprocating movement/back and forth movement/up and down movement(往复运动)rotary motion/ turning motion:(旋转运动)crankshaft:曲轴Efficiency:效率potential energy:潜能mechanical energy:机械能overall efficiency:总效率compression ratio:压缩比air/fuel ratio:空燃比uppermost position/(TDC, top dead center:上止点lowest position/BDC, bottom dead center:下止点stroke:行程four stroke-cycle Gasoline Engine:intake stroke:进气行程compression stroke:压缩行程power stroke:作功行程exhaust stroke:排气行程revolution:转、圈crankshaft:曲轴camshaft:凸轮轴Crankshaft:曲轴connecting rod:连杆intake valve:进气门camshaft:凸轮轴pressure difference:压力差air/fuel mixture:空气/燃料混合气compression ratio:压缩比TDC:上止点exhaust valve:排气门exhaust gases:废气starter motor:启动马达ignition key:点火钥匙start position:启动位置Flywheel:飞轮UNIT 3 AUTOMOTIVE LUBRICATION SYSTEM(汽车润滑系统)3.1 Lubrication Principles 润滑原理Friction:摩擦primary job:基本任务Residual oil:残留的机油Lubricant:滑润剂hydrodynamic:液力的oil adhesion:机油粘度sliding friction:滑动摩擦Pressure-Lubrication System压力润滑系统oil pan:油底壳block:汽缸体oil pump:油泵drain plug:放油螺塞oil-pan gasket:油底壳垫圈Passageway:油道oil filter:机油滤清器Crankcase:曲轴箱tube:管filter screen:滤网gear-type:齿轮泵rotor-type:转子泵full-flow filtering system:全流式滤清器pressure-relief valve:安全阀bypass valve:旁通阀camshaft(凸轮轴)main bearing:主轴承camshaft bearing:凸轮轴轴承Foam inhibitor:泡沫抑制剂UNIT 4 THE COOLING SYSTEM(冷却系统)exhaust system:排气系统cylinder wall:汽缸壁piston:活塞cylinder head:汽缸盖oil film:油膜fuel mileage:燃油经济性exhaust emissions:废气排放liquid cooling:水冷air cooling:风冷water jacket:水套thermostat:节温器water pump:水泵radiator:散热器radiator cap:散热器盖cooling fan:冷却风扇hoses:软管expansion tank:膨胀水箱overflow tank:溢流水箱4.1 Water Pump(水泵)centrifugal pump:离心泵centrifugal force:离心力4.2 Water Jacket(水套)hot spot:热点valve seat:气门座valve guide:气门导管cylinder wall:汽缸壁combustion chamber:燃烧室4.3 Radiator(散热器)heat exchanger:热交换器4.4 Pressure Cap(散热器盖)boiling point:沸点pressure release valve:减压阀, 安全阀overflow tube:溢流管overflow tank:溢流箱4.5 Thermostat(节温器)4.6 Fancooling fan:冷却风扇constant temperature:常温thermostatic switchUNIT 5 FUEL INJECTION SYSTEMFuel injection system:燃油喷射系统purely mechanical:纯机械的electronic fuel injection system:电子燃油喷射系统feedback control:反馈控制emission:排放solenoid valve:电磁阀injector:喷油器best power:最佳动力性best emission:最佳排放性best economy:最佳经济性rich condition:浓(混合气)工况lean condition:稀(混合气)工况5.3 Fuel System(燃油系统)fuel rail:油轨regulator:压力调节器return line:回油管fuel manifold:燃油歧管intake manifold:进气歧管5.4 Air Metering and Measurement 空气计量butterfly valve:传统碟形阀throttle body assembly:节气门体总成Mass Airflow:质量流量Speed Density:速度密度spring loaded flap:翼片potentiometer:电位计heated wire:加热电阻丝voltage signal:电压信号5.5 Most EFI systems measure the same basic 6 input大多数EFI系统检测6个基本输入(信号)RPM(转速) ignition coil:点火线圈magnetic sensor:磁脉冲传感器Hall effect sensor:霍尔效应传感器Manifold Pressure (进气歧管压力) Throttle Position (节气门位置)Water Temperature injector pulse width:喷油器脉冲宽度Air Temperature5.6 Oxygen Sensor(氧传感器)closed loop systems:闭环系统oxygen content:氧含量air/fuel ratio:空燃比open loop mode:开环模式UNIT 6 EXHAUST SYSTEMexhaust system:排气系统Exhaust gas:废气combustion chamber:燃烧室muffler:消声器catalytic converter:催化转换器6.2 The Muffler(消声器)backpressure:背压exhaust valve:排气门6.3 The Exhaust Manifold and Headerexhaust manifold:排气歧管cylinder head:气缸盖intake manifold:进气歧管UNIT 7 THE IGNITION SYSTEM(点火系统)breaker point type ignition system:触点型点火系统electronic ignition system:电子点火系统distributorless ignition system:无分电器点火系统)timing of the spark plug firing:火花塞点火次序spark plug gap:火花塞间隙7.1 Point-Type Ignition System(触点型点火系统)electrical circuit:电路primary circuit:初级回路secondary circuit:次级回路breaker point:触点ignition switch:点火开关secondary winding:次级线圈high-tension lead:高压导线distributor:分电器coil:点火线圈distributor cap:分电器盖distributor rotor:分火头controlling element:控制元件primary current:初级电流Distributor:配电器7.2 Electronic Ignition Systems(电子点火系统)electronic control module:电子控制模块7.3 Distributorless Ignition Systems (DIS) (无分电器点火系统)spark timing:点火正时Ignition Control Unit (ICU):点火控制单元Engine Control Unit (ECU):发动机控制单元firing order:点火顺序Top Dead Center (TDC):上止点UNIT 8 CLUTCHdrive line/drive train:传动系统Clutch:离合器transmission:变速器drive shaft:传动轴final drive assembly:主减速器总成clutch disc:离合器片pressure plate:压盘pressure plate cover:离合器盖friction mechanism:摩擦机构engine torque:发动机扭矩gear ratio:传动比clutch pedal:离合器踏板driven member:从动件transmission input shaft:变速器输入轴driving members:主动件crankshaft:曲轴torsional shock:扭转振动starter motor:启动马达splined hub:花键毂spline:花键transmission input shaft:变速器输入轴diaphragm spring:膜片弹簧centrifugal force:离心力release bearing:分离轴承disengagement mechanism:分离机构hydraulic system:液压系统hydraulic mechanism:液压机构clutch master cylinder:离合器主缸hydraulic fluid:制动液clutch release cylinder:离合器分离缸UNIT 9 AUTOMATIC TRANSMISSION(自动变速器)fluid coupling(液力偶合器)torque converter(变矩器rear wheel drive(后轮驱动)front wheel drive(前轮驱动).drive shaft(驱动轴)final drive(主减速器)rear axle(后轴)rear wheels(后轮)transaxle(驱动桥)Front axles(前桥)planetary gear sets(行星齿轮组)hydraulic system(液力系统)Planetary gear sets(行星齿轮组)sun gear(太阳轮)ring gear(齿圈)planet gears(行星轮)constant mesh(常啮合common carrier(行星架)input shaft(输入轴)output shaft(输出轴)9.2 Clutch pack(离合器组)clutch drum(离合器鼓)friction material(摩擦材料)9.3 One-Way Clutch(单向离合器)"sprag" clutch(超越离合器)neutral(空挡)9.4 Bands(制动带)9.5 Torque Converter(液力变矩器)(见阅读材料)UNIT 10 THE DIFFERENTIAL(差速器)unlimited-slip, differential:不防滑差速器10.1 The Main Gears(主减速器)bevel gear:锥齿轮axle shaft:半轴final drive assembly:主减速器总成gear reduction:减速drive wheel:驱动轮drive shaft:传动轴spiral bevel gear:螺旋锥齿轮center line(centerline):中心线10.2 The Differential System(差速系统)axle shaft:半轴side gear:半轴齿轮UNIT 11 BRAKE SYSTEM(制动系统)kinetic energy:惯性能量momentum:动量thermal energy (heat):热能master cylinder:主缸brake pedal:制动踏板mechanical pressure:机械压力hydraulic pressure:液体压力brake line:制动管brake hose:制动软管slave cylinder:轮缸Brake fluid:制动液Shoe:制动蹄pad:制动块drums:制动鼓rotor:制动盘disk brake:盘式制动器drum brakes:鼓式制动器caliper:制动嵌brake shoe:制动蹄friction lining:摩擦衬片friction surface:摩擦表面emergency brake:紧急制动Power brake booster:动力制动助力器master cylinder:制动主缸brake pedal:制动踏板hydraulic actuator:液压传动机构wheel speed sensor:车轮速度传感器UNIT 14 ABS AND TCS14.1 Braking System Fundamentals,master cylinder:主缸wheel cylinders:轮缸caliper pistons:制动钳活塞rolling energy:旋转能量14.2 Antilock Braking Systems(防抱死制动系统)retarding force:制动力percent slip滑移率braking effectiveness:制动效能wheel speed sensors (WSS):车轮速度传感器Reading material-Torque Converter-术语Torque Converter(液力变矩器)manual transmission:自动变速器automatic transmission:自动变速器brake pedal:制动踏板gas pedal:加速踏板 1. Pump(泵轮).2. Turbine(涡轮).3. Stator(导轮).4. Transmission fluid(传动液).Freewheel:自由轮lockup clutch:锁止离合器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中文译文火花点火发动机的燃烧火花点火发动机的燃烧过程可以大致分为三个阶段:(1)点火和火焰发展阶段,(2)火焰传播阶段,(3)火焰终止阶段。

通常认为火焰发展阶段消耗了最初的5%的燃料空气混合器(某些情况消耗10%)。

在火焰发展阶段,点火发生,燃烧过程开始。

但是却只有很少的压力升高和有用功产生。

几乎发动机一个工作循环所产生的有用功都是燃烧过程的火焰传播时期产生的。

火焰传播时期就是大部分空气和燃料混合气燃烧的过程(80%-90%,取决于怎样定义)。

在这段时期,缸内压力大幅增加,在活塞膨胀行程中提供压力从而产生有用功。

最后剩下的5%(某些情况下10%)空气燃料混合气的燃烧就被定义为火焰终止期。

在这段时间,缸内压力迅速下降,燃烧停止。

在火花点火发动机中,燃烧过程包括一个亚音速火焰传播放热过程,这个过程是通过活塞内形成的局部均质预混合好的空气燃料混合气来实现的。

由于缸内气体的湍流,涡流,挤流,火焰传播速度被大大的增加。

燃料的正确燃烧以及合适的运转特性参数可以使爆震得以避免,或者几乎能够被避免。

点火和火焰发展燃烧由火花塞内的电极跳火而产生,发生在上止点以前10°到30°,具体要根据燃烧室的几何形状和发动机的运行状况而定。

高温的带电粒子立即点燃两电极附近的空气燃料混合气,燃烧反应由此对外进行传播。

因为冷的火花塞和混合气,燃烧过程刚开始时速度很慢。

典型火花塞电极间能量消散的相对时间如图7-2所示。

使用的电压通常为25000-40000福特,通过的最大电流为200安,持续时间为10纳秒。

因此产生了一个温度为60000k的最高温度点。

几乎所有的火花塞都会有一个时常为0.001秒,平均温度为6000k的放电过程。

通常需要化学计量为0.2mJ的碳氢燃料的能量来点火并且维持自身的的可持续燃烧,会消耗多达0.3mg的可燃混合气。

火花塞跳火放出30至50mJ的能量,然而大部分却通过传热散失掉了。

能够产生使火花塞电极间跳火的高电压有好几种方式,最为常见的就是电池-线圈组合。

大部分的汽车都是使用的是12伏的供电系统,包括12伏的电源。

低电压经过线圈的多次放大成为了供给火花塞条获得高电压。

有些系统利用电容器使火花塞电极在适当的时间产生放电现象。

大部分的小型或者中型发动机用一个发电机来驱动发动机的曲轴产生所需要的火花塞跳火电压。

一些发动对每一个火花塞都有一个单独的高压发电系统,然而其他的系统只有一个配电器,一缸分配完以后就转向另外一缸。

现代火花塞两电极间的距离大约为0.7-1.7mm。

如果混合气过浓或者压力过高那么稍微小一点距离也是可以接受的。

(例如:通过涡轮增压以后高的进气压力或者高的压缩比)。

两电极间燃烧的准稳态温度为650℃到750℃。

若高于950℃则有可能发生了表面点火的现象,若温度低于350℃则与可能发生后燃现象。

装有磨损的活塞环的冷的发动机将会消耗更多的润滑油,因此推荐使用热的火花塞来避免污垢的产生。

火花塞的温度由塞子内制造的热损失路径所控制,热的塞子比冷的塞子具有更大的热阻。

现在的火花塞都是由比较好的材料制造而成,比几十年前制造的那些具有更长的使用寿命。

一些高质量的火花塞安装有铂尖电极,能够持续16000km或者更久,究其原因是因为发动机零部件替换的困难性,以及火花塞很难被替换。

现代轿车在某些极端条件下,需要发动机部分移除来改变火花塞的电压,电流,电极材料,如果火花塞要长时间使用的话就必须要有一个合适的极间距离(例如:过高的电流将会使电极破损)。

然后火花塞开始跳火,产生的电火花点燃电极附近以及电极间的可燃混合气。

这将行成一个球形的火焰前端并且向外传播充满整个燃烧室。

刚开始时,由于火焰体积较小,传播速度不快。

因为它不能产生足够的能量来快速加热周边混合气所以传播速度才会非常缓慢。

反过来说,缸内压力没有快速升高,因此也就很少产生压缩加热。

只有当最初的5%-10%的空气燃料混合气着火以后,才会造成火焰前端速度到达比较高的数值,同时压力也会快速上升。

开始点火的时候火花塞附近有一个比较浓的混合气是比较好的。

预制混合气越浓燃烧的速度就越快,对整个的燃烧过程来说就有了一个良好的开始。

火花塞布置在进气门附近以保证较浓的可燃混合气,特别是当启动冷机的时候。

现在已经出现了一个火花塞有几个电极和两个或者两个以上的跳火点。

这将会产生稳定的着火过程以及火焰的快速传播。

一款处于试验阶段的系统能够在最初的放电以后能够保持一个持续的电弧。

由于这个额外的电火花加速了燃烧过程的进行,当缸内的混合气被形成涡流以后使得燃烧能够进行完全。

这个系统与一百年前尝试的方法非常类似。

为了得到不同的极间间距的火花塞,已经投入了大量的工作,这将会使在不同工况下点火具有可调性。

至少现在有一家汽车制造商正在尝试一款发动机,这款发动机将活塞的顶部作为火花塞的一个电极。

使用这套系统火花点火电极的间距将会变为1.5-8mm,同时能够降低燃油消耗和排放。

火花点火发动机的火焰传播最初的5%-10%的空气燃料混合气燃烧的时候,燃烧过程被很好的建立起来,火焰前端快速前进充满整个燃烧室。

由于不断加强的涡流,紊流,挤流运动,火焰前端的传播速度是在稳定不动的可燃混合气沿直线传播的火焰传播速度的10倍。

除此之外,在静止的混合气中从火花塞处开始以球形向外扩张的火焰前端被剧烈的扰动,也因这些运动而被传播。

随着混合气的不断燃烧,温度,伴随着压力到达一个较高的值火焰前端后面燃烧过的气体,要比前端的气体温度要高,但是所有气体的压力却是相同的。

这降低了已然气体的密度同时使他们能够充分膨胀充满整个燃烧室。

图表7-3显示,当仅仅30%的燃料燃烧,这些已然气体就已经充满了燃烧室60%的容积,将剩下70%的未燃烧的混合气压缩在40%的气缸容积中。

未燃混合气的的压缩通过压缩加热提高了自身温度。

除此之外,火焰前端3000k 的温度,通过辐射传递的热量又进一步提高了压力。

通过热传导和热对流传递热量相比热辐射传递的热量是很少的,原因就是发动机实际循环的时间非常短。

随着火焰通过整个燃烧室,它将经历温度和压力明显增加的过程。

这将造成化学反应时间缩短,和火焰前端速度增加,这正是我们所需要的结果。

因为辐射传热,火焰前端后边的未燃混合气温度持续增加,在燃烧过程的终点温度达到最大值。

燃烧室内已燃气体的温度并不是均匀的,靠近火花塞附近的火焰刚开始燃烧的地方温度较高。

因为那个地方的混合气接收到了大量的后续燃烧反应的辐射能。

较低的压力升高率也就带来了较低的热效率,和较低的爆震几率。

(例如;压力的缓慢升高也就意味着燃烧的缓慢进行,和较低的爆震风险)。

因此发动机的燃烧过程就是追求较高打热效率和发动机能够有较少热损失并且平稳运行的一个折衷方案。

除了涡流,紊流,挤流的效果火焰的传播速度也取决于燃料的类型和空燃比。

稀薄的混合气的火焰传播速度慢,如图表7-4所示。

稍微浓一点的混合气就会有最快的火焰传播速度对于大部分燃料而言,这种情况发生在空燃比为1.2附近。

残余废气和再循环的废气降低了火焰传播速度。

发动机转速增加带来的涡流合挤流的强度增加,从而使得火焰传播速度也会增加。

火焰终止在上止点前15°到20°,90%—95%的空气燃料混合气被燃烧掉了,火焰前端也到达了燃烧室的每一个极限角落。

图表7-3显示,至少有5%-10%混合气被火焰前端后面的已然气体压缩在了燃烧室的一部分体积里。

这时,尽管活塞早已经远离上止点,燃烧室的容积也仅仅从余隙容积增加了10-20%。

这也就意味着最后一点空气将会在燃烧室很小的角落体积内或者贴着汽缸壁与燃料发生反应。

因为紧贴这汽缸壁,最后一点剩余气体以一个逐渐减少的速率进行反应。

贴近壁面,涡流和混合气的运动都被阻碍了,产生了一个停滞的边界层。

大的缸体质量作为一个传热介质带走了火焰反应过程中产生的很多热量。

这些机械结构都降低了反应速率,和火焰传播速度,然后火焰开始渐渐熄灭。

尽管火焰终止期有少部分由活塞上方缓慢的反应产生额外工功,但仍然也是我们想要的。

因为气缸内的压力升高阻碍了火焰传播缓慢变到零的速率,传递到活塞顶部的力也被减缓了变小的速率,使发动机能够平稳的运行。

外文资料COMBUSTION IN SI ENGINESThe combustion process of SI engine can be divided into three broad regions:(1)ignition and flame development,(2)flame propagation,and (3)flame termination.Flame development is generally considered the consumption of the first 5% of the air-fuel mixture (some sources use the first 10%).During the flame development period,ignition occurs and the combustion process starts,but very little pressure rise is noticeable and little or no useful work is produced.Just about all useful work produced in an engine cycle is the result of the flame propagation period of the combustion process.This is the period when the bulk of the fuel and air mass is burned (i.e,80-90%,depending on how defined ).During this time,pressure in the cylinder is greatly increased,providing the force to produce work in the expansion stroke. The final 5%(some sources use 10%)of the air-fuel mass that burns is classified as termination.During this time,pressure quickly decreased and combustion stops.In an SI engine, combustion ideally consists of an exothermic subsonic flame progressing through a premixed air-fuel mixture,which is locally homogeneous.The spread of the flame front is greatly increased by induced turbulence,swirl,and squish within the cylinder.The right combination of fuel and operation characteristics is suchthat knock is avoided or almost avoided.Ignition and Flame DevelopmentCombustion is initiated by an electrical discharge across the electrodes of a spark plug .This occurs anywhere from 10°to 30°before TDC,depending on the geometry of the combustion chamber and the electrodes ignites the air-fuel mixture in the immediate vicinity,and the combustion reaction reaction spreads outward from bustion starts very slowly because of the high heat losses to the relatively cold spark plug and gas mixture.Energy dissipation versus time across the electrodes of a typical spark plug is shown in Fig7-2.Applied potential is generally 25000-4000 volts,with a maximum10sec).This gives a current on the order of 200 amps lasting about 10nsec(1nesc=9-peak temperature on the order of 6000h.overall spark discharge lasts about 0.001 second,with an average temperature of about 6000h.A stoichiometric mixture of hydrocarbon fuel requires about 0.2mg of energy ignite self-sustaining combustion.This varies to as much as 3mg for nonstoichiometric mixtures.The discharge of a spark plug delivers 30 to 50mg of energy,most of which,however,is lost by heat transfer.Several different methods are used to produce the high voltage potential needed to cause electrical discharge across spark plug electrodes.One common system is a battery-coil combination.Most automobiles use a 12-volt electrical system,including a 12-volt battery.This low voltage is multiplied many times by coil that supplies the very high potential delivered to the spark plug.Some systems use a capacitor to discharge across the spark plug electrodes at the crankshaft to generate the need spark plug voltage.Some engines have a separate high-voltage generation system for each spark plug,while others have a single system with a distributor that shifts from one cylinder to the next.The gap distance between electrodes on a modern spark plug is about 0.7to1.7mm.Smaller gaps are acceptable if there is a rich air-fuel mixture or if the pressure is high(i.e,high inlet pressure by turbocharging or a high compression ratio).Normal quasi-steady-state temperature of electrodes between firings should be about 650°to700℃.A temperature above 950°C risks the possibility of causing surface ignition,and a temperature below 350℃tends to remote surface fouling over extended time.Colder engine with worn piston rings that burn an excess of oil,hotter plugs are recommended to avoid fouling.The temperature of a spark plug is controlled by the heat-loss path manufactured into the plug.Hotter plugs have a greater heat conduction resistance than do colder plugs.Modern spark are made with better materials and have a much greater life span those of a few decades ago.Some quality spark plugs with platinum-tipped electrodes are made to last 160000km(100000 miles)or more .One reason this isdesirable is the difficulty of replacing plugs in some modern engines.Because of the increased amount of engine equipment and smaller automobiles,the engine must be partially removed to change the plug's voltage,current,electrode material,and gap size must be compatible if long-life plugs are be used (e.g,too high current will wear spark plug electrodes).Then a spark plug fires,the plasma discharge ignites the air-fuel mixture between and near the electrodes.This creates a spherical flame front that propagates outward into the combustion chamber.At first,the flame front moves very slowly because of its small original size.It does not generate enough energy to quickly heat the surrounding gases and thus propagates very slowly.This in turn,does not raise the cylinder pressure very quickly,and very little compression is experienced .Only after the first 5-10% of the air-fuel mass is burned does the flame velocity reach higher values with the corresponding fast rise in pressure-the flame propagation region.It is desirable to have a slightly rich air-fuel mixture around the electrodes of the electrodes of the spark plug at ignition.A rich mixture ignites more readily,has a faster flame speed,and gives a better start to overall combustion process.Spark plugs are generally located near the intake valves to assure a richer mixture, especially when starting a cold engine.Spark plugs with several electrodes and two or more simultaneous sparks are now available.These give a more consistent ignition and quicker flame development.One modern experimental system gives a continuing arc after the initial discharge.It is reasoned that this additional spark will speed combustion and give more complete combustion as the air-fuel mixture is swirled through the combustion chamber.This system is quite similar to methods tried over a hundred years ago.Development wok has been done to create a spark plug with a variable electrode gap size.This would allow flexibility in ignition for different operating conditions.At least one automobile manufacturer is experimenting with engines that use a point on the top of the piston as one of the spark electrodes.With this system,spark ignition can be initiated across gaps of 1.5 to 8 mm,with a reported lowering of fuel consumption and emissions.Flame Propagation in SI EnginesBy the time the first 5-10% of the air-fuel mass has been burned, the combustion process is well established and the flame front moves very quickly through the combustion chamber.Due to induced turbulence,swirl,and squish,flame propagation speed is about 10 times faster than if there were a laminar flame front moving through a stationary gas mixture.In addition,the flame front ,which would expand spherically from the spark plug in stationary air,distorted and spread by these motions.As the gas mixture burns,the temperature,and consequently the pressure,raises to high values.Burned gases behind the flame front are hotter than the burned gases before the front,with all the gases at about the same pressure.This decreased the density of the burned gases and expands them to occupy a greater percent of totalcombustion chamber volume.Figure7-3 shows that,when only 30% of the gas mass is burned,the burned gases already occupy almost 60% of the total volume,compressing 70% of the mixture that is not yet burned into 40% of the total pression of the unburned raised their temperature by compressive heating .In addition,radiation heating emitted from the flame reaction zone,which is at the temperature on the order of 3000K,further heats the gases ,unburned and burned,in the combustion chamber.A temperature raise from the radiation then further raises the pressure.Heat transfer by conduction and convection is minor compared with that from radiation,due to the very short real time involved in each cycle.As the flame moves through the combustion chamber ,it travels through an environment that is progressively increasing in temperature and pressure.This causes the chemical reaction time to decrease and the flame front speed to increase,a desirable result.Because the radiation,the temperature of the unburned gases behind the flame front continue to increase,reaching a maximum at the end of combustion process.Temperature of the burned gases is not uniform throughout the combustion chamber,but is higher near the spark plug where combustion started.This is because the gas the has experienced a greater amount of radiation energy input from later flame reaction.Ideally the air -fuel mixture should be about two thirds burned at TDC and almost completely burned about 5°TDC.Thus the maximum temperature and pressure occur about 5°and 10°bustion in a real four-stroke cycle SI engine is almost,but not exactly,a constant volume process,as approximated by the ideal air-standard Atto cycle.The closer combustion process is constant volume,the higher will be the thermal efficiency.This can be seen in the comparison of the thermal efficiencies of the Atto,Dual,and Diesel cycles.However,in a real engine cycle,constant-volume combustion is not the best way to operate.Figure7-1shows how pressure rise of about 240kpa per degree of engine rotation is desirable for a smooth transfer of force to the face of the position.True constant-volume combustion would give the pressure curve an infinite upward slope at TDC,with a corresponding rough engine operation.A less pressure rise rate gives lower thermal efficiency and danger of knock(i.e,a slower rise in pressure means slower combustion and the likelihood of knock).The combustion process is thus a compromise between the highest thermal efficiency possible(constant volume)and a smooth engine cycle with some loss of efficiency.In addition to effects of turbulence,swirl,and squish,the flame speed depend on the type of fuel and the air-fuel ratio.Lean mixtures have slower flame speeds,as shown in the Figure7-4.Slightly rich mixtures have the fastest flame speeds,with the maximum for most fuels occurring at an equivalence ratio near 1.2.Exhaust residual and recycled exhaust gas slow the flame speed.Flame speed increases with the engine speed due to high turbulence,swirl,and squish.Flame terminationAt about 15°to 20°aTDC,90-95% of the air-fuel mass has been combusted and the flame front has reached the extreme corners of the combustion chamber.Figure7-3 shows that the last 5% or 10% of the mass has been compressed into a few percent of the combustion chamber volume by the expanding burned gases behind the flame front.Although,at this point,the piston has already move from TDC,the combustion chamber volume has increased only on the order of 10%-20% from the very small clearance volume.This means that the last mass of air and fuel will react in a very small walls.Due to the closeness of the combustion chamber walls,the last end gas that react does not so at a very reduced rate .Near the walls,turbulence and the motion of the gas mixture have been dampened out,there is a stagnant boundary layer.The large mass of the metal walls also acts a heat sink and conducts away much of energy being released in the reaction flame.Both of the these mechanisms reduce the rate of reaction and flame speed,and combustion ends by slowly dying away.Although very little additional work is delivered by the piston during this flame termination period due to the slow reaction rate,it is still a desirable occurrence.Because the rise of cylinder pressure tapers off slowly towards zero during flame termination,the forces transmitted to the piston also taper off slowly,and smooth engine operation results.。

相关文档
最新文档