人工智能考试必备整理
人工智能考试资料

人工智能考试资料一、名词解释1、人工智能(4):用人工的方法在机器上实现的智能;或者说是人们使用机器模拟人类的智能。
人类智能(4):即人类所具有的智力和行为能力,而这种智力和行为能力是以知识为基础的。
2、控制性知识(16):指有关问题的求解步骤、技巧性知识,也包括当有多个动作被同时激活时,应该选择哪一个动作来执行的知识。
人工神经网络(12):一个用大量称为人工神经元的简单处理单元经广泛连接而组成的人工网络,用来模拟大脑神经系统的结构和功能。
3、类属关系(29):指具有共同属性的不同事物间的分类关系、成员关系或实例关系。
知识表示(17):是研究用机器表示知识的可行性、有效性的一般方法,是一种数据结构与控制结构的统一体,既考虑知识的存储又考虑知识的使用。
4、算符(64):引起状态中某些分量发生变化,从而使问题由一个状态变为另一个状态的操作称为算符。
综合数据库(25):又称为事实数据库,用于存放输入的事实、外部数据库输入的事实及中间结果和最后结果的工作区。
5、演绎推理(95):指从一组已知为真的事实出发,运用命题逻辑或谓词逻辑中的推理规则推出结论的过程。
规则冲突(26):同时有几条规则的前提条件与事实相匹配。
6、原子命题(85):一个语句如果不能再进一步分解成更简单的语句,并且又是一个命题,则称此命题为原子命题。
P永假(90):如果P在每个非空个体域上均永假,则称P永假。
7、前束型范式(98):如果该谓词公式的所有量词均非否定地出现在公式的最前面,且它的辖域一直延申到公式之末,同时公式中不出现连接词→和↔,这种形式的公式称为前束型范式。
基例(103):当子句集S中的某个子句C中的所有变元符号均以其H域中的元素替换时,所得到的基子句称为C的一个基例。
8、归结原理(105):又称为消解原理,是Robinson提出的一种证明子句集不可满足性,从而实现了定理证明的一种理论及方法。
可信度:9、可信度(126):就是人们在实际生活中根据自己的经验或观察对某一事件或现象为真的相信程度。
人工智能复习资料整理(修正版-如发现计算错误请指出)

一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。
(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。
(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。
2.人工智能三个基本问题:知识获取、知识推理、知识利用。
3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。
4.机器学习分为:监督学习、无监督学习、强化学习。
5.遗传算法基本操作分为:选择、交叉和变异。
6.产生式系统的构成分为:规则库、综合数据库和推理机。
7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。
8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。
(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。
12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。
13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。
(人工智能)人工智能考试整理

(⼈⼯智能)⼈⼯智能考试整理(⼈⼯智能)⼈⼯智能考试整理智能定义(知识阈值理论)智能就是在巨⼤的搜索空间中迅速找到⼀个满意解的能⼒智能的综合性定义:智能是知识和智⼒的总和。
其中知识是智能⾏为的基础。
智能的特征:1)具有记忆与思维能⼒存贮有感官得到的外界信息并加以处理(如分析,计算,联想、决策等)2)具有感知能⼒:通过感官获取外部信息的能⼒。
3)具有⾃适应能⼒通过与外部世界交互学习,积累经验,增长知识,以适应环境变化。
4)具有表达能⼒通过语⾔、⼿势、表情等⽅式完成信息的输出。
深蓝:能够模拟⼈的思维,进⾏博弈的计算机。
1997年5⽉12⽇,⼀个名为“深蓝”(deepBlue)的IBM计算机系统战胜当时的国际象棋冠军盖利.卡斯帕罗夫图灵测试:两个房间,⼀个是⼈,⼀个是机器,测试者通过⼀系列的提问,如果提问题的⼈⽆法分辨是⼈还是机器在回答问题,则认为该机器具有智能⼈⼯智能(ArtificalIntelligence,简称AI)⼜称机智能machineintelligence,⼀般认为起源于美国1956年的⼀次夏季讨论(达特茅斯会议)在这次会议上,第⼀次提出了“ArtificalIntelligence”这个词。
AI的本质问题:研究如何制造出⼈造的智能机器或系统,来模拟⼈类的智能活动的能⼒,以延伸⼈们智能的科学。
产⽣式系统由三个部分组成1)综合数据库(GlobeDatabase)也称为:事实库,上下⽂等。
作⽤:存放问题求解的过程中产⽣的状态描述信息。
2)规则库(RuleBase)(问题本⾝知识、求解知识)也称为规则基、规则集等。
作⽤:存放规则知识。
产⽣式规则的⼀般表达形式:IF(前提)…THEN(结论)…即:如果…那么….例:1)数学定理2)IFA是⼀种动物ANDA是哺乳动物ANDA吃⾁THENA是⾼级动物关于不精确推理当规则的前提成⽴时,结论并⾮完全成⽴。
这种推理称为不精确推理。
通常采⽤阈值⽅法来解决此类问题。
人工智能考试必备知识点

人工智能考试必备知识点第三章约束推理约束的定义:一个约束通常是指一个包含若干变量的关系表达式,满足的条件。
贪心算法:贪心法把构造可行解的工作分阶段来完成。
在各个阶段,选择那些在某些意义下是局部最优的方案,期望各阶段的局部最优的选择带来整体最优。
回溯算法:有些问题需要彻底的搜索才能解决问题,然而,彻底的搜索要以大量的运算时间为代价,对于这种情况可以通过回溯法来去掉一些分支,从而大大减少搜索的次数第四章定性推理定性推理的定义是从物理系统、生命系统的结构描述出发 , 导出行为描述 , 以便预测系统的行为并给出原因解释。
定性推理采用系统部件间的局部结构规则来解释系统行为态的变化行为只与直接相邻的部件有关第六章贝叶斯网络贝叶斯网络的定义:贝叶斯网络是表示变量间概率依赖关系的有向无环图,这里每个节点表示领域变量,表示变量间的概率依赖关系,同时对每个节点都对应着一个条件概率分布表 (CPT) 该变量与父节点之间概率依赖的数量关系。
条件概率:条件概率:我们把事件B 已经出现的条件下,事件 A 发生的概率记做为并称之为在B 出现的条件下 A 出现的条件概率,而称 P(A)为无条件概率。
贝叶斯概率:先验概率、后验概率、联合概率、全概率公式、贝叶斯公式先验概率:先验概率是指根据历史的资料或主观判断所确定的各事件发生的概率,验证实,属于检验前的概率,所以称之为先验概率后验概率:后验概率一般是指利用贝叶斯公式,结合调查等方式获取了新的附加信息,对先验概率进行修正后得到的更符合实际的概率联合概率:联合概率也叫乘法公式,是指两个任意事件的乘积的概率,或称之为交事件的概率。
贝叶斯问题的求解步骤定义随机变量、确定先验分布密度、利用贝叶斯定理计算后验分布密度、利用计算得到的厚颜分布密度对所求问题作出推断贝叶斯网络的构建为了建立贝叶斯网络,第一步,必须确定为建立模型有关的变量及其解释。
为此,需要:(1) 确定模型的目标,即确定问题相关的解释; (2) 确定与问题有关的许多可能的观测值,并确定其中值得建立模型的子集; (3) 将这些观测值组织成互不相容的而且穷尽所有状态的变量。
ai总结试卷知识点

ai总结试卷知识点一、人工智能的基本概念1. 人工智能的定义和特点人工智能是指利用计算机技术模拟人类智能的能力,包括感知、认知、学习、推理、规划和行动等方面。
具有智能的特点,如自主性、学习能力、推理能力、语言能力等。
2. 人工智能的分类根据不同的方法和技术,人工智能可以分为强人工智能和弱人工智能。
强人工智能是指具有人类智能水平的人工智能系统,能够思考、学习和创造;弱人工智能则是指专门针对某一领域或任务的人工智能系统,无法与人类智能相提并论。
二、人工智能的技术原理1. 机器学习机器学习是一种基于数据的自动化学习方法,通过训练数据和算法的迭代优化,使计算机系统能够从中提取知识、模式和规律。
常见的机器学习方法包括监督学习、无监督学习和强化学习。
2. 深度学习深度学习是一种基于人工神经网络的学习方法,具有多层次的表示和抽象特征提取能力。
它能够处理大规模的数据,并在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
3. 自然语言处理自然语言处理是指通过计算机技术处理和理解自然语言的能力,包括文本分析、语义理解、机器翻译等。
它是人工智能技术的重要应用领域之一,已经在搜索引擎、智能对话系统等方面得到了广泛应用。
4. 强化学习强化学习是一种基于奖励信号进行学习的方法,通过试错和反馈机制,使智能体在与环境的交互中学习并优化策略。
它在游戏、机器人控制、自动驾驶等领域具有重要应用价值。
5. 人工智能的伦理和安全问题随着人工智能技术的发展,一些伦理和安全问题也愈发突出。
包括数据隐私保护、算法歧视、自动化生产带来的社会影响等。
需要制定相关政策和法规来保障个人权益和社会稳定。
三、人工智能的应用领域1. 医疗健康领域人工智能技术在医疗影像诊断、药物研发、健康管理等方面得到了广泛应用,能够提高诊断精度和治疗效果,促进健康产业的发展。
2. 金融领域人工智能技术在风险管理、信用评估、市场预测等方面具有重要作用,能够提高金融机构的运营效率和风险控制能力。
人工智能相关知识点考试题及答案

人工智能相关知识点考试题及答案一、单选题(每题2分,共20分)1. 人工智能的英文缩写是什么?A. AIB. MLC. NLPD. DL答案:A2. 下列哪个选项不是人工智能的主要应用领域?A. 自动驾驶B. 语音识别C. 机器翻译D. 会计审计答案:D3. 深度学习在人工智能中主要解决的问题是什么?A. 数据存储B. 特征提取C. 数据传输D. 数据加密答案:B4. 以下哪个算法不是机器学习算法?A. 决策树B. 支持向量机C. 神经网络D. 快速排序答案:D5. 下列哪个不是人工智能的核心技术?A. 机器学习B. 知识图谱C. 云计算D. 自然语言处理答案:C6. 人工智能的发展历程中,哪个阶段被称为“黄金时代”?A. 1950sB. 1960sC. 1970sD. 1980s答案:B7. 以下哪个是人工智能的伦理问题?A. 数据隐私B. 网络安全C. 系统稳定性D. 软件兼容性答案:A8. 以下哪个不是人工智能的发展趋势?A. 自主化B. 个性化C. 去中心化D. 集中化答案:D9. 人工智能的“感知”能力主要依赖于哪种技术?A. 机器学习B. 深度学习C. 神经网络D. 以上都是答案:D10. 下列哪个是人工智能的挑战?A. 算法复杂性B. 数据质量C. 计算资源D. 以上都是答案:D二、多选题(每题3分,共15分)1. 人工智能的主要应用领域包括哪些?A. 医疗健康B. 金融服务C. 教育D. 娱乐答案:ABCD2. 人工智能的核心技术包括哪些?A. 机器学习B. 深度学习C. 知识图谱D. 云计算答案:ABC3. 人工智能的伦理问题主要涉及哪些方面?A. 数据隐私B. 算法偏见C. 责任归属D. 就业影响答案:ABCD4. 人工智能的发展趋势包括哪些?A. 自主化B. 个性化C. 去中心化D. 集中化答案:ABC5. 人工智能面临的挑战包括哪些?A. 算法复杂性B. 数据质量C. 计算资源D. 伦理问题答案:ABCD三、判断题(每题1分,共10分)1. 人工智能可以完全替代人类工作。
《人工智能》复习要点

名词解释5X6分/简答题5X10分/论述题1X20分一、选择题1.下列哪个不是人工智能的研究领域( D )A.机器证明B.模式识别C.人工生命D.编译原理2.人工智能是一门( C )A.数学和生理学B.心理学和生理学C.语言学D.综合性的交叉学科和边缘学科3.神经网络研究属于下列( B )学派A.符号主义B.连接主义C.行为主义D.都不是4.(A->B)∧A => B是( C )A.附加律B.拒收律C.假言推理5.命题是可以判断真假的( D )A.祈使句B.疑问句C.感叹句D.陈述句6.MGU7.8.9.10.11.12.13.15.16.17.A.用户B.综合数据库C.推理机D.知识库18.产生式系统的推理不包括( D )A.正向推理B.逆向推理C.双向推理D.简单推理19.子句~P?Q和P经过消解以后,得到( B )A. PB. QC.~PD.P?Q20. 反演归结(消解)证明定理时,若当前归结式是( C )时,则定理得证。
A.永真式B.包孕式(subsumed)C.空子句21. 谓词逻辑下,子句, C1=L∨C1‘, C2= ? L∨C2‘,?若σ是互补文字的(最一般)合一置换,则其归结式C=( A )A.C1’σ∨C2’σB.C1’∨C2’C.C1’σ∧C2’σD.C1’∧C2’22.A?(A?B)?A 称为(),~(A?B)?~A?~B称为( C )A.结合律B.分配律C.吸收律D.摩根律23. 如果问题存在最优解,则下面几种搜索算法中,( A )必然可以得到该最优解。
A.广度优先搜索B.深度优先搜索C.有界深度优先搜索D.启发式搜索24.AI的英文缩写是(A)A)Automatic Intelligence B)Artifical IntelligenceC)Automatice Information D)Artifical Information25. 从已知事实出发,通过规则库求得结论的产生式系统的推理方式是( A )A.正向推理B.反向推理C.双向推理26.1997年5月,着名的“人机大战”,最终计算机以3.5比2.5的总比分将世界国际象棋棋王卡斯帕罗夫击败,这台计算机被称为( A )A.深蓝B.IBMC.深思D.蓝天27.人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是( C )A.明斯基B.扎德C.图林D.冯.诺依曼二、填空题综合数据库,知识库和推理机。
人工智能基础知识考试

人工智能基础知识考试(答案见尾页)一、选择题1. 人工智能是什么时候开始进入公众视野的?A. 20世纪50年代B. 20世纪60年代C. 20世纪70年代D. 20世纪80年代2. 人工智能的主要研究内容包括哪些?A. 机器学习、自然语言处理、计算机视觉B. 机器学习、深度学习、神经网络C. 机器学习、数据挖掘、专家系统D. 机器学习、深度学习、自然语言处理3. 以下哪个选项不是人工智能的应用领域?A. 智能制造B. 人脸识别C. 手机解锁D. 风力发电4. 人工智能的发展阶段中,哪一个阶段的特点是机器具有类人的独立思考能力?A. 弱人工智能阶段B. 强人工智能阶段C. 超人工智能阶段D. 现代人工智能阶段5. 以下哪个因素对人工智能的发展影响最大?A. 计算能力的提升B. 数据量的增加C. 互联网的发展速度D. 人类对AI技术的关注度6. 在人工智能中,以下哪个术语代表的是机器学习的一种方法?A. 决策树B. 随机森林C. 支持向量机D. 神经网络7. 人工智能中的“阿尔法狗”是一款用于下棋的哪种类型的算法?A. 机器学习B. 深度学习C. 自然语言处理D. 计算机视觉8. 人工智能在医疗诊断中的应用最常见的类型是?A. 机器学习辅助诊断B. 深度学习辅助诊断C. 专家系统辅助诊断D. 基于规则的系统辅助诊断9. 以下哪个选项不是人工智能技术的基础理论?A. 概率论B. 机器学习C. 深度学习D. 大数据分析10. 人工智能的未来发展方向中,哪一个方向被认为是最具潜力的?A. 通用人工智能(AGI)B. 强人工智能C. 弱人工智能D. 超人工智能11. 人工智能(AI)的基本概念是什么?A. AI是一种模拟人类智能的技术和系统B. AI可以完全模拟人类的思考过程C. AI主要用于解决数学问题D. AI在某些领域可以替代人类工作12. 人工智能的主要研究内容包括哪些?A. 机器学习B. 自然语言处理C. 计算机视觉D. 专家系统13. 人工智能的发展历程可以分为几个阶段?A. 初级阶段B. 中级阶段C. 高级阶段D. 未来阶段14. 以下哪个不是AI应用领域之一?A. 智能制造B. 无人驾驶汽车C. 手机语音助手D. 网页游戏15. 机器学习中常用的算法有哪些?A. 决策树B. 支持向量机(SVM)C. 随机森林D. 神经网络16. 人工智能的伦理问题主要涉及哪些方面?A. 数据隐私B. 偏见和歧视C. 安全性D. 责任归属17. 人工智能在未来可能带来的社会影响包括哪些方面?A. 就业市场变化B. 教育体系改革C. 法律法规调整D. 公共卫生管理18. 以下哪个因素对AI模型的性能有很大影响?A. 硬件设备B. 软件开发框架C. 数据质量D. 人工智能算法19. 在AI领域,什么是“深度学习”?A. 一种特定的AI技术B. 一种基于神经网络的算法C. 一种通过大量数据训练模型的方法D. 一种模拟人类大脑的工作原理20. 以下哪个选项描述了AI技术的未来发展?A. AI将完全超越人类的智能B. AI将与人类智能融合,共同发展C. AI将在某些领域取代人类的工作D. AI将不再需要人工干预21. 人工智能(AI)是指什么?A. 一种模拟人类智能的技术和系统B. 一种计算机编程技术C. 一种生物神经系统D. 一种无线通信技术22. 人工智能的基本组成包括哪些?A. 硬件B. 软件C. 数据D. 以上所有23. 以下哪个选项不是人工智能的主要研究领域?A. 机器学习B. 自然语言处理C. 计算机视觉D. 物联网24. 人工智能的发展可以分为几个阶段?A. 初级阶段B. 中级阶段C. 高级阶段D. 专家阶段25. 以下哪个不是人工智能的应用场景?A. 智能客服B. 无人驾驶汽车C. 手机语音助手D. 手工制作一件艺术品26. 机器学习是一种什么技术?A. 使计算机能够自行学习和改进的技术B. 通过编写代码来训练计算机的技术C. 通过输入数据来训练计算机的技术D. 通过软件接口来操作计算机的技术27. 在人工智能中,以下哪个术语指的是对数据进行预处理的过程?A. 模型训练B. 特征工程C. 模型评估D. 模型部署28. 人工智能的哪一项技术可以用于识别图像中的物体?A. 机器学习B. 计算机视觉C. 自然语言处理D. 语音识别29. 人工智能在哪些行业中得到了广泛应用?A. 医疗保健B. 金融C. 教育D. 所有以上行业30. 以下哪个因素是人工智能发展的主要驱动力?A. 计算能力的提高B. 数据量的增加C. 人类对智能的追求D. 以上所有因素31. 人工智能是什么?A. 一种计算机科学分支,研究如何使计算机模拟人类智能B. 一种计算机编程技术,用于实现自动化和智能化C. 一种生物神经系统,用于处理信息D. 一种实时数据处理系统,用于预测未来事件32. 人工智能的基本组成部分包括哪些?A. 神经网络B. 机器学习算法C. 自然语言处理D. 计算机视觉33. 人工智能的发展历程可以分为几个阶段?A. 早期研究(1950s-1960s)B. 黄金时代(1970s-1980s)C. 冬季时代(1990s-2000s)D. 复兴时期(2010s至今)34. 以下哪个不是人工智能的应用领域?A. 医疗诊断B. 金融风险评估C. 无人驾驶汽车D. 智能制造35. 机器学习中常用的算法有哪些?A. 决策树B. 支持向量机C. 随机森林D. 神经网络36. 人工智能的伦理问题主要涉及哪些方面?A. 数据隐私B. 偏见和歧视C. 安全性和可控性D. 人机关系37. 人工智能的发展对于就业市场有什么影响?A. 会导致大量失业B. 会创造新的职业机会C. 会使某些职业变得不再必要D. 会提高工作效率和生产力38. 在人工智能中,深度学习是一种?A. 机器学习的方法B. 深度神经网络C. 一种特定的算法D. 一种数据处理技术39. 人工智能在哪些领域中具有潜力?A. 教育B. 能源C. 环境保护D. 交通40. 以下哪个因素对人工智能的发展最为关键?A. 计算能力B. 数据C. 算法D. 人才二、问答题1. 什么是人工智能?请简述其发展历程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、利用启发式搜索算法A 解决以下8数码(如下图所示):设评价函数表的内容。
10、将以下语句:(1)会朗读者是识字的,(2)海豚都不识字, (3) 有些海豚是很机灵的, (4) 有些很机灵的东西不会朗读。
形式化表示为合适公式。
答:令谓词R 、L 、D 、I 分别指示朗读、识字、海豚和机灵,则这些语句可 形式化表示如下:(1(x[R(xL(x](2(x[D(xL(x](3(x[D(xl(x](4(x[l(xR(x]13、将题 10 中的前三个语句作为已知事实(公理),最后一语句作为目标(待证定理),应用归结 反演方法,证明目标成立。
答:将前三个语句和最后一语句的取反化简,并标准化为合取范式的子句 集:(1R(xL(x(2D(yL(y(3D(A(4l(A (5l(zR(z2、有三个积木块(A 、B 、C )放在桌子上,且可以叠放f(n=d(n+p(n ,画出搜索图,并给出各搜索循环结束时OPEN 和在一起,要求在任意初始状态,按自上而下 A 、 B 、C 的顺序叠放这三个积木块。
搬动积木块应遵从以下约束:( 1)每次只能搬一块,( 2)只有顶空的积木块才能搬动。
请为机器人搬动积木块设计一个产生式系统,包括综合数据库、规则库和冲突解法(不必设计控制系统);若初始状态和目标状态分别为:答案:1)综合数据库用谓词公式On(x,y 描述积木块的放置状态,x {A,B,C},y{A,B,C,Table} ;谓词公式Top-Clear(x 描述积木块x 顶空,x {A,B,C} 。
问题状态就由这些谓词公式描述。
2)规则库为每个积木块的搬动设计规则,共有 5 个可能的搬动操作:Put-On(C,Table,Put-0 n(B,C,Put-0 n(B,Table,Put-0 n(A,B,Put-0 n(A,Table。
规则依次排列如下(并采用First 冲突解法):if Top-Clear(C0n(C,TablePut-0n(C,Table,revise;if Top-Clear(BTop-Clear(C0n(C,TablePut-0n(B,C,revise;if Top-Clear(B0n(B,C0n(C,TablePut-0n(B,Table,revise ;if Top-Clear(ATop-Clear(B0n(B,CPut-0n(A,B,revise ;if Top-Clear(A0n(A,B0n(B,CPut-0n(A,Table ,revise 。
其中Put-0n 操作符号指示Put-0n 操作并在计算机屏幕上显示该操作,函数revise 修改问题状态的描述到反映实际状态。
作为解答的操作序列为:Put-0n(A,Table,Put-0n(C,Table,Put-0n(B,C,Put-0n(A,B。
3、表示包含下面句子含义的语义网络:⑴典型的哺乳动物有毛发。
⑵狗是哺乳动物,且吃肉。
⑶Fido是John§7OPEN和CLOSE的狗(3住在光明公寓的人都是太阳公司的律师4、把下列语句表示为语义网络的描述:⑴每个人都喜欢电影⑵太阳公司的每个营销员都参加太平洋保险。
⑶居住在光明公寓的人都是太阳公司的律师。
语义网络的表示并非唯一, 可有多种方式, 本题的每个小题就分别给出二种表示方案。
(1 每个人都喜欢电影。
5、用Do 函数设计操作符Move ( x, y, z ),并写出关于它的一条框架公理;该操作将置于积木块y 上的积木块x 移到积木块z 上。
T(On(x,y,sT(Clear(x,sT(Clear(z,s=>T(On(x,z,Do(M(x,y,z,sT(Clear(y,Do(M(x,y,z,s T(Table(u,s=>T(Table(u,Do(M(x,y,z,s6、应用Green 方法解决以下规划问题:(2太阳公司的每个营销员都参加太平洋保险。
初始状态S0:{T(Clear(C,S0,T(On(C,A,S0,T(On(A,B,S0, T(Table(B,S0} ;目标状态r:{T(Table(A,}<=>Goal( ;{? Goal(Do(a,S0, Ans(a};{?T(Table(A,Do(a,S0, Ans(a};{?T(Table(A,Do(c,Do(b,S0, Ans([b,c]} ;{? T(On(A,y,Do(b,S0, ?T(Clear(A,Do(b,S0, Ans([b,U(A,y]} ;{?T(On(A,y,Do(U(x,A,S0, ? T(On(x,A,S0,?T(Clear(x,S0, Ans([U(x,A,U(A,y]} ;{?T(On(A,y,S0, ?T(On(x,A,S0, ?T(Clear(x,S0,Ans([U(x,A,U(A,y]} ;{?T(On(x,A,? T(Clear(x,S0, Ans([U(x,A,U(A,B] ;{?T(Clear(C,S0, Ans([U(C,A,U(A,B]} ;{Ans([U(c,A,U(A,B]} ;规划的结果是动作块:[U(C,A,U(A,B]1、请用决策树方法,根据下面所给的14个例子,构造关于天气状况的决策例子编属性分类号天温湿风况度度况1晴热大无N2晴热大有N3多热大无P云4雨中大无P 5雨冷正无P常6雨冷正有N常7多冷正有P云常8晴中大无N9晴冷正无P常10雨中正无P常11晴中正有P常12多中大有P云13多热正无P云常14雨中大有N本题中物体集C有十四个例子,9个正例,5个反例。
于是:M(C二—9/14*log2(9/14 —5/14*log2(5/14=0. 940bits1选取属性"天况","晴"的分支含2个正例3个反例,所需期望信息量为:M(天况为晴 =—2/5*log2(2/5 —3/5*log2(3/5=0. 971bits" 多云" 的分支,含4个正例0 个反例:M(天况为多云=0"雨"的分支,含3个正例2个反例:M(天况为雨 =—3/5*log2(3/5 —2/5*log2(2/5=0. 971bits则以" 天况" 作划分后,对应决策树的信息量为:B(C,"天况"=5/14*0. 971 + 4/14*0 + 5/14*0. 971=0. 694bits进一步判别所需的期望信息量为:M(C —B(C,"天况"=0. 940- 0. 694= 0. 247bits2) 选取属性" 温度" ," 热" 的分支,含2 个正例2个反例,所需期望信息量为:M(温度为热 =—1/2*log2(1/2 —1/2*log2(1/2 = 1bits"中"的分支,含4个正例2个反例:M(温度为中 =—4/6*log2(4/6 —2/6*log2(2/6= 0. 918bits"冷"的分支,含3个正例1个反例:M(温度为冷 =—3/4*log2(3/4 —1/4*log2(1/4=0. 811bits则以" 温度" 作划分后,对应决策树的信息量为:B(C,"温度"=4/14*1 + 6/14*0.918 + 4/14*0. 811=0. 911bitsM(C —B(C,"温度"=0. 940- 0. 911 = 0. 029bits3) 选取属性湿度” 大”的分支,含3个正例4个反例,所需期望信息量为:M(湿度为大 =—4/7*log2(4/7 —3/7*log2 (3/7= 0. 985bits"正常"的分支,含6个正例1个反例:M(湿度为正常 =—6/7*log2(6/7 —1/7*log2(1/7= 0. 592bits则以" 湿度" 作划分后,对应决策树的信息量为:B(C," 湿度" = 1/2*0. 985+1/2*0.592= 0. 788bits M(C—B(C," 湿度" = 0. 940—0. 788= 0.152bits4) 选取属性"风况","无"的分支,含6个正例2个反例,所需期望信息量为:M(风况为无 =—2/8*log2(2/8 —6/8*log2(6/8= 0. 811bits" 有" 的分支,含3个正例3个反例:M(风况为有 =—1/2*log2(1/2 —2 *log2(1/2=Ibits则以"风况"作划分后,对应决策树的信息量为:B(C,"风况"=8/14*0.811 +6/14*1 = 0. 892bits M(C—B(C,"风况"=0. 940-0. 892= 0. 048bits根据最大信息量原则,故选择" 天况" 属性进行进一步划分。
类似上述方法,继续不断地细化决策树。
首先对“晴”的分支展开深入讨论,分别得到:M(天况为晴一B(天况为晴,温度”=0 . 571 M(天况为晴一B(天况为晴,湿度”=0 . 971值最大,M(天况为晴—B(天况为晴,风况”=0 . 420根据最大信息量原则,接下去可以按属性" 湿度" 进一步划分,从而最终将正反例完全分开。
其次“多云”的分支,全部为正例,显然无须再分划下去。
最后“雨”的分支,讨论如下:M(天况为雨—B(天况为雨,温度”=0 . 0 2 0 M(天况为雨—B(天况为雨,湿度”=0 . 0 2 0 M(天况为雨—B(天况为雨,风况”=0 . 971值最大,接下去按属性" 风况" 进一步划分。
最终使得正反例完全分开。