第一章解三角形阶段复习课课件(人教A版必修5)
合集下载
高中数学第一章解三角形第1节正弦定理和余弦定理第1课时正弦定理课件新人教A版必修53

45°=
23,
∴C=60°或 C=120°.
当 C=60°时,B=75°,
b=cssiinnCB= s6isnin607°5°= 3+1; 当 C=120°时,B=15°, b=cssiinnCB= s6insi1n2105°°= 3-1. ∴b= 3+1,B=75°,C=60°或 b= 3 -1,B=15°,C=120°.
代入已知式子得
cos ksin
AA=kcsoisn
BB=kcsoisn
CC.
∴csoins
AA=csoins
BB=csoins
C C.
∴tan A=tan B=tan C.
又∵A、B、C∈(0,π),
∴A=B=C.∴△ABC 为等边三角形.
法二:化边为角
由正弦定理得sina A=sinb B=sinc C.
提示:sina A=sinb B=sinc C
2.归纳总结,核心必记 (1)正弦定理 在一个三角形中,各边和它所对角的正弦的
比相等,即 (2)解三角形
一般地,把三角形的三个角 A,B,C 和它 们的对边 a,b,c 叫做三角形的元素.已知 三角形的几个元素求其他元素的过程叫做 解三角形.
[问题思考] (1)在△ABC 中 sin A=sin B,则 A=B 成立 吗? (2)在△ABC 中,sin A∶sin B∶sin C=a∶b∶c 成立吗? (3)在△ABC 中,若 A>B,是否有 sin A>sin B? 反之,是否成立?
—————————[课堂归纳·感悟提升]————————— 1.本节课的重点是正弦定理的应用,难点是正
弦定理的推导.
2.本节课要牢记正弦定理及其常见变形:
(1)sina A=sinb B=sinc C=2R(其中 R 为△ABC 外
人教A版必修5_第一章_解三角形__课件1.2_解三角形应用举例(1)

BC DC = sin ∠BDC sin ∠DBC
求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°
求出BC的长;
第三步:在△ABC中,由余弦定理 第三步:
AB 2 = CA2 + CB 2 − 2CA CB cos C 求得AB的长。
形成结论
在测量上, 在测量上,根据测量需要适当确 定的线段叫做基线 如例1中的AC 基线, AC, 定的线段叫做基线,如例1中的AC, 中的CD.基线的选取不唯一, CD.基线的选取不唯一 例2中的CD.基线的选取不唯一, 一般基线越长 基线越长, 一般基线越长,测量的精确度越 高.
创设情境
解决实际测量问题的过程一般要充 分认真理解题意,正确做出图形,把实 际问题里的条件和所求转换成三角形中 的已知和未知的边、角,通过建立数学 模型来求解。
测量问题: 测量问题: 1、水平距离的测量 ①两点间不能到达, 又不能相互看到。 需要测量CB、CA的长和角C的大小,由余弦定理,
AB 2 = CA2 + CB 2 − 2CA CB cos C 可求得AB的长。
计算出AC和 后 再在⊿ 计算出 和BC后,再在⊿ABC中,应用余弦定理计 中 算出AB两点间的距离 算出 两点间的距离
A = A 2 + B 2 −2A ×B cosα B C C C C
例题2:要测量河对岸两地A、B之间的距离,在岸边 例题2:要测量河对岸两地A 之间的距离, 2:要测量河对岸两地 米的C 两地,并测得∠ADC=30° 选取相距 100 3 米的C、D两地,并测得∠ADC=30°、 ADB=45° ACB=75° BCD=45° ∠ADB=45°、∠ACB=75°、∠BCD=45°,A、B、C、 四点在同一平面上, 两地的距离。 D四点在同一平面上,求A、B两地的距离。 解:在△ACD中, ACD中 DAC=180 180° ACD+∠ADC) ∠DAC=180°-(∠ACD+∠ADC) 180° 75° 45° 30°)=30 30° =180°-(75°+45°+30°)=30° ∴AC=CD= 100 3 在△BCD中, BCD中 CBD=180°-(∠BCD+∠BDC) ∠CBD=180°-(∠BCD+∠BDC) =180°-(45 +45°+30° =60° 45° =180°-(45°+45°+30°)=60°
2021_2022学年高中数学第1章解三角形1.2第2课时角度问题课件新人教A版必修5

灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,
则灯塔 A 在灯塔 B 的( )
A.北偏东 5°
B.北偏西 10°
C.南偏东 5°
D.南偏西 10°
B [由题意可知∠ACB=180°-40°-60°=80°.∵AC=BC, ∴∠CAB=∠CBA=50°,从而可知灯塔 A 在灯塔 B 的北偏西 10°.]
A [结合题图可知∠DAC=β-α.
在△ACD中,由正弦定理得
sin D∠CDAC=sAinCα,
∴AC=sina
∠sinDαAC=sin
a sin α (β-α).
在Rt△ABC中,
AB=AC
sin
β=sian
sin αsin β (β-α).]
您好,谢谢观看!
Thank you for watching !
思路探究:①你能根据题意画出示意图吗? ②在△ABC 中,能求出 BC 与∠ABC 吗? ③在△BCD 中,如何求出∠BCD?
[解] 设缉私船用 t 小时在 D 处追上走私船,画出示意图,则有 CD=10 3t,BD=10t,
在△ABC 中,∵AB= 3-1,AC=2,∠BAC=120°, ∴由余弦定理,得 BC2=AB2+AC2-2AB·AC·cos∠BAC=( 3-1)2+22-2×( 3- 1)×2×cos 120°=6,
即缉私船沿北偏东 60°方向能最快追上走私船.
1.测量角度问题的关键是在弄清题意的基础上,画出表示实际 问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦 定理解三角形,最后将解得的结果转化为实际问题的解.
2.在解三角形问题中,求某些角的度数时,最好用余弦定理求 角.因为余弦函数在(0,π)上是单调递减的,而正弦函数在(0,π)上不 是单调函数,一个正弦值可以对应两个角.但角在0,π2上时,用正、 余弦定理皆可.
高中数学新人教A版必修5课件:第一章解三角形1.2应用举例第二课时正、余弦定理在三角形中的应用

3 ,则∠BDC= π 或 2π .
62
33
3
又由 DA=DC,则 A= π 或 π . 63
(2)若△BCD的面积为 1 ,求边AB的长.
6
解:(2)由于 B= π ,BC=1,△BCD 的面积为 1 ,
4
6
则 1 BC·BD·sin π = 1 ,解得 BD= 2 .
2
46
3
由余弦定理得 CD2=BC2+BD2-2BC·BD·cos π =1+ 2 -2× 2 × 2 = 5 ,故 CD= 5 .
2
2
2
关系,又由正弦值还可求出余弦值,这就可以与余弦定理建立关系,另外面积公式中有两边
的乘积,在余弦定理中也有,所以面积公式、正弦定理和余弦定理之间可以相互变换,关键是
根据题中的条件选择正确的变换方向.
即时训练 1-1:在△ABC 中,已知 AB=2,AC=2 2 ,cos B= 1 . 3
(1)求sin C的值;
3
3
3
所以 sin(B+C)= 2 10 + 2 , 99
所以 sin A= 2 10 + 2 , 99
因为 AB=2,AC=2 2 ,
因为 S= 1 AB·AC·sin A,所以 S= 8 5 4 2 .
2
9
题型二 平面图形中线段长度的计算
【例2】 如图,在平面四边形ABCD中,AD=1,CD=2,AC= 7 . (1)求cos∠CAD的值;
49
3 29
3
又 AB=AD+BD=CD+BD= 5 + 2 = 2 5 ,
33
3
故边 AB 的长为 2 5 . 3
人教新课标A版必修5第一章解三角形1.2第2课时 三角形中的几何计算课件

=
3sinA+π6≤
2π
30<A<
3
.
当A=π3时,即△ABC为等边三角形时取等号,
所以sin A+sin B的最大值为 3.
题点四:多边形面积问题 4.已知圆内接四边形ABCD的边长AB=2,BC=6,CD=DA
=4,求四边形ABCD的面积S. 解:如图,连接BD,则S=S△ABD+S△CBD =12AB·ADsin A+12BC·CDsin C. ∵A+C=180°,∴sin A=sin C, ∴S=12sin A(AB·AD+BC·CD)=16sin A. 在△ABD中,由余弦定理得
(2)求sin A+sin B的最大值. 解:(1)由题意可知
1 2absin
C=
43×2abcos
C.
所以tan C= 3.
因为0<C<π,所以C=π3.
(2)由(1)知sin A+sin B=sin A+sinπ-A-π3
=sin A+sin23π-A
=sin
A+
ห้องสมุดไป่ตู้
3 2 cos
A+12sin
A
(√ )
(2)三角形中已知三边无法求其面积
(×)
(3)在三角形中已知两边和一角就能求三角形的面积 ( √ ) 解析:(1)正确,S=12absin C适合求任意三角形的面积.
(2)错误.已知三边可利用余弦定理求角的余弦值,再求得正
弦值,进而求面积.
(3)正确.已知两边和两边的夹角可直接求得面积,已知两边
=a2-c2 b2
=左边,
所以a2-c2 b2=sinsiAn-CB.
与三角形有关的综合问题 题点一:与三角形面积有关的综合问题 1.在△ABC 中,角 A,B,C 的对边分别为 a,b,c.
高中数学第一章解三角形1.1正弦定理和余弦定理1.1.2余弦定理(2)课件新人教a必修5

第一章 §1.1 正弦定理和余弦定理
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?
1.1.2 余弦定理(二)
学习目标
1.熟练掌握余弦定理及其变形形式. 2.会用余弦定理解三角形. 3.能利用正弦、余弦定理解决有关三角形的恒等式化简、 证明及形状判断等问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 已知两边及其中一边的对角解三角形
思考2
△ABC中,sin 2A=sin 2B.则A,B一定相等吗?
答案
∵A,B∈(0,π),∴2A,2B∈(0,2π), ∴2A=2B或2A=π-2B, 即 A=B 或 A+B=2π.
梳理
判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否 有相等的边(或角).在转化条件时要注意等价.
知识点三 证明三角形中的恒等式
(3)当A为锐角时,如图,以点C为圆心,以a为半径作圆,
三角形解的个数取决于a与CD和b的大小关系: ①当a<CD时,无解; ②当a=CD时,一解; ③当CD<a<b时,则圆与射线AB有两个交点,此时B为锐角或钝角,此 时B的值有两个. ④当a≥b时,一解. (4)如果a>b,则有A>B,所以B为锐角,此时B的值唯一.
引申探究 将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b- a2bc,其余条件不变,试判断△ABC的形状. 解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化, 经过化简变形,充分暴露边、角关系,继而作出判断. (2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,b2+ c2=(b+c)2-2bc等等.
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化 成了角;现在我们学了余弦定理,你能不能用余弦定理把角 化成边?
人教版2017高中数学(必修五)第一课 解三角形 模块复习课 1PPT课件
(3)A+B+C=π .
(4)a>b⇔A>B⇔sinA>sinB.
(5)a=b⇔A=B.
(6)A为锐角⇔cosA>0⇔a2<b2+c2;
A为钝角⇔cosA<0⇔a2>b2+c2; A为直角⇔cosA=0⇔a2=b2+c2. (7)sin(A+B)=sinC,cos(A+B)=-cosC. (8)
AB C AB C sin cos ,cos sin . 2 2 2 2
【易错提醒】 解三角形中易忽视的三点 (1)解三角形时,不要忽视角的取值范围. (2)由两个角的正弦值相等求两角关系时,注意不要忽 视两角互补情况. (3)利用正弦定理、余弦定理判断三角形形状时,切记
出现失解情况.
类型一
利用正、余弦定理解三角形
【典例1】(1)△ABC的外接圆的圆心为O,AB=2,AC= ,BC= ,则
4.三角形中的计算问题 在△ABC中,边BC,CA,AB记为a,b,c,边BC,CA,
AB上的高分别记为ha,hb,hcபைடு நூலகம்则
(1)ha=bsinC=______. csinB (2)hb=csinA=______. asinC (3)hc=asinB=______.
bsinA
a bcos C ccos B, (4) b a cos C ccos A, c a cos B bcos A. (5) 1 1 1 abc S absin C acsin B bcsin A . 2 2 2 4R
2 -1,所以 b=15 ,所以a= 2 2
,2 c=
.
2
5
【方法技巧】应用正、余弦定理解决解三角形问题的 类型及方法 已知条件 应用定理 一般解法 由A+B+C=180°,求角A;由正
2020秋新版高中数学人教A版必修5课件:第一章解三角形 1.2.4 .pptx
在三角形中,当涉及两边的和、两边的积或两边的平方和或三角
形的面积时,常用余弦定理解答.
-11-
第4课时 几何计算问题
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
题型一 题型二 题型三 题型四
【变式训练1】 设△ABC的内角A,B,C所对的边长分别为a,b,c,且
(1)若△ABC 的面积等于 3, 求������, ������的值;
(2)若sin C+sin(B-A)=2sin 2A,求△ABC的面积. 分析(1)利用余弦定理和面积公式列关于a,b的方程组求解; (2)先利用正弦定理得a与b的关系,再利用余弦定理得a与b的另一 个关系,列方程组求解a,b,进而求面积.
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
反思1.有关长度问题,要有方程意识.设未知数,列方程求解是经常 用到的方法.列方程时,要注意一些隐含关系的应用.
2.要灵活运用正、余弦定理及三角形面积公式.
-18-
第4课时 几何计算问题 题型一 题型二 题型三 题型四
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
解(1)由余弦定理及已知条件得a2+b2-ab=4.
又因为△ABC 的面积等于 3,
所以
1 2
������������sin
人教版A版高中数学必修5:第一章解三角形_应用举例_课件23
一、解三角形应用题常见的几种情况 (1)实际问题经抽象概括后,已知量与未知量全部集中在 一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个 (或两个以上)三角形,这时需作出这些三角形,先解够条件的 三角形,然后逐步求出其他三角形中的解,有时需设出未知量, 从几个三角形中列出方程,解方程得出所要求的解.
解析:
设快艇驶离港口 B 后,最少要经过 xh,在 OA 上的点 D 处与考察船相遇.如图,连接 CD.则快艇沿线段 BC,CD 航行.
在△OBC 中,∠BOC=30°,∠CBO=60°,∴∠BCO=90°. 又 BO=120,∴BC=60,OC=60 3.故快艇从港口 B 到 小岛 C 需要 1h. 在△OCD 中,∠COD=30°,OD=20x,CD=60(x-2). 由余弦定理知,CD2=OD2+OC2-2OD·OCcos∠COD, ∴602(x-2)2=(20x)2+(60 3)2-2·20x·60 3cos30°,解得 x =3 或 x=38. ∵x>1,∴x=3. 故快艇驶离港口 B 后,最少要经过 3h 才能和考察船相遇.
分析:边读题,边画图形,如图,将条件中的角、长度 标上,求轮船离港口 A 还有多远,即求 AD 的长,在△ACD 中,已知一角(A)一边(CD),待求 AD,结合已知条件△BCD 三边长已知,由余弦定理可求三角,考虑沟通已知和未知, 可利用∠ADC 与∠BDC 互补,求∠BDC.
解析:
在△BDC 中,由余弦定理知, cos∠CDB=BD2+2BCDD·C2-D BC2 =-17,
测量距离的问题
[例 1] (2011·东北三校二模)港口 A 北偏东 30°方向的 C 处有一检查站,港口正东方向的 B 处有一轮船,距离检查站 为 31n mile,该轮船从 B 处沿正西方向航行 20n mile 后到达 D 处观测站,已知观测站与检查站距离 21n mile,问此时轮 船离港口 A 还有多远?
高中数学第一章解三角形122高度角度问题课件新人教A版必修5
3.如图,位于 A 处的海面观测站获悉,在其正东方向相距
40 海里的 B 处有一艘渔船遇险,并在原地等待营救.在 A 处南
偏西 30°且相距 20 海里的 C 处有一艘救援船,该船接到观测站
通知后立即前往 B 处救助,则 sin∠ACB=
21
7
.
解析:在△ABC 中,AB=40,AC=20,∠BAC=120°.由余
解:如图所示,设预报时台风中心为 B,开始影响基地时台 风中心为 C,基地刚好不受影响时台风中心为 D,则 B,C,D 在一直线上,且 AD=20,AC=20.
由题意 AB=20( 3+1),DC=20 2,BC=( 3+1)×10 2.
在△ADC 中,∵DC2=AD2+AC2,
∴∠DAC=90°,∠ADC=45°.
2.如图,D,C,B 三点在地面同一直线上,DC=100 m, 从 C,D 两点测得 A 点仰角分别是 60°,30°,则 A 点离地面的 高度 AB 等于( A )
A.50 3 m C.50 m
B.100 3 m D.100 m
解析:因为∠DAC=∠ACB-∠D=60°-30°=30°, 所以△ADC 为等腰三角形.所以 AC=DC=100 m, 在 Rt△ABC 中,AB=ACsin60°=50 3 m.
对于顶部不能到达的建筑物高度的测量,我们可以选择另一 建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、 俯角等构成的三角形,在此三角形中利用正弦或余弦定理求解即 可.
[变式训练 2] 如图,线段 AB,CD 分别表示甲、乙两楼, AB⊥BD,CD⊥BD,从甲楼顶部 A 处测得乙楼顶部 C 的仰角 α =30°,测得乙楼底部 D 的俯角 β=60°,已知甲楼高 AB=24 米, 则乙楼高 CD= 32 米.