1.2 分式的乘除法3

合集下载

湘教版八年级数学 1.2 分式的乘法和除法(学习、上课课件)

湘教版八年级数学  1.2 分式的乘法和除法(学习、上课课件)
ab
a2 - b2 2 [( a + b)( a - b)]2 (a + b) 2( a - b) 2
解:(
) =
=
.
ab
( ab) 2
a2 b 2
感悟新知
知2-练
3y 2
3-1. 计算: (- ) 的结果是( B )

3y 2
A. 2
x
9y 2
6y 2
6y 2
B. 2 C. 2 D. - 2
x
x
.
g g▪
感悟新知
知1-讲
特别解读
分式乘法运算的基本步骤:
第一步:确定积的符号,写在积中分式的前面.
第二步:运用法则,将分子与分母分别相乘,多项式
要带括号.
第三步:约分,将结果化成最简分式或整式.
感悟新知
2. 法则的运用方法:
知1-讲
(1) 若分子、分母都是单项式,可直接利用乘法运算法则运算
- z2
2x2y 4 ( 2 x 2y) 4 16x 8y 4
解: (
) =
=
.
- z2
(- z 2) 4
z8
a4b2 3
(2) (
)
- 3c2
a4b2 3 (a 4b 2) 3
a12b 6
(
) =
=-
.
- 3c2
(- 3c 2) 3
27c 6
知2-练
感悟新知
知2-练
a2 - b2 2
(3) (
)
·( - 4xy2);
3y 4x
5y
ab + b2 6a2b
(3)
·
.
4ab2 a2 - b2
解题秘方:利用分式的乘法运算法则进行计算 .

人教版初中数学试讲逐字稿《分式的乘除》

人教版初中数学试讲逐字稿《分式的乘除》

初中数学试讲稿《分式的乘除》【选自人教版数学八年级下册】各位评委老师好(鞠躬)我是应聘初中数学的3号考生,今天我抽到的课题是《分式的乘除》,下面开始我的试讲。

(所有的X,都是假装有数字或者公式,感谢各位配合)一、导入师:好,同学们上课师:大家小时候都见过大拖拉机和小拖拉机吧?见过它们耕地吗?生:(有的说有,有的说没有)师:有得见过有的没见过啊,没关系,那大家接着想一下假设大拖拉机m天耕地a公顷,小拖拉机n天耕地b公顷,那请问大拖拉机的工作效率是小拖拉机的多少倍呢?师:大家动笔算算师:有请中间那位穿红衣服的女生说一下你的计算结果生:XX倍师:大家说她说的对不?生:对师:也就是,先分别算出大、小拖拉机的工作效率,然后直接求倍数,是吧?生:点头师:那大家再想一下假设有个长方体容器,容积为V,底面长为a,宽为b,,当容器内的水占容积的X时,水面的高度为多少?师:好,班长很快举起手了,那就请班长回答一下生:长方体容器本来的高为X,以为水占容积的X,长宽不变,所以水面的高为XXX师:班长很清晰的给大家分析出了水面的高度,那就像上面的问题,讨论数量关系时,有时需要进行分式的乘除运算,那么分式的乘除法有哪些法则呢?二、新授师:大家都知道分式与分数有类似的形式,所以学习分式的乘除运算之前,先回顾一下分数的乘除法则,谁能说说分数的乘除法则呢?师:好,最后那位男生生:分数乘法法则是分数乘分数,用分子的积作为积的分子,分母的积作为积的分母;除法是先把除式的分数的分子、分母颠倒位置后,再按照乘法法则与被除的分数相乘师:大家说这位男生说的完整不?说的对不对呀?生:对师:恩,这位男生说的很对,那接下来请大家按照前后桌为一组,进行分组,然后试着类比刚才分数的乘除法则,总结分式的乘除法则,讨论完后,举手示意师:好,各小组很快举起了手,再等等还没想好的同学师:大家都边商量边写完了,有请最先举手的前排这个小组说一下你们的结果生:乘法法则:俩分式相乘,用分子的积作为积的分子,分母的积作为分母;除法法则是,先把除式的分式分子分母颠倒位置后,再与被除式相乘师:恩,其他小组有需要补充的嘛?生:摇头示意师:那大家都认可这个小组的回答了?恩,的确刚才这位同学说的很正确,那么大家可以用数学式子来表示吗?用咱们数学语言来描述上述法则吗?提醒一下,大家可以用a、b、c、d........字母来表示分式的分子分母,自己在练习本上试着写写师:刚才我在下面看看了大家写的,大部分同学呢,写的很好,有得同学呢,把除法写错了,在这里,老师再次强调一下,除法其实也是转化为乘法来运算的,但是必须得先把除式的分子分母颠倒位置,其他不变,再与被除式相乘。

1.2 分式的乘除法

1.2 分式的乘除法
2 2 2
分式的乘方, 分式的乘方, 把分子分母各自乘方. 把分子分母各自乘方.
4
a x x (2) − ÷− y ay
2 2 2
3
2
−a ⋅ ; xy
y − x (x − y) (3) ; ÷ y+x x+y ax (4 ) − 2 3(a + x )
乘除法运算的结果的化简. 乘除法运算的结果的化简.
法则使用后对分式的化简. 法则使用后对分式的化简. 难点: 难点:
回顾与思考
1、观察下列运算,你想到了什么 说出来与同学们 、观察下列运算 你想到了什么 你想到了什么?说出来与同学们 分享. 分享 2 4 2× 4 8 5 2 5 × 2 10 = ; ( 2) × = = ; (1) × = 3 5 3 × 5 15 7 9 7 × 9 63 2 4 2 5 2×5 5 5 2 5 9 5 × 9 45 = ; ( 4) ÷ = × = = . ( 3) ÷ = × = 3 5 3 4 3× 4 6 7 9 7 2 7 × 2 14
分式的乘除法法则与分数类似
(1) b × d = bd;
a c ac
( 2) b ÷ d = b × c = bc .
a c a d ad
【分数的乘除法法则 】 分数的乘除法法则 两个分数相乘, 两个分数相乘, 把分子 分数相乘 相乘的积作为积的分子, 相乘的积作为积的分子, 把分母相乘的积作为积的 分母; 分母; 两个分数相除, 分数相除 两个分数相除, 把除式 的分子分母颠倒位置后, 的分子分母颠倒位置后, 再与被除式相乘. 再与被除式相乘.
2
a b = ⋅ 2 b⋅a
a 1 = a(a − 1) ⋅ − a

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

初中数学_《分式的乘法除法》教学设计学情分析教材分析课后反思

分式的乘除法教学设计课型:新授 教师姓名:教学目标: 1、理解分式的乘除运算法则2、会进行简单的分式的乘除法运算教学重点:分式的乘除法运算教学难点:1、分式的乘除法法则的理解2、分子与分母是多项式的分式乘除法运算一、复习回顾1、化简:(1)bc a ac 22142- (2)aa a 2422+- 设计意图:当分子与分母是单项式的时候,可以直接进行约分化简;但当分子与分母是多项式的时候,就要先进行因式分解,然后再约去公因式化简,所以设计这一题考查学生对约分的定义的理解,约分一定要求在分子与分母是乘法的状态下才能进行。

2、计算:(1),10932⨯ (2)211075÷ 3、思考:(1)说出分数的乘除法的法则;分数乘以分数,用分子的积做积的分子,分母的积做积的分母;分数除以分数,把除数的分子分母颠倒位置,与被除数相乘.(2)试一试计算:猜一猜:=⨯c d a b;=÷cd a b 你能总结分式乘除法的法则吗?与同伴交流。

c bd a c d b a ⨯⨯=⨯, db c a d c b a c d b a ⨯⨯=⨯=÷ 二、小组讨论与归纳通过类比分数的乘除法的法则,你能得到分式的乘除法的法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.设计意图:通过分数的乘除法运算,帮助学生回顾分数的乘除法法则,让学生体会一下类比的数学思想,从而讨论归纳出分式的乘除法法则。

三、例题学习,计算:例题1:(1)226283a y y a⋅ 例题2(1)x y xy 2262÷ 注意:计算结果一定要化为最简分式四、巩固练习,计算:化简:(1)2a b b a⋅ (2) )(x y y x x y -⋅÷ (3)xy xy 3232÷- (4))21()3(43x y x y x -⋅-÷ 5、先观察下面分式的分子与分母与第1到第4题有什么不同之处,然后做一做: aa a a 21222+•-+ 尝试之后老师提问:1、按法则来做分子乘以分子,分母乘以分母,你是先做乘法运算吗?2、分子与分母能进行约分吗?3、总结:当分子与分母是多项式的分式的乘除法运算应注意哪些细节?五、例题学习,计算:1、 bb a a b -+•-2239 2、41441222--÷+--a a a a a注意:当分式的分子与分母都是单项式时:(1)乘法运算步骤是,①用分子的积做积的分子,分母的积做积的分母;②约分(2)除法的运算步骤是,把除式中的分子与分母颠倒位置后,与被除式相乘,其它与乘法运算步骤相同。

3.3《分式的乘法与除法》教学案2

3.3《分式的乘法与除法》教学案2

3.3 分式的乘法与除法 教学案【教学目标】1.通过与分数乘除法法则的类比经,探索分式的乘除法运算法则。

2.运用分式的乘除运算法则,进行分式的简单运算。

【教学重点】运用分式的乘除法运算法则,进行简单分式的乘除运算。

【学习过程】第一部分 预习设计【预习目标】1.通过与分数乘除法法则的类比经,探索分式的乘除法运算法则。

2.运用分式的乘除运算法则,进行分式的简单运算。

学习任务一:自学教材78交流与发现,类比分数乘除法的运算法则,探索分式乘除法的运算法则。

1、类比分数的乘除法则计算:⑴b a ·d c = ⑵b a ÷d c= 2、由以上算式我们可得到分式的乘法和除法的运算法则分别是:乘法法则:除法法则:学习任务二:自学教材第79-80页内容,会进行简单分式的乘除运算。

1、分析例1和例2,仿照例题做下面的题目,理解分式乘除法的解法。

(1)235bc a -·223ab c - (2)222235b a c b a -÷ (3)242x x -+÷24x x - 思考:1)在运算过程中应进行 ,把结果化为 ;2)在进行分式的乘除运算时,如果分子与分母是多项式,应当先进行2、注意:分式的分子或分母中带有负号时要注意商的符号!预习检测:计算:1)m n ·n m2)4x ÷3x3)2a b -÷22a b4)1a a -·1b a - 5)24a x -÷22a x - 6)422643xy yx ÷- 7)abc bc a 853)2(22⋅ 8)()x y xy 3232÷- 预习质疑:第二部分课中实施 一、问题收集二、问题处理,精讲点拨1、讲解学生预习中的共性问题2、典型例题解析课本79页例2和80页例3三、反思拓展:四、计算:(1)2214m m m -+-·241m m --(2)x xx x x x x x x -+∙-÷+++-33944962222五、强化训练课本练习1、2、3题六、系统总结:。

八年级数学上册《分式的乘法与除法》教案

八年级数学上册《分式的乘法与除法》教案
两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘.
学生回顾的乘除法法则分式。
学生在练习本做题
同桌相互检查
生灵活掌握解题技巧
学生自主完成题目,同桌矫正。
以小组为单位合作探究,交流探究结果。
师提示:
1 学生分清分式的乘法还是除法。
2 化简结果必须是最简形式。
学生独立思考






计算:
(1)、
学习难点: 进行简单分式的乘除运算.
教法与
学法指导
探究法、点拨提示法,
学生自主学习与小组合作探究相结合
教具准备
多媒体课件
课前检测
预习反馈
温故知新
计算
1 、 2、
【分数的乘除法法则】
两个分数相乘,把分子相乘的积作为积的分子,
把分母相乘的积作为积的分母.
两个分数相除,把除式的分子分母颠倒位置后,
再与被除式相乘.
八年级数学上册《分式的乘法与除法》教案







教师教学内容与导学过程设计
学生自主互助学习过程设计
类比分数的乘除法法则:
【分式的乘除法法则】
两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
两个分式相除,把除式的分子分母颠倒位置后,再与被除式相乘.
(展示学习目标):
导入新课
同学们,前面我们讲了分式的乘除法法则,下面对法则进行练习,请看例题;
出示例题:
(1)
(2)
(3)
比一比看谁做的又快又对
(1)
(2)
(3)
教师提示:
运算结果如不是最简分式时,一定要进行约

新湘教版八年级上册初中数学 1.2 分式的乘法和除法 教案

新湘教版八年级上册初中数学 1.2 分式的乘法和除法 教案

1.2 分式的乘法和除法(第1课时)【教学目标】1、 理解并掌握分式的乘、除法运算法则。

2、能够灵活进行分式的乘法。

3、培养学生自主学习能力,类比学习能力,培养学生的创新意识和应用数学的意识。

【教学重点】让学生掌握分式的乘、除法运算【教学难点】分子、分母为多项式的乘法与除法运算【教学过程】一、情境引入1、计算:269⨯=.3245⨯=.42155÷=.2、分数的乘法与除法运算法则是什么?3、尝试计算:=⋅22332a b b a .=+÷+1212x x x x .4、引入:通过上面的练习,我们发现分式的乘法与除法又如何计算呢?二、自主学习1、自学教材,回答下列问题:分式的乘法法则是什么?分式的除法法则是什么?2、自主练习:计算:⑴ 336()4b a b a -⋅⑵5344(24)(36)x y x y -÷(3)24112x x x -⋅+- 3、归纳:分式的乘法与除法运算法则与分数的乘法与除法运算法则类似,其中要运用到幂的意义,因式分解等知识。

三、典例精析例1:计算:(1)22325x y y x •(2)12132-÷-x x x x例2:计算:(1);142122-⋅+x x x x (2)1212822+÷++x x x x x 。

让学生独立完成上述的计算题,然后交流,教师作个别辅导,最后总结归纳,分式的乘法与除法步骤:①分子、分母是整式,要先分解因式;②分式除以分式,按法则转换为乘法计算;③分式乘分式,分子乘分子、分母乘分母分别作为积的分子、分母,然后约去分子、分母的公式因。

特别要让学生展示自己的错误经验,比如未先因式分解的,或者结果没有化为最简分式的。

例3:先化简,再求值:2222111x x x x x x +++÷--,其中2x =。

本题可让学生先独立计算,教师作出个别辅导后,全班交流,并总结经验。

四、练习反馈⒈教材练习1,2⒉教材习题1.2 B 组5题 ⑴()1121224+÷++-x x x x ⑵()y x y xy x x y 244222++-÷- 让学生独立完成,并展示错误经验,集中点评。

分 式 的 乘 除 法

分 式 的 乘 除 法

分式的乘除法(一)教学知识点:1.掌握分式乘除法的运算法则。

2.会进行分式的乘除法的运算。

(二)能力训练要求:1.会通过类比的方法来理解和掌握分式的乘除法法则。

2.熟练运用分式乘除法法则,将分式乘除法全部化归为分式乘法进行计算。

(三)情感与价值观要求:1.通过师生共同交流、探讨,使在掌握知识的基础上,认识事物之间的内在联系,获得成就感。

2.培养的创新意识和应用的意识。

教学重点让掌握分式乘除法的法则及其应用。

教学难点分子、分母是多项式的分式的乘除法的运算。

教学方法启发引导,小组合作。

教具准备多媒体课件、投影仪教学过程一、回顾旧知,引出新知设计说明:利用“数、式通性”“类比转化”的思想方法引发学生猜测,归纳分式乘除法运算法则,从而获得新知。

师:我们一起来看一道计算题,你会做吗?(黑板出示)生:(教师黑板书写答案)师:你能用文字来叙述出你做这道题的思路吗?生:分子乘以分子得到分子,分母乘以分母得到分母。

师:对,这就是小学所学的分数的乘法,这位同学说的很好。

我们大家一起来看看分数的乘法法则多媒体出示分数乘法法则:两个分数相乘,分母与分母相乘的积做为积的分母,分子与分子相乘的积做为分子二、建立模型,引入新课师:刚才我们做的是分数之间的乘法运算,那换成我们刚学过的分式,(黑板出示),大家来猜想一下应该等于多少呢?生:等于师:同学们还有没有不同的答案?(让学生讨论)师:对,分式的乘法与分数乘法类似,那你能说出分式乘法的法则吗?生:两个分式相乘,分母与分母相乘的积做为积的分母,分子与分子相乘的积做为积的分子。

师:说的太棒了,他已经帮我们归纳出了分式的乘法法则,(我们大家掌声鼓励一下)。

大家把他说的和幻灯片上分数乘法法则相对比一下,看一看有什么不同。

生:法则完全一样,一个是分数的乘法,一个是分式的乘法师:对,这个法则即适用与小学的分数乘法运算,同样也适用于分式之间的乘法运算。

我们看看分式的乘法法则教师采用多媒体用“分式”两字覆盖“分数”两字三、尝试练习师:现在我们大家来试一试,现在大家看刚才发的学案上面的1、2题,,你知道它等于多少吗?(口答)生:1题答案,生:2题答案四、强化拓展训练师:刚才两位同学回答的很好,现在请把3、4题做在你们的学案上(,)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=
1 1
技巧三:整式与分式相乘除, 把整式的分母看着“1”
a2-2a
1
(6). x2-1 ÷ x+1 ∙ (x+1)
1
解:原式= x2-1 ∙ (x+1) ∙ (x+1) 一成乘法运算,再按从 x+1 左至右的顺序进行运算。 = x-1
要避免结果是a 的错误。
1 技巧四:形如 a b b 是乘除同级运算,先统
a3

b 4n a 6n
计算下列各题(化简)
技巧一:在分式乘法中, x2-10x+25 x2+x (1). ∙ 2 含有多项式,先考虑将多 x-5 x -1 (x-5)2 x(x+1) 项式进行因式分解,再约 ∙ 解:原式= (x+1)(x-1) x-5 分计算,并且对分子分母
1 x 1 x
2
x2 1 x 1 1 x (3). 2 x 2x 1 x 1 x 1
2 2 a b 2 a b a b 解:原式= 2 a b 3a b ab 2 2a b a ba b 2a b 2
计算下列各题
2 4x y 1 2 3x 3y 2x
ab2 3a 2b 2 2 2 2c 4ca
2
3c
2x 3 3y
2
3y 3y 4x 16 x
3
x2+xy x2-4y2 (4). ∙ 2 2 x +2xy+y x+2y
1、填空: x= y (1). a ∙ b2 = a x ÷ (2). b a y 2.下列各式计算正确的是( B ) x6 2 -2 1 A x3 = x = B 2x-2 1-x m2-9 1 1 1 = m+3 D x+1 ÷x∙ x = x+1 C 3-m
1
4b2 4 a 2 (3). ( 3c ) = 9c2
-2a2b
3.下列计算中,错误的是(C ) 3 2 6 3 3 4 b 16 b 2y 8y B. 3c 2 9c 4 A.
x
2
x
6


C.
x y x y x y 2 2 x y
2
2
2
D.
2n 2 b
ab a b 2a 2b (4). 2 2 a b 3a 3b a b
技巧二:乘除混合的先将 乘除运算统一成乘法,再 从左至右依次运算。是乘 方、乘除混合运算的,运 算顺序是先乘方,再乘除。

3a b

ab
3ab
a2 (5). ( a 2 2a ) a2 a2 1 解:原式= a 2 a(a 2)
x 2 xy y x y 2 (4)( xy x ) xy x2
2 2
3
3 x (5) ( x 3) 2 2 4 4x x x x 6
8
2 x 18
2
a a b a b a b 2、当a=2b时,代数式 2 2 ab a a b 的值是18,求a的值 .
2 2 x 4 x 1 x 4x 1 x 2 5 x 4 2 x 1x 1 x 4x 4 x 1x 4 x 5 x 4
x 1 x 1 x 1 1 x 解:原式= 2 x 1 x 1 x 1
3
2


27a 3 x y
1、计算下列各题
b a a (1). 2 2 a b b
2 3 4
9 x2 3 x (2). 2 x 2x 1 1 x
2
( a b) ab (3) ( a b) ab (b a) 2
4
3
2
3
1、分式乘除、乘方的运算法则是什么? 3、在运算技巧上你有什么收获?还有哪些困惑?
2、分式乘除、乘方的运算有什么要求?要注意哪些问题?
x x 5 x 5 x x 1 x 1
2
中公因式可以直接约分, 减小计算量
除法先转化乘法,把除式 中的分子分母位置颠倒, 而被除式不变。
x 2 8 x 16 x 2 16 (2). 2 2 x 1 x 2x 1
x 2 8 x 16 x 2 2 x 1 2 解:原式= 2 x 1 x 16x 2 2 xy Nhomakorabea x y
3
a-4 a-2 (5). ÷ ∙ 2 a +8a+16 2a+8 a+2 2a-4 =a+2
16-a2
2
a b 2 ab 6 b a ab ba
1 aba b
3a y x 2 2 7 x y yx x y
湘教版SHUXUE八年级上
本节内容 本课内容
1.2
执教:永州市第九中学
回顾
& 思考

u0
1、分式乘、除法法则: fv f v f u fu f u = = = g u gu g v gv g v 2、分式乘方法则; f n
( ) = g gn
f
n
3、分式运算结果的要求 化为最简分式 : 学习方法指导: 类比分数的乘、除、乘方,掌握分式的乘、除、乘方; 因式分解、约分是分式化简的必要途径.
相关文档
最新文档