2020年赤峰市高三数学下期末模拟试题(带答案)

合集下载

内蒙古赤峰市2024届高三下学期3-20模拟考试理科数学试题含答案

内蒙古赤峰市2024届高三下学期3-20模拟考试理科数学试题含答案

赤峰市高三年级3·20模拟考试试题理科数学2024.03本试卷共23题,共150分,共8页,考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己的姓名,准考证号码填写清楚,将条形码准确粘贴条形码区域内.2.选择题答案必须使用2B 铅笔填涂,非选择题答案使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,{}01A x x =<<,{}ln 1B x x =<,则()U A B = ð()A .()0,1B .()1,e C .[)1,e D .[),e +∞2.棣莫弗公式(cos i sin )cos()i sin()nx x nx nx +⋅=+⋅(其中i 为虚数单位)是由法国数学家棣莫弗(1667-1754)发现的,根据棣莫弗公式可知,复数2ππcos i sin 33⎛⎫+⋅ ⎪⎝⎭在复平面内所对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限3.若向量a 与b 满足()a b a +⊥.且1a = ,2b = ,则向量a 与b 的夹角为()A .2π3B .π3C .π6D .5π64.命题“x ∀∈R ,*n ∃∈N ,2n x >”的否定形式是()A .x ∀∈R ,*n ∀∈N ,2n x ≤.B .x ∃∈R ,*n ∃∈N ,2n x <.C .x ∃∈R ,*n ∀∈N ,2n x ≤.D .x ∃∈R ,*n ∀∈N ,2n x <.5.已知()f x 是定义在R 上的偶函数,且周期6T =.若当[]3,0x ∈-时,()4xf x -=,则()2024f =()A .4B .16C .116D .146.在下列四个图形中,点P 从点O 出发,按逆时针方向沿周长为l 的图形运动一周,O 、P 两点连线的距离y与点P 走过的路程x 的函数关系如图,那么点P 所走的图形是()A .B.C.D.7.正值元宵佳节,赤峰市“盛世中华·龙舞红山”纪念红山文化命名七十周年大型新春祈福活动中,有4名大学生将前往3处场地A ,B ,C 开展志愿服务工作.若要求每处场地都要有志愿者,每名志愿者都必须参加且只能去一处场地,则当甲去场地A 时,场地B 有且只有1名志愿者的概率为()A .34B .2150C .611D .358.如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下面的题目:已知曲线C 的方程为2212516x y +=,其左、右焦点分别是1F ,2F ,直线l 与椭圆C 切于点P ,且12PF =,过点P 且与直线l 垂直的直线l '与椭圆长轴交于点M ,则12:F M F M =()A.B .1:2C .1:3D .1:49.已知ABC △的三个内角A ,B ,C 所对的边分别为a ,b ,c ,满足22cos a b c B +=,且sin sin 1A B +=,则ABC △的形状为()A .等边三角形B .顶角为120︒的等腰三角形C .顶角为150︒的等腰三角形D .等腰直角三角形10.已知数列{}n a 满足1,231,nn n nn a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.在直三棱柱111ABC A B C -中,各棱长均为2,M ,N ,P ,Q 分别是线段AC ,11A C ,1AA ,1CC 的中点,点D 在线段MP 上,则下列结论错误的是()A .三棱柱111ABC ABC -外接球的表面积为28π3B .BD MQ⊥C .DQ ⊥面1B QND .三棱锥1D QB N -的体积为定值12.已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的左焦点,过点F 的直线l 与双曲线C 的一条渐近线垂直,垂足为M ,且直线l 与双曲线C 的右支交于点N ,若14FM FN =,则双曲线C 的渐近线方程为()A .34y x =±B .12y x =±C .2y x =±D .43y x=±二、填空题:本题共4小题,每小题5分,共20分.13.522x x ⎛⎫+ ⎪⎝⎭的展开式中x 的系数为______14.已知圆()22:24C x y -+=,直线:1l y x =-+被圆C 截得的弦长为______15.已知函数ππ()sin()0,0,22f x A x A ωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,若将()y f x =的图象向左平移()0m m >个单位长度后所得的图象关于y 轴对称,则m 的最小值为______16.定义在()1,1-上的函数()f x 满足:对任意(),1,1x y ∈-都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭,且当()0,1x ∈时,()0f x <恒成立.下列结论中可能成立的有______①()f x 为奇函数;②对定义域内任意12x x ≠,都有11221221()()()()x f x x f x x f x x f x +>+;③对12,(1,0)x x ∀∈-,都有1212()()22x x f x f x f ++⎛⎫≤⎪⎝⎭;④2111312n i f f i i =⎛⎫⎛⎫> ⎪ ⎪++⎝⎭⎝⎭∑.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{}n a ,______.在①数列{}n a 的前n 项和为n S ,22n n S a =-;②数列{}n a 的前n 项之积为(1)22()n n n S n +*=∈N ,这两个条件中任选一个,补充在上面的问题中并解答(注:如果选择多个条件,按照第一个解答给分.在答题前应说明“我选______”)(1)求数列{}n a 的通项公式;(2)令2log n n n b a a =+,求数列{}n b 的前n 项和n T .18.(12分)2024年甲辰龙年春节来临之际,赤峰市某食品加工企业为了检查春节期间产品质量,抽查了一条自动包装流水线的生产情况.随机抽取该流水线上的40件产品作为样本并称出它们的质量(单位:克),质量的分组区间为(]495,505,(]505,515,…,(]535,545,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求质量超过515克的产品数量和样本平均值x ;(2)由样本估计总体,结合频率分布直方图,近似认为该产品的质量指标值ξ服从正态分布2),1.(25N μ,其中μ近似为(1)中的样本平均值x ,计算该批产品质量指标值519.75ξ≥的概率;(3)从该流水线上任取2件产品,设Y 为质量超过515克的产品数量,求Y 的分布列和数学期望.附:若2(,)N x ξσ~,则()0.6827P u μσξσ-<≤+≈,(22)0.9545P μσξμσ-<≤+≈,(33)0.9973P μσξμσ-<≤+≈.19.(12分)已知函数1()1x f x a e x ⎛⎫=+-⋅⎪⎝⎭.(1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)当2a =时,求函数()f x 的单调递增区间;(3)若函数()f x 在区间()0,1上只有一个极值点,求a 的取值范围.20.(12分)已知正方体1111ABCD A B C D -,棱长为2.(1)求证:1A C ⊥平面11AB D .(2)若平面α∥平面11AB D ,且平面α与正方体的棱相交,当截面面积最大时,在所给图形上画出截面图形(不必说出画法和理由),并求出截面面积的最大值.(3)在(2)的情形下,设平面α与正方体的棱AB 、1BB 、11B C 交于点E 、F 、G ,当截面的面积最大时,求二面角1D EF G --的余弦值.21.(12分)已知抛物线2:2(05)P y px p =<<上一点Q 的纵坐标为4,点Q 到焦点F 的距离为5.过点F 做两条互相垂直的弦AB 、CD ,设弦AB 、CD 的中点分别为M 、N .(1)求抛物线P 的方程.(2)过焦点F 作FG MN ⊥,且垂足为G ,求OG 的最大值.(二)选考题:共10分.请考生在第22、23二题中任选一题做答,如果多做,则按所做的第一题计分.做答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.22.选修4-4:坐标与参数方程(本题满分10分):已知在平面直角坐标系xOy 中,曲线1C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),曲线2C 的参数方程为cos 4sin x y θθ=⎧⎨=+⎩(θ为参数,π2πθ≤≤).(1)求曲线2C 的普通方程;(2)已知M ,N 分别是曲线1C ,2C 上的动点,求MN 的最小值.23.选修4-5:不等式选讲(本题满分10分)已知函数()f x x m =-.(1)当2m =时,求不等式()41f x x ≥-+的解集;(2)若()21f x m x ≥-+恒成立,求m 的取值范围.赤峰市高三年级3.20模拟考试试题理科数学答案2024.03一、选择题:题号123456789101112答案CBACBDADBBCD二、填空题:13.801415.π616.①③④解答题:17.解:(1)选①,当1n =时,1122a a =-,即12a =当2n ≥时,22n n S a =-①1122n n S a --=-②①-②得:122n n n a a a -=-,即12nn a a -=所以数列{}n a 是以2为首项,2为公比的等比数列所以2nn a =选②,当1n =时,112a S ==,即12a =当2n ≥时,(1)2(1)1222n n n n n n n S a S +--==,即(1)(1)2222n n n n n n a +--==当1n =时,12a =符合上式.所以数列{}n a 是以2为首项,2为公比的等比数列所以2nn a =(2)因为2log n n n b a a =+,所以2n n b n =+,所以12(222)(12)n n T n =++⋅⋅⋅+++⋅⋅⋅+2(12)(1)122n n n n T -+=+-21222n n n n T ++=-+18.解(1)由频率分布直方图可知,质量超过515克的产品的频率为50.0750.0550.010.65⨯+⨯+⨯=,∴质量超过515克的产品数量为400.6526⨯=(件)10(5000.0155100.0205200.0355300.0255400.005)518.5x =⨯⨯+⨯+⨯+⨯+⨯=(2)由题意可得518.5x μ==, 1.25σ=则()(517.25519.75)0.6827P P μσξμσξ-<≤+=<≤≈,则该批产品质量指标值519.75ξ≥的概率:1(517.25519.75)(519.75)0.158652P P ξξ-<≤≥==(3)根据用样本估计总体的思想,从该流水线上任取一件产品,该产品的质量超过515克的概率为26130.654020==所以,从流水线上任取2件产品互不影响,该问题可看作二项分布.故,质量超过515克的件数Y 可能的取值为0,1,2,且132,20Y B ⎛⎫~ ⎪⎝⎭221313()C 1,0,1,22020k kk P Y k k -⎛⎫⎛⎫∴==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭222749(0)C 0.350.122520400P Y ⎛⎫∴==⨯=== ⎪⎝⎭,1213791(1)C 0.4552020200P Y ==⨯⨯==,22213169(2)C 0.422520400P Y ⎛⎫==⨯== ⎪⎝⎭,Y ∴的分布列为Y 012P4940091200169400Y 的均值为4991169()012 1.3400200400E Y =⨯+⨯+⨯=或者13()2 1.320E Y =⨯=19.解(1):当1a =时,e ()x f x x =,则2e (1)()x x f x x -=',所以,()1e f =,(1)0f '=,故当1a =时,曲线()y f x =在点()()1,1f 处的切线方程为e 0y -=,即e y =.(2)当2a =时,1(1)e()1e xx x f x x x +⎛⎫=+= ⎪⎝⎭,该函数的定义域为{}0x x ≠,222(2)e (1)e (1)e ()x x xx x x x x f x x x'+-++-==,由()0f x '>,即210x x +->,解得152x +<-或512x ->,因此,当2a =时,函数()f x 的单调递增区间为15,2⎛⎫-∞-⎪ ⎪⎝⎭、51,2⎛⎫-+∞ ⎪ ⎪⎝⎭(3)法Ⅰ:因为1()1e xf x a x ⎛⎫=+-⋅ ⎪⎝⎭,则22211((1)1)e ()1e x x a x x f x a x x x -+-⎛⎫=+--= ⎪⎝⎭',令()()211g x a x x =-+-,因为函数()f x 在()0,1上有且只有一个极值点,则函数()g x 在()0,1上有一个异号零点,当1a =时,对任意的()0,1x ∈,()10g x x =-<恒成立,无零点,故不符合题意;当1a >时,函数()()211g x a x x =-+-在()0,1上单调递增,因为()010g =-<,只需()110g a =->,故1a >符合题意;当1a <时,函数()g x 的图象开口向下,对称轴为直线102(1)x a =->-,因为()010g =-<,只需()110g a =->,故1a <不符合题意,舍去综上所述,实数a 的取值范围是()1,+∞.法Ⅱ:令2(1)10a x x -+-=则2111a x x-=-有根.令1(1,)t x=∈+∞设()2g t t t =-由题意可知10a ->1a ∴>20.证明:(1)连接1A C ,1A B因为1111ABCD A B C D -是正方体,所以BC ⊥平面11ABB A ,因为1AB ⊂平面11ABB A ,所以1BC AB ⊥又因为四边形11ABB A 是正方形,所以11A B AB ⊥,因为1A B BC B = ,所以1AB ⊥平面1A BC ,因为1A C ⊂平面1A BC ,所以11A C AB ⊥.同理:111A C D B ⊥又因为1111AB B D B = ,所以1A C ⊥平面11AB D .(2)截面图形为如图所示的六边形的正六边形,所以最大的截面面积为16sin 602S =⨯︒=(3)因为平面α∥平面11AB D ,所以当截面EFG 的面积最大时,E 、F 、G 分别是棱AB 、1BB 、11B C 的中点,以D 为原点建立如图所示空间直角坐标系()10,0,2D ,()2,1,0E ,()2,2,1F ,()1,2,2G 设平面1D EF 的一个法向量是111(,,)n x y z =,1(2,1,2)D E =- ,1(2,2,1)D F =- ,11111111220220n D E x y z n D F x y z ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩令13x =,则12y =-,12z =,(3,2,2)n =-设平面GEF 的一个法向量是222(,,)m x y z =,(0,1,1)EF = ,(1,0,1)FG =- 22220m EF y z m FG x z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩ ,令21x =,则21y =-,21z =,则(1,1,1)m =-cos ,51n m n m n m ⋅==⋅设二面角1D EF G --的平面角为θ,由图知θ为锐角,所以751cos 51θ=,所以二面角1D EF G --的余弦值为51.21.解:(1)由题可知,24252p p ⎛⎫=- ⎪⎝⎭解得,2p =或8p =(舍)所以,抛物线P 的方程为24y x=(2)设直线:1AB x my =+,()11,A x y ,()22,B x y ,联立214x my y x=+⎧⎨=⎩,可得2440y my --=,则得124y y m +=,21242x x m +=+,2(21,2)M m m ∴+,同理2221,N mm ⎛⎫+- ⎪⎝⎭①1m =±时,3OG =②当1m ≠±时,22222:2(21)22MNm m l y m x m m m+∴-=---根据曲线对称性可知,令0y =时,则3x =.所以直线MN l 恒过点(3,0)E 又FG MN ⊥,所以点G 在以FE 为直径的圆上,且轨迹方程为()2221x y -+=,由几何图形关系可知,OG 的最大值为322.解:(1)由cos 4sin x y θθ=⎧⎨=+⎩,可得cos 4sin x y θθ=⎧⎨-=⎩消去参数θ得2222(4)sin cos 1x y θθ+-=+=,所以曲线2C 的普通方程为()2241x y +-=,又因为π2πθ<<所以曲线2C 的普通方程为22(4)1(34)x y y +-=≤≤(3)因为曲线1C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数),所以设点M的坐标为(2cos )αα,设圆心2C 与1C 上任意一点的距离为d则d ==设sin t α=,[]1,1t ∈-,则d ==,min 4d =,所以min 3MN d r =-=-23.解:①当2m =时,()41f x x ≥-+,即214x x -++≥当1x ≤-时,不等式化为214x x -+--≥,解得32x ≤-,所以32x ≤-当12x -<<时,不等式化为214x x -+++≥,解得x φ∈当2x ≥时,不等式化为214x x -++≥,解得52x ≥,所以52x ≥综上,原不等式的解集为35,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭②若()21f x m x ≥-+恒成立,即min 12x m x m⎡-++⎤≥⎣⎦因为111x m x x m x m -++≥---=+(当且仅当()()10x m x -+≤时,等号成立),所以12m m +≥,即12m m +≥或12m m +≤-,解得1m ≤或13m ≤-故m 的取值范围为(],1-∞.。

2020届内蒙古赤峰市高三下学期模拟考试理科数学试题

2020届内蒙古赤峰市高三下学期模拟考试理科数学试题
A. B.1C. D.2
10.已知椭圆 ,直线 与直线 相交于点 ,且 点在椭圆内恒成立,则椭圆 的离心率取值范围为()
A. B. C. D.
11.如图,在三棱柱 中,底面为正三角形,侧棱垂直底面, .若 分别是棱 上的点,且 , ,则异面直线 与 所成角的余弦值为()
A. B. C. D.
12.已知定义在 上的可导函数 满足 ,若 是奇函数,则不等式 的解集是()
A. B. C. D.
二、填空题
13.已知非零向量 , 满足 ,且 ,则 与 的夹角为____________.
14.在 中,内角 所对的边分别是 ,若 , ,则 __________.
15.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止 ),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.
A.10B.8C.5D.3
8.关于函数 有下述四个结论:()
① 是偶函数;② 在区间 上是单调递增函数;
③ 在 上的最大值为2;④ 在区间 上有4个零点.
其中所有正确结论的编号是()
A.①②④B.①③C.①④D.②④
9.已知等边△ABC内接于圆 :x2+y2=1,且P是圆τ上一点,则 的最大值是( )
(2)若函数 在区间 上不单调,证明: .
22.在平面直角坐标系 中,直线 的参数方程为 ( 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 .

2020届内蒙古赤峰市高三下学期模拟考试文科数学试题

2020届内蒙古赤峰市高三下学期模拟考试文科数学试题
参考答案
1.C
【分析】
化简集合 , ,根据交集定义,即可求得 ;
【详解】

故选:C.
【点睛】
本题主要考查了集合的交集运算,解题关键是掌握交集定义和一元二次不等式的解法,考查了分析能力和计算能力,属于基础题.
2.D
【分析】
由复数 在复平面上的对应点为 ,可得 ,根据 为 的共轭复数,可得 ,逐项验证,即可求得答案.
轻—中度感染
重度(包括危重)
总计
男性患者
女性患者
总计
(1)求 列联表中的数据 的值;
(2)能否有 把握认为,新冠肺炎的感染程度和性别有关?
(3)该学生实验小组打算从“轻—中度感染”的患者中按男女比例再抽取5人,追踪某种中药制剂的效果.然后从这5人中随机抽取3人进行每日的健康记录,求至少抽到2名女性患者的概率.
四、解答题
17.如图,四棱锥 中,底面 为直角梯形, , , 为等边三角形,平面 底面 为 的中点.
(1)求证:平面 平面 ;
(2)点 在线段 上,且 ,求三棱锥 的体积.
18.在 中,内角 所对的边分别是 ,且 .
(1)求角 ;
(2)若 ,求 的面积的最大值.
19.3月3日,武汉大学人民医院的团队在预印本平台 上发布了一项研究:在新冠肺炎病例的统计数据中,男性患者往往比女性患者多.研究者分析了1月1日~29日的6013份病例数据,发现 的患者为男性;进入重症监护病房的患者中,则有 为男性.随后,他们分析了武汉大学人民医院的数据.他们按照症状程度的不同进行分析,结果发现,男性患者有 为危重,而女性患者危重情况的为 .也就是说男性的发病情况似乎普遍更严重.研究者总结道:“男性在新冠肺炎的传播中扮演着重要的角色.”那么,病毒真的偏爱男性吗?有一个中学生学习小组,在自己封闭的社区进行无接触抽样问卷调查,收集到男、女患者各50个数据,统计如下:

内蒙古赤峰市2020届高三5.20模拟考试试题理科数学试题及答案

内蒙古赤峰市2020届高三5.20模拟考试试题理科数学试题及答案

绝密★启用前赤峰市高三5·20模拟考试试题理科数学2020.5本试卷共23题,共150分,共8页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名,准考证号码填写清楚,将条形码粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米的黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|0A x x =<,{}11B x Z x =∈-<≤,则R C A B ()=A.()1,-+∞B.(]1,0-C.{}0,1D.{}1,1-2.已知复数()1a iz a R i+=∈-,则复数z 在复平面内对应的点不可能在A.第一象限B.第二象限C.第三象限D.第四象限3.陕西省西安市周至县的旅游景点楼观台,景区内有一处景点建筑,是按古典著作《连山易》中记载的金、木、水、火、土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰好是相生关系的概率为A.12B.23C.25D.154.若()f x 是定义在R 上的奇函数,且满足(1)1f =,(4)()f x f x +=,则(1)(8)f f -+=A.2-B.0C.1-D.15.被称为计算机第一定律的摩尔(Moore)定律表明,集成电路芯片上所集成的电路的数目,每隔18个月就翻一番并且性能也将提升一倍。

这说明电子产品更新换代之迅速。

由于计算机与掌上智能设备的升级,以及电动汽车及物联网行业的兴起等新机遇,使得电子连接器行业增长呈现加速状态.对于汽车领域的连接器市场规模,中国产业信息发布了2010~2018年之间统计折线图,根据图中信息,得到了下列结论:①2010~2018年市场规模量逐年增加;②增长额度最大的一年为2015~2016年;③2018年比2010年增长了约67%;④与2010~2013年每年的市场规模相比,2015~2018年每年的市场规模数据方差更小,变化更加平稳,其中正确命题的序号为A.①④B.②③C.②③④D.③④6.已知R b a ∈,,则“b a 2121log log <”的一个必要不充分条件是A.ba ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛3141B.ba 11>C.0)ln(>-b a D.13<-b a7.已知圆22:12M x y +=与抛物线2:4N y x =交于,A B 两点(A 在B 的上方),与抛物线N 的准线交于,C D 两点(C 在D 的上方),则四边形ABDC 的面积为A.6+311B.62+311C.2+211D.6+7118.设双曲线1:2222=-by a x C (0,0>>b a ),,M N 是双曲线C 上关于坐标原点对称的两点,P 为双曲线C 上的一动点,若=4PM PN k k ⋅,则双曲线C 的离心率为A.235D.59.杨辉是我国南宋末年的一位杰出的数学家。

2020届内蒙古赤峰市高三下学期模拟考试数学(理)试题(解析版)

2020届内蒙古赤峰市高三下学期模拟考试数学(理)试题(解析版)

2020届内蒙古赤峰市高三下学期模拟考试数学(理)试题一、单选题1.已知集合{}2|230,{|1sin ,0}A x x x B y y x x =+-<==->,则AB =( )A .[)3,1-B .[)0,1C .[]1,2D .()3,2-【答案】B【解析】解一元二次不等式求得集合A ,求三角函数值域求得集合B ,由此求得A B .【详解】由()()223310x x x x +-=+-<解得31x -<<.当0x >时,函数[]1sin 0,2y x =-∈,所以[)0,1A B ⋂=.故选:B 【点睛】本小题主要考查一元二次不等式的解法,考查含有sin x 的函数的值域的求法,考查集合交集概念和运算,属于基础题.2.已知复数z 满足0z z -=,且9z z ⋅=,则z =( ) A .3 B .3iC .3±D .3i ±【答案】C【解析】设z a bi =+,则z a bi =-,利用0z z -=和9z z ⋅=求得a ,b 即可. 【详解】设z a bi =+,则z a bi =-,因为0z z -=,则()()20a bi a bi bi +--==,所以0b =, 又9z z ⋅=,即29a =,所以3a =±, 所以3z =±, 故选:C 【点睛】本题考查复数的乘法法则的应用,考查共轭复数的应用.3.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15 m 3的住户的户数为( )A .10B .50C .60D .140【答案】C【解析】从频率分布直方图可知,用水量超过15m³的住户的频率为(0.050.01)50.3+⨯=,即分层抽样的50户中有0.3×50=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为152006050⨯=,故选C 4.设等比数列{}n a 的前n 项和为n S ,则“10a <”是“20210S <”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【解析】根据等比数列的前n 项和公式,判断出正确选项. 【详解】由于数列{}n a 是等比数列,所以20212021111q S a q -=⋅-,由于2021101q q ->-,所以 1202100a S <⇔<,故“10a <”是“20210S <”的充分必要条件.故选:C 【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前n 项和公式,属于基础题.5.若双曲线C :221x y m-=的一条渐近线方程为320x y +=,则m =( )A .49B .94C .23D .32【答案】A【解析】根据双曲线的渐近线列方程,解方程求得m 的值. 【详解】由题意知双曲线的渐近线方程为()0y x m m =>,320x y +=可化为32y x =-,32=,解得49m =. 故选:A 【点睛】本小题主要考查双曲线的渐近线,属于基础题.6.已知115232,5,log 2a b c ===,则a b c ,,的大小关系为( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<【答案】B【解析】由11522,511a b =>=>,而3log 21c =<,即可得到,a c b c >>.在比较10a 和10b ,即可,a b 大小关系,进而求得a bc ,,的大小关系. 【详解】11522,511a b =>=>,3log 21c =< ∴,a c b c >>又1052=32a =,1025,=25b =∴1010a b >,即a b >综上所述,c b a << 故选:B. 【点睛】本题主要考查了比较数的大小,解题关键是不等式的基本性质和对数函数单调性,考查了分析能力和计算能力,属于基础题.7.若,x y 满足约束条件02636x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最大值为( )A .10B .8C .5D .3【答案】D【解析】画出可行域,将2z x y =+化为122zy x =-+,通过平移12y x =-即可判断出最优解,代入到目标函数,即可求出最值. 【详解】解:由约束条件02636x y x y ≤+≤⎧⎨≤-≤⎩作出可行域如图,化目标函数2z x y +=为直线方程的斜截式,122zy x =-+.由图可知 当直线122zy x =-+过()3,0A 时,直线在y 轴上的截距最大,z 有最大值为3. 故选:D. 【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为y ax bz =+ 的形式,在可行域内通过平移y ax =找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.8.关于函数()sin |||cos |f x x x =+有下述四个结论:( )①()f x 是偶函数; ②()f x 在区间,02π⎛⎫- ⎪⎝⎭上是单调递增函数;③()f x 在R 上的最大值为2; ④()f x 在区间[]2,2ππ-上有4个零点. 其中所有正确结论的编号是( ) A .①②④ B .①③C .①④D .②④【答案】C【解析】根据函数()f x 的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号. 【详解】()f x 的定义域为R .由于()()f x f x -=,所以()f x 为偶函数,故①正确.由于3132sin cos ,sin cos 66624442f f ππππππ⎛⎫⎛⎫-=+=-=+=⎪ ⎪⎝⎭⎝⎭,64f f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在区间,02π⎛⎫- ⎪⎝⎭上不是单调递增函数,所以②错误.当0x ≥时,()sin cos sin cos 4f x x x x x x π⎛⎫=+=±=±≤ ⎪⎝⎭,且存在4x π=,使sin cos 444f πππ⎛⎫=+=⎪⎝⎭. 所以当0x ≥时,()f x ≤由于()f x 为偶函数,所以x ∈R 时()f x ≤, 所以()f x,所以③错误.依题意,(0)sin 0cos01f =+=,当02x π<≤时,()3sin cos ,0,2223sin cos ,22x x x x f x x x x πππππ⎧+<≤≤≤⎪⎪=⎨⎪-<<⎪⎩或,所以令sin cos 0x x +=,解得74x π=,令sin cos 0x x -=,解得54=x π.所以在区间(]0,2π,()f x 有两个零点.由于()f x 为偶函数,所以()f x 在区间[)2,0π-有两个零点.故()f x 在区间[]2,2ππ-上有4个零点.所以④正确. 综上所述,正确的结论序号为①④. 故选:C 【点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.9.已知等边△ABC 内接于圆τ:x 2+ y 2=1,且P 是圆τ上一点,则()PA PB PC ⋅+的最大值是( ) A. B .1CD .2【答案】D【解析】如图所示建立直角坐标系,设()cos ,sin P θθ,则(1)cos PA PB PC θ⋅+=-,计算得到答案. 【详解】如图所示建立直角坐标系,则1,0A,12⎛- ⎝⎭B,1,2C ⎛- ⎝⎭,设()cos ,sin P θθ,则(1cos ,sin )(12cos ,2si (n ))PA PB PC θθθθ=--⋅--⋅+-222(1cos )(12cos )2sin 2cos cos 12sin 1cos 2θθθθθθθ=---+=--+=-≤.当θπ=-,即()1,0P -时等号成立. 故选:D .【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.10.已知椭圆2222:19x y C a a+=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A .20,2⎛⎫ ⎪ ⎪⎝⎭B .22⎛⎫⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A【解析】先求得椭圆焦点坐标,判断出直线12,l l 过椭圆的焦点.然后判断出12l l ⊥,判断出P 点的轨迹方程,根据P 恒在椭圆内列不等式,化简后求得离心率e 的取值范围. 【详解】设()()12,0,,0F c F c -是椭圆的焦点,所以22299,3c a a c =+-==.直线1l 过点()13,0F -,直线2l 过点()23,0F ,由于()110m m ⨯+⨯-=,所以12l l ⊥,所以P 点的轨迹是以12,F F 为直径的圆229x y +=.由于P 点在椭圆内恒成立,所以椭圆的短轴大于3,即2239a >=,所以2918a +>,所以双曲线的离心率22910,92e a ⎛⎫=∈ ⎪+⎝⎭,所以20,2e ⎛⎫ ⎪ ⎪⎝⎭∈.故选:A 【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.11.如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,148AB AA ==,.若E F ,分别是棱1BB CC ,上的点,且1BE B E =,1114C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .210B .2613C .1313D .1310【答案】B【解析】建立空间直角坐标系,利用向量法计算出异面直线1A E 与AF 所成角的余弦值. 【详解】依题意三棱柱底面是正三角形且侧棱垂直于底面.设AB 的中点为O ,建立空间直角坐标系如下图所示.所以()()()()10,2,8,0,2,4,0,2,0,23,0,6A E A F ---,所以()()10,4,4,23,2,6A E AF =-=-.所以异面直线1A E 与AF 所成角的余弦值为11824261342213A E AF A E AF⋅-==⨯⋅故选:B【点睛】本小题主要考查异面直线所成的角的求法,属于中档题. 12.已知定义在R 上的可导函数()f x 满足()()()'10x f x x fx -⋅+⋅>,若3(2)y f x e =+-是奇函数,则不等式1()20x x f x e +⋅-<的解集是( )A .(),2-∞B .(),1-∞C .()2,+∞D .()1,+∞【答案】A【解析】构造函数()()xx f x g x e⋅=,根据已知条件判断出()g x 的单调性.根据()32y f x e =+-是奇函数,求得()2f 的值,由此化简不等式1()20x x f x e +⋅-<求得不等式的解集. 【详解】构造函数()()x x f x g x e ⋅=,依题意可知()()()()''10xx f x x f x g x e-⋅+⋅=>,所以()g x 在R 上递增.由于()32y f x e =+-是奇函数,所以当0x =时,()320y f e =-=,所以()32f e =,所以()32222e g e e⨯==.由1()20x x f x e +⋅-<得()()()22xx f x g x e g e ⋅=<=,所以2x <,故不等式的解集为(),2-∞.故选:A 【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.二、填空题13.已知非零向量a ,b 满足2b a =,且()b a a -⊥,则a 与b 的夹角为____________. 【答案】3π(或写成60︒) 【解析】设a 与b 的夹角为θ,通过()b a a -⊥,可得()=0b a a -⋅,化简整理可求出cos θ,从而得到答案.【详解】设a 与b 的夹角为θ()b a a -⊥可得()=0b a a -⋅,∴()2=0a b a⋅-故2cos =0a b a θ⋅⋅-,将2b a =代入可得 得到1cos 2θ=, 于是a 与b 的夹角为3π. 故答案为:3π. 【点睛】本题主要考查向量的数量积运算,向量垂直转化为数量积为0是解决本题的关键,意在考查学生的转化能力,分析能力及计算能力.14.在ABC 中,内角A B C ,,所对的边分别是a b c ,,,若412cos ,cos 513B C ==,1b =,则a =__________.【答案】5639【解析】先求得sin ,sin B C 的值,由此求得sin A 的值,再利用正弦定理求得a 的值. 【详解】由于412cos ,cos 513B C ==,所以35sin ,sin 513B C ====,所以()sin sin sin cos cos sin A B C B C B C =+=+312455651351365=⨯+⨯=.由正弦定理得56sin 56653sin sin sin 395a b b A a A B B ⋅=⇒===.故答案为:5639【点睛】本小题主要考查正弦定理解三角形,考查同角三角函数的基本关系式,考查两角和的正弦公式,考查三角形的内角和定理,属于中档题.15.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止OCR ),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________. 【答案】536【解析】首先判断出中间号码的所有可能取值,由此求得基本事件的总数以及中间数字是7的事件数,根据古典概型概率计算公式计算出所求概率. 【详解】根据“钟型验证码” 中间数字最大,然后向两边对称递减,所以中间的数字可能是4,5,6,7,8,9.当中间是4时,其它4个数字可以是0,1,2,3,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有22426C C ⨯=种.当中间是5时,其它4个数字可以是0,1,2,3,4,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有225310330C C ⨯=⨯=种.当中间是6时,其它4个数字可以是0,1,2,3,4,5,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有226415690C C ⨯=⨯=种.当中间是7时,其它4个数字可以是0,1,2,3,4,5,6,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有22752110210C C ⨯=⨯=种.当中间是8时,其它4个数字可以是0,1,2,3,4,5,6,7,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有22862815420C C ⨯=⨯=种.当中间是9时,其它4个数字可以是0,1,2,3,4,5,6,7,8,选其中两个排在左边(排法唯一),另外两个排在右边(排法唯一),所以方法数有22973621756C C ⨯=⨯=种.所以该验证码的中间数字是7的概率为210210563090210420756151236==+++++. 故答案为:536【点睛】本小题主要考查古典概型概率计算,考查分类加法计数原理、分类乘法计数原理的应用,考查运算求解能力,属于中档题.三、双空题16.在《九章算术》中,将四个面都是直角三角形的四面体称之为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且有21BD CD AB BD CD ⊥===,,,则此鳖臑的外接球O (A B C D 、、、均在球O 表面上)的直径为__________;过BD 的平面截球O 所得截面面积的最小值为__________. 【答案】3 π【解析】判断出鳖臑A BCD -外接球的直径为AC ,由此求得外接球的直径.根据球的截面的几何性质,求得过BD 的平面截球O 所得截面面积的最小值. 【详解】根据已知条件画出鳖臑A BCD -,并补形成长方体如下图所示.所以出鳖臑A BCD -外接球的直径为AC ,且3AC ==.过BD 的平面截球O 所得截面面积的最小值的是以BD 为直径的圆,面积为22BD ππ⎛⎫⨯= ⎪⎝⎭.故答案为:(1). 3 (2). π【点睛】本小题主要考查几何体外接球有关计算,考查球的截面的性质,考查中国古代数学文化,考查空间想象能力,属于基础题.四、解答题17.如图,四棱锥P ABCD -中,底面ABCD 为直角梯形,45AB AD ADC AD ⊥∠=︒,,∥22BC AD AB ==,,ADP △为等边三角形,平面PAD ⊥底面ABCD ,E 为AD 的中点.(1)求证:平面PBC ⊥平面PCE ; (2)点F 在线段CD 上,且32CF FD =,求平面PAD 与平面PBF 所成的锐二面角的余弦值.【答案】(1)见解析(24183【解析】(1)根据等边三角形的性质证得PE AD ⊥,根据面面垂直的性质定理,证得PE ⊥底面ABCD ,由此证得PE BC ⊥,结合CE BC ⊥证得BC ⊥平面PCE ,由此证得:平面PBC ⊥平面PCE .(2)建立空间直角坐标系,利用平面PBF 和平面PAD 的法向量,计算出平面PAD 与平面PBF 所成的锐二面角的余弦值. 【详解】(1)证明:∵PAD △为等边三角形,E 为AD 的中点,∴PE AD ⊥ ∵平面PAD ⊥底面ABCD ,平面PAD底面ABCD AD =,∴PE ⊥底面ABCD BC ⊂,平面ABCD ,∴PE BC ⊥ 又由题意可知ABCE 为正方形,CE BC ⊥ 又PEEC E =,∴BC ⊥平面PCEBC ⊂平面PBC ,∴平面PBC ⊥平面PCE(2)如图建立空间直角坐标系,则()()()()0,0,00,1,01,1,01,0,0E A B C --,,,,()0,1,0D ,(0,0,3)P ,由已知35CF CD =,得23,,055F ⎛⎫ ⎪⎝⎭,23(1,1,3),,,355PB PF ⎛⎫=--=- ⎪⎝⎭设平面PBF 的法向量为(),,n x y z =,则30233055n PB x y z n PF x y z ⎧⋅=--=⎪⎨⋅=+-=⎪⎩令3z =,则249,55x y ==, ∴249,,355n ⎛⎫= ⎪⎝⎭由(1)知平面PAD 的法向量可取为()1,0,0m =∴2222441835|cos ,|249(3)55m n <>==⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭∴平面PAD 与平面PBF 4183. 【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18.已知数列{}n a 和{}n b 满足:1111112,1,2,2,*,2n n n n n n a b a a b b b a n N n ----==-=-=-∈≥.(1)求证:数列{}n n a b -为等比数列;(2)求数列13n n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)见解析(2)112231n n S +=-+ 【解析】(1)根据题目所给递推关系式得到113n nn n a b a b ---=-,由此证得数列{}n n a b -为等比数列.(2)由(1)求得数列{}n n a b -的通项公式,判断出1n n a b +=,由此利用裂项求和法求得数列13n n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S .【详解】(1)()()()111111223n n n n n n n n a b a b b a a b -------=---=-11*,2,3n nn n a b n N n a b ---∈≥=-所以数列{}n n a b -是以3为首项,以3为公比的等比数列.(2)由(1)知,()()1111113,22nn n n n n n n n n n a b a b a b b a a b -------=+=-+-=+∴{}n n a b +为常数列,且111n n a b a b +=+=, ∴213n n a =+,∴()()11134311231313131n n n n n n n n a a +++⋅⎛⎫==- ⎪++++⎝⎭∴1111111241010283131n n n S +⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦1111122431231n n ++⎛⎫=-=- ⎪++⎝⎭ 【点睛】本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题. 19.为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有95%的把握认为喜欢阅读中国古典文学与性别有关系?(2)为做好文化建设引领,实验组把该校作为试点,和该校的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记ξ为参加会议的人中喜欢古典文学的人数,求5的分布列及数学期望()Eξ附表及公式:22(),()()()()n ad bcK n a b c da b c d a c b d-==+++ ++++.【答案】(1)见解析,没有(2)见解析,17 6【解析】(1)根据题目所给数据填写22⨯列联表,计算出2K的值,由此判断出没有95%的把握认为喜欢阅读中国古典文学与性别有关系.(2)先判断出ξ的所有可能取值,然后根据古典概型概率计算公式,计算出分布列并求得数学期望.【详解】(1)22120(42183030)0.208 3.84172487248K ⨯-⨯==<⨯⨯⨯所以,没有95%的把握认为喜欢阅读中国古典文学与性别有关系.(2)设参加座谈会的男生中喜欢中国古典文学的人数为m ,女生中喜欢古典文学的人数为n ,则m n ξ=+.且2,3,4ξ=1211222132431(2)(1,1)3C C C C P P m n C C ξ======; 21111222221222323243431(3)(2,1)(1,2)2C C C C C C C P P m n P m n C C C C ξ====+===+=; 22222324131(4)(2,2)6C C C P P m n C C ξ======. 所以ξ的分布列为则11117()2343266E ξ=⨯+⨯+⨯=.【点睛】本小题主要考查22⨯列联表独立性检验,考查随机变量分布列和数学期望的求法,考查数据处理能力,属于中档题.20.已知抛物线C 的顶点为原点,其焦点()()0,0F c c >,关于直线:20l x y --=的对称点为M ,且||FM =若点P 为C 的准线上的任意一点,过点P 作C 的两条切线PA PB ,,其中A B ,为切点.(1)求抛物线C 的方程;(2)求证:直线AB 恒过定点,并求PAB △面积的最小值. 【答案】(1)24x y =(2)见解析,最小值为4【解析】(1)根据焦点F 到直线l 的距离列方程,求得c 的值,由此求得抛物线的方程. (2)设出,,A B P 的坐标,利用导数求得切线,PA PB 的方程,由此判断出直线AB 恒过抛物线焦点F .求得三角形PAB 面积的表达式,进而求得面积的最小值. 【详解】(1)依题意d =1c = (负根舍去) ∴抛物线C 的方程为24x y =(2)设点()()1122,,,,(,1)A x y B x y P t -,由24x y =,即214y x =,得12y x '= ∴抛物线C 在点A 处的切线PA 的方程为()1112x y y x x -=-, 即2111122x y x y x =+- ∵21114y x =,∴112xy x y =-∵点(,1)P t -在切线PA 上,1112x t y -=-①,同理,2212xt y -=-② 综合①、②得,点()()1122,,,A x y B x y 的坐标都满足方程12xt y -=-.即直线:12tAB y x =+恒过抛物线焦点()0,1F当0t =时,此时()0,1P -,可知:PF AB ⊥当0t ≠,此时直线PF 直线的斜率为2PF k t=-,得PF AB ⊥于是1||||2PAB S PF AB =⋅△,而||PF把直线12t y x =+代入24x y =中消去x 得()22210y t y -++=21224AB y y t=++=+,即:(()3222114422S t t =+=+当0t =时,PABS 最小,且最小值为4【点睛】本小题主要考查点到直线的距离公式,考查抛物线方程的求法,考查抛物线的切线方程的求法,考查直线过定点问题,考查抛物线中三角形面积的最值的求法,考查运算求解能力,属于难题.21.已知函数()ln f x x =.(1)设2()()f x g x x =,求函数()g x 的单调区间,并证明函数()g x 有唯一零点. (2)若函数()(1)x h x e af x =--在区间()1,1ae -+上不单调,证明:111a a a +>+.【答案】(1)(x ∈为增区间;)x ∈+∞为减区间.见解析(2)见解析【解析】(1)先求得()g x 的定义域,然后利用导数求得()g x 的单调区间,结合零点存在性定理判断出()g x 有唯一零点.(2)求得()h x 的导函数()'h x ,结合()h x 在区间()1,1ae -+上不单调,证得1ln a e a a -+->,通过证明111ln 1a e a a a -+>+-+,证得111a a a +>+成立. 【详解】(1)∵函数()g x 的定义域为(0,)+∞,由312ln ()0xg x x-'=>,解得(x ∈为增区间;由312ln ()0xg x x -'=<解得)x ∈+∞为减区间.下面证明函数只有一个零点:∵2110,02g e g e e ⎛⎫=-<=> ⎪⎝⎭,所以函数在区间(内有零点,∵,()0x g x →+∞→,函数在区间)+∞上没有零点, 故函数只有一个零点.(2)证明:函数()(1)ln(1)x x h x e af x e a x =--=--,则 (1)(),111x xa x e ah x e x x x --'=-=>--当0a ≤时,()0h x '>,不符合题意; 当0a >时,令()(1),1x m x e x a x =-->,则()0xm x xe '=>,所以()m x 在(1,)+∞上单调增函数,而()10m <,又∵()h x 区间()1,1a e -+上不单调,所以存在()01,1a x e -∈+,使得()h x '在()1,1ae -+上有一个零点0x ,即()00h x '=,所以()00m x =,且()()11010a ee am e ee a e a m x ααα---+-+-+=⋅-=->=,即1a e e a α--+>两边取自然对数,得1ln a a e a --+>即1ln a e a a -+->, 要证111a a a +>+,即证111ln 1a e a a a -+>+-+, 先证明:1(0)x e x x >+>,令()1x n x e x =--,则()10x n x e '=-> ∴()n x 在(0,)+∞上单调递增,即()()00n x n >=,∴()10xe x x >+>①在①中令x a =,∴111111aaa e a e e a a ->+⇒<⇒<++ 令1ln x a=∴1ln1ln 1ae a >+,即111ln 11ln a a a a>+⇒>-即111ln 1a e a a a -+>+-+,∴111a a a +>+. 【点睛】本小题主要考查利用导数研究函数的单调区间和零点,考查利用导数证明不等式,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.22.在平面直角坐标系xOy 中,直线l 的参数方程为2x a t y t =+⎧⎨=-⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22123sin ρθ=+.(1)若2a =-,求曲线C 与l 的交点坐标;(2)过曲线C 上任意一点P 作与l 夹角为45°的直线,交l 于点A ,且PA 的最大值为,求a 的值.【答案】(1)()2,0-,31,2⎛⎫ ⎪⎝⎭;(2)1a =或1a =-【解析】(1)将曲线C 的极坐标方程和直线l 的参数方程化为直角坐标方程,联立方程,即可求得曲线C 与l 的交点坐标;(2)由直线l 的普通方程为20x y a +-=,故C 上任意一点(2cos )P αα,根据点到直线距离公式求得P 到直线l 的距离,根据三角函数的有界性,即可求得答案. 【详解】 (1)22123sin ρθ=+,∴2223sin 12ρρθ+=.由cos sin x y ρθρθ=⎧⎨=⎩,得223412x y +=,曲线C 的直角坐标方程为22143x y +=.当2a =-时,直线l 的普通方程为220x y ++=由22220143x y x y ++=⎧⎪⎨+=⎪⎩解得20x y =-⎧⎨=⎩或132x y =⎧⎪⎨=-⎪⎩. 从而C 与l 的交点坐标为()2,0-,31,2⎛⎫⎪⎝⎭.(2)由题意知直线l 的普通方程为20x y a +-=,C的参数方程为2cos x y αα=⎧⎪⎨=⎪⎩(α为参数) 故C上任意一点(2cos )P αα到l 的距离为d ==则||sin 45d PA ︒===当0a ≥时,||PA1a =;当0a <时,||PA=1a =-.综上所述,1a =或1a =- 【点睛】解题关键是掌握极坐标和参数方程化为直角坐标方程的方法,和点到直线距离公式,考查了分析能力和计算能力,属于中档题. 23.已知函数()12f x x x =+--. (1)解不等式()1f x ≤;(2)记函数()f x 的最大值为s ,若(),,0a b c s a b c ++=>,证明:2222223a b b c c a abc ++≥.【答案】(1)(],1-∞;(2)证明见解析第 21 页 共 21 页 【解析】(1)将函数整理为分段函数形式可得3,1()21,123,2x f x x x x -≤-⎧⎪=--<<⎨⎪≥⎩,进而分类讨论求解不等式即可;(2)先利用绝对值不等式的性质得到()f x 的最大值为3,再利用均值定理证明即可.【详解】(1)()12f x x x =+--3,1()21,123,2x f x x x x -≤-⎧⎪=--<<⎨⎪≥⎩①当1x ≤-时,31-≤恒成立,∴1x ≤-;②当12x -<<时,211x -≤,即1x ≤,∴11x -<≤;③当2x ≥时,31≤显然不成立,不合题意;综上所述,不等式的解集为(],1-∞.(2)由(1)知max ()3f x s ==,于是3a b c ++=由基本不等式可得222222a b b c ab c +≥= (当且仅当a c =时取等号)222222b c c a abc +≥= (当且仅当b a =时取等号)222222c a a b a bc +≥=(当且仅当c b =时取等号)上述三式相加可得()22222222()a b b c c a abc a b c ++≥++(当且仅当a b c ==时取等号)3a b c ++=,∴2222223a b b c c a abc ++≥,故得证.【点睛】本题考查解绝对值不等式和利用均值定理证明不等式,考查绝对值不等式的最值的应用,解题关键是掌握分类讨论解决带绝对值不等式的方法,考查了分析能力和计算能力,属于中档题.。

内蒙古赤峰市2020届高三数学模拟考试试题 文(含解析)

内蒙古赤峰市2020届高三数学模拟考试试题 文(含解析)

内蒙古赤峰市 2020 届高三数学模拟考试试题 文(含解析)一、选择题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则 中的元素个数为( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】先求 B,再求交集则元素个数可求【详解】由题,则,则 中的元素个数为 3 个故选:C【点睛】本题考查交集的运算,描述法,是基础题2.已知是纯虚数,复数 是实数,则 ( )A.B.C.D.【答案】D 【解析】 【分析】 根据复数的运算及复数相等,即可得到结论.【详解】∵ 是实数,∴设a,a 是实数,则 z+1=a(2﹣i)=2a﹣ai, ∴z=2a﹣1﹣ai, ∵z 为纯虚数, ∴2a﹣1=0 且﹣a≠0,即a ,∴z=2a﹣1﹣ai,故选:D.【点睛】本题主要考查复数的运算,以及复数的有关概念,利用待定系数法是解决本题的关 键.3.《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等 马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中 等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,齐 王获胜的概率是( )A.B.C.D.【答案】A 【解析】 【分析】 首先求出满足 “从双方的马匹中随机选一匹马进行一场比赛” 这一条件的事件数,然后求 出满足“齐王获胜”这一条件的事件数,根据古典概型公式得出结果. 【详解】解:因为双方各有 3 匹马, 所以“从双方的马匹中随机选一匹马进行一场比赛”的事件数为 9 种, 满足“齐王获胜”的这一条件的情况为:齐王派出上等马,则获胜的 事件数为 3; 齐王派出中等马,则获胜的事件数为 2; 齐王派出下等马,则获胜的事件数为 1; 故满足“齐王获胜”这一条件的事件数为 6 种,根据古典概型公式可得,齐王获胜的概率,故选 A.【点睛】本题考查了古典概型问题,解题的关键是求出满足条件的事件数,再根据古典概型 的计算公式求解问题,属于基础题.4.若函数是定义在 上的奇函数,在上是增函数,且,,则使得的 的取值范围是( )A.B.C.D.【答案】C【解析】【分析】求解不等式的范围,当 时,显然不成立,可等价转化为当 时,求解的解集,当 时,求解的解集,即当 时,求解的解集,当 时,求解的解集,再根据函数 的性质求解不等式.【详解】解:因为是 R 上的奇函数,且在上是增函数,所以在上也是增函数,又因为,所以,,当 时,不等式的取值范围,等价于的取值范围,即求解的取值范围,根据函数在上是增函数,解得,,当 时,不等式的取值范围,等价于的取值范围,即求解的取值范围,根据函数在上是增函数,解得,,当 时,,不成立,故的 的取值范围是,故选 C.【点睛】本题考查了函数性质(单调性、奇偶性等)的综合运用,解题的关键是要将函数的问题转化为函数的问题,考查了学生转化与化归的思想方法.5.如图,网格纸上的小正方形的边长为 1,粗实线画出的是某几何体的三视图,则该几何体 的外接球的体积为( )A.B.C.D.【答案】B 【解析】 【分析】 根据几何体的三视图,可以得出该几何体是直三棱柱,且上下两底面是等腰直角三角形,侧 棱长为 4,底面等腰直角三角形的腰长为 4,找出球心的位置,求出球的半径,从而得出三 棱柱外接球的体积. 【详解】解:根据几何体的三视图,可以得出该几何体是直三棱柱,如图所示,其中四边形、四边形均是边长为 4 的正方形,三角形 、三角形是,的等腰直角三角形,设 的外接圆圆心为 ,故 即为 的中点,的外接圆圆心为 ,故 即为 的中点,设球的球心为 ,因为三棱柱的为直三棱柱,所以球的球心 为 的中点,且直线 与上、下底面垂直,连接 ,外接球的半径即为线段 的长,所以在中,,,故,即球的半径为 ,所以球的体积为,故选 B.【点睛】本题考查了柱体外接球的体积问题,由三视图解析出该几何体是前提,准确想象出 三棱柱各点、各棱、各面与外接球的位置关系,并且从立体图形中构建出平面图形是解得球半径的关键,属于中档题.6.我们可以用随机数法估计 的值,如图所示的程序框图表示其基本步骤(函数是产生随机数的函数,它能随机产生 内的任何一个实数).若输出的结果为 7840,则由此可估计 的近似值为( )A. 3.119B. 3.124C. 3.136D. 3.151【答案】C【解析】【分析】程序的 功能是利用随机模拟实验的方法求取(0,1)上的 x,y,计算 x2+y2+<1 发生的概率,代入几何概型公式,即可得到答案.【详解】x2+y2<1 发生的概率为,当输出结果为 7840 时,i=10001,m=7840,x2+y2<1 发生的概率为 P,∴,即 π=3.136故选:C. 【点睛】本题考查了程序框图的应用问题和随机模拟法求圆周率的问题,也考查了几何概率 的应用问题,是综合题.7.已知是等差数列,且,,则()A. -5 【答案】B 【解析】 【分析】B. -11C. -12由是等差数列,求得 ,则 可求D. 3【详解】∵是等差数列,设,∴故故选:B 【点睛】本题考查等差数列的通项公式,考查计算能力,是基础题8.设定义在 上的函数 满足,且,则下列函数值为-1 的是( )A.B.C.D.【答案】D【解析】【分析】由,得到函数的周期是 4,根据分段函数的表达式结合函数的周期性进行求解即可.【详解】由得 f(x-4)=﹣f(x-2)=f(x),则函数的周期是 4,则=,=-1即函数值为-1 的为 ,故选:D.【点睛】本题主要考查函数值的计算,根据函数的周期性结合分段函数的表达式利用代入法和转化法是解决本题的关键.9.要得到函数的图象,只需将函数的图象( )A. 向左平移 个单位B. 向右平移 个单位C. 向左平移 个单位D. 向右平移 个单位【答案】C 【解析】 【分析】由条件利用二倍角公式和两角和的正弦公式,化简函数的解析式,再利用 y=Asin(ωx+φ)的图象变换规律,可得结论.【详解】函数=sin(2x )=sin2(x ),故把函数的图象向左平移 个单位,可得函数的图象,故选:C. 【点睛】本题主要考查二倍角公式和两角和的 正弦公式,y=Asin(ωx+φ)的图象变换规 律,熟记变换原则是关键,属于基础题.10.已知 为双曲线 的两个焦点, 是 上的一点,若,且,则 的离心率为( )A. 2B.C.D.【答案】B【解析】【分析】运用直角三角形的勾股定理和双曲线的定义,结合已知条件,由离心率公式即可得到所求值.【详解】由双曲线的定义可得=2a,又得点 P 满足 即有 c a,,可得=4c2,则离心率 e 故选:B. 【点睛】本题考查双曲线的定义,以及直角三角形的勾股定理,考查离心率的求法,以及运 算能力,属于基础题.11.已知直三棱柱 余弦值为( )的所有棱长都相等, 为 的中点,则 与 所成角的A.B.C.D.【答案】A【解析】【分析】由题意,取 AC 的中点 N,连接 N 和 NB,则 N∥AM,可得 AM 与 B 所成角为∠N B 或其补角,在△ NB 中,利用余弦定理即可求解 AM 与 B 所成角的余弦值.【详解】取 AC 的中点 N,连接 N 和 NB,则 N∥AM,所以 AM 与 B 所成角为∠NC1B 或其补角,设所有棱长为 2,则 N=B=2 ,BN= ,在△ NB 中,由余弦定理 cos∠N B=故选:A【点睛】本题考查线线角的余弦值的求法,是基础题,解题时要认真审题,注意余弦定理的 合理运用12.已知函数在区间 上只有一个零点,则实数 的取值范围是( )A.或B.或C. 【答案】D 【解析】 【分析】 原问题等价于 xlnx﹣kx+1=0 在区间[D. ]上有一个实根,即或 在区间[ ]上有一个实根.令,求出其值域,即可得实数 k 的取值范围.【详解】原问题等价于 xlnx﹣kx+1=0 在区间[ ]上有一个实根,∴在区间[ ]上有一个实根.令,0,可得 x=1,当时,f′(x)<0,此时函数 f(x)递减,当∈(1,e]时,f′(x)>0.此时函数 f(x)递增,∴f(x)≥f(1)=1,且,1+e,又﹣1+e,∴实数 k 的取值范围是 k=1 或 故选:D. 【点睛】本题考查了导数的应用,考查了函数与方程思想、转化思想,属于中档题.二、填空题(将答案填在答题纸上)13.设 的满足约束条件,则的最大值为______.【答案】 【解析】 【分析】先将题中 , 满足约束条件对应的可行域画出,目标函数意义为一条斜率为-2 的直线,通过平移求解出最值.的几何【详解】解:如图, , 满足约束条件 边界),对应的可行域为五边形内部(含目标函数的几何意义为一条斜率为-2、截距为 的直线,当直线经过点 O 时,直线的截距最小,最小,故.【点睛】代数问题转化为几何问题解决,往往能简化计算,但必须要将每一个代数形式的几何意义分析到位,这个是数形结合的必要前提.14.设向量 的模分别为 1,2,它们的夹角为 ,则向量 【答案】 【解析】 【分析】与 的夹角为____.利用向量 夹角公式 cosθ,先求出的模以及与 的数量积,再代入公式计算求解.【详解】∵()22﹣2 •∴||,()• =3,∴cosθ,∴θ=2=12﹣2×1×2×cos60°+22=3,故答案为 【点睛】本题考查了向量夹角的计算,涉及到向量数量积的计算,模的计算知识比较基础, 掌握基本的公式和技巧即可顺利求解15.若过点且斜率为 的直线与抛物线交点为 ,若,则 ____.【答案】【解析】【分析】的准线相交于点 ,与 的一个由直线方程为与准线得出点 坐标,再由可得,点 为线段的中点,由此求出点 A 的坐标,代入抛物线方程得出 的值.【详解】解:抛物线的准线方程为过点且斜率为 的直线方程为,联立方程组,解得,交点 坐标为,设 A 点坐标为,因为,所以点 为线段 的中点,所以,解得,将代入抛物线方程,即,因为 , 解得 . 【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.16.设数列 满足 ______.【答案】 【解析】 【分析】 将 相减求 即可 【详解】由题,且 平方得比数列,,则,则数列的前 项的和,进而得 的通项,得,由 错位,∴=0,故,所以 为等两式作差得-即 故答案为 【点睛】本题考查数列的递推关系求通项公式,错位相减求和,考查推理及计算能力,是中 档题三、解答题(解答应写出文字说明、证明过程或演算步骤.)17.设 的内角 , , 所对的边长分别是 , ,,且满足.(1)求角 的大小;(2)若, ,求 的面积.【答案】(1)(2)【解析】 【分析】(1)由正弦定理得得,进而得【详解】(1)又, 故又,结合余弦定理得 ,则面积可求,则 B 可求(2)由余弦定理,. (2)由余弦定理得:,即 又. 【点睛】本题考查正余弦定理,三角形面积公式,熟记定理及面积公式是关键,是基础题18.国家统计局进行第四次经济普查,某调查机构从 15 个发达地区,10 个欠发达地区,5 个贫困地区中选取 6 个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查 小区.普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能 会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有 50 家企事业单位,150 家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户9060150合计13070200(1)写出选择 6 个国家综合试点地区采用的抽样方法; (2)根据列联表判断是否有 97.5%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”,分析造成这个结果的原因并给出合理化建议.附:参考公式:,其中参考数据:0.500.400.250.150.100.050.0250.455 0.708 1.323 2.072 2.706 3.841 5.024【答案】(1) 分层抽样(2)见解析 【解析】 【分析】 (1)由分层抽样的定义与特点结合题意确定为分层抽样;(2)计算 的值即可进行判断, 再分析原因给出建议即可 【详解】(1)分层抽样 (2)由列联表中的数据可得 的观测值所以有 97.5%的把握认为“此普查小区的入户登记”是否顺利与普查对象类别有关 原因:1.居民对普查不够重视, 不愿意积极配合; 2.企事业单位工作时间固定,个体经营者相对时间不固定 建议:1.要加大宣传力度,宣传要贴近居民生活,易被居民接受; 2.合理的安排普查时间,要结合居民工作特点. 【点睛】本题考查分层抽样,考查独立性检验, 的计算,考查计算能力,是基础题19.如图,在四棱锥中, 底面 ,,,,点 为棱 的中点.(1)证明:;(2)若 与底面 所成角的正弦值为 ,求点 到平面 的距离.【答案】(1)见证明;(2)【解析】【分析】(1)连接,且面 ,即可证明,证明是正方形得,再由(2)由 平面 ,得 与底面角为,由,得,得求解距离即可证明 平 所成的平面,利用【详解】证明:(1)连接,BE,且,, 为棱 的中点,且是正方形,又 平面 , 平面 ,平面 ,,平面又平面 ,(2)因为 平面 ,所以 与底面 所成的平面角为 ,且,∵,∴tan = 得设点 到平面 的距离为 ,由已知得,,得,所以,点 到平面 的距离为 .【点睛】本题考查线面垂直的判定,线面角的应用,点面距离的考查,考查空间想象和推理 能力,是中档题20.顺次连接椭圆应该的四个顶点恰好构成了一个边长 为且面积为 的菱形.(1)求椭圆 的方程;(2)设,过椭圆 右焦点 的 直线交于 两点,若对满足条件的任意直线,不等式恒成立,求 的最小值.【答案】(1)(2)【解析】 【分析】(1)列 a,b,c 的方程组求解即可(2)当直线垂直于 轴时得,当直线不垂直于 轴时,设直线与椭圆联立,利用,代入韦达定理得即可求解【详解】(1)由已知得:,解得所以,椭圆 的方程为 (2)设当直线垂直于 轴时,此时,当直线不垂直于 轴时,设直线由,得且 ,要使不等式恒成立,只需,即 的最小值为 .【点睛】本题考查椭圆的方程,直线与椭圆的位置关系,向量坐标化运算及数量积,考查运 算求解能力,是中档题21.已知函数(1)若 ,求函数 的极值和单调区间;(2)若,在区间 上是否存在 ,使,若存在求出实数 的取值范围;若不存在,请说明理由.【答案】(1) 函数的单调递减区间为 ,单调递增区间为极小值为 3,无极大值(2)见解析 【解析】 【分析】(1), 判 断 符 号 变 化 , 则 极 值 和 单 调 区 间 可 求 ,( 2 )由时,,时得为函数的唯一极小值点,讨论当 求解时和当 时,的 a 的范围即可【详解】(1)当 时,时,,且 有极小值时,故函数的单调递减区间为 ,单调递增区间为极小值为 3,无极大值.(2)时,,时为函数的唯一极小值点又,当时在区间 上若存在 ,使,则,解得当 时,在为单调减函数,,不存在,使综上所述,在区间 上存在 ,使,此时【点睛】本题考查导数与函数的 单调性,函数的最值,极值与单调区间的求解,分类讨论思 想,考查推理能力,是中档题22.选修 4-4:坐标系与参数方程 在直角坐标系 中,曲线 的参数方程为的直线与曲线 交于 两点. (1)求 的取值范围; (2)求 中点 的轨迹的参数方程.为参数),过点且倾斜角为【答案】(1)(2)(为参数,).【解析】 【分析】 (1)求出曲线和直线的普通方程,通过直线与圆相交求出斜率的范围,从而得出倾斜角的 范围;(2)设出 对应的参数,联立直线与圆的方程,借助韦达定理表示 的参数,从而得出 点 的轨迹的参数方程.【详解】解:(1) 曲线 的直角坐标方程为,当 时,与 交于两点,当 时,记,则的方程为,与 交于两点当且仅当,解得 即或,或,综上 的取值范围是 .(2)的参数方程为(为参数,),设 对应的参数分别为,则且 满足,由韦达定理可得:,故,又点 的坐标 满足所以点 的轨迹的参数方程为(为参数,).【点睛】本题考查了直线的倾斜角问题,常见解法是转化为求斜率的范围问题;还考查了点 的轨迹问题,常见解法有相关点法、几何图形性质等方法.23.已知函数,.(1)若,不等式恒成立,求实数 的取值范围;(2)设,且,求证:.【答案】(1)(2)见证明【解析】【分析】(1)不等式恒成立,等价于,然后求出函数解决问题;的最小值,从而(2)要证,即证明即可.【详解】解:(1)由,,,所以 的取值范围是(2)由(1),当且仅当, 时等号成立,,然后借助于基本不等式证 ,,【点睛】本题考查了基本不等式、绝对值不等式等知识,运用基本不等式时,要注意题意是 否满足“一正、二定、三相等”的条件,熟练运用绝对值不等式也是解决本题的关键.。

内蒙古赤峰市普通高中2020届高三5.20模拟考试理科数学答案

内蒙古赤峰市普通高中2020届高三5.20模拟考试理科数学答案

则 D2 D3 D4 D5 D1 D6 . 20.(12 分)
…………………………………12 分
解:(1)由于 a2 b2 c2
…………………………………………1 分

x
c(或x
c)
代入
x a
2 2
y2 b2
1中得: y b2 即: 2b2
a
a
1
…………3 分
又由 2a 4 ,得: a2 4, b2 1 ,故所求方程: x2 y2 1 ……………5 分 4
sin
B
3
3 2
0 B , B 3
………………6 分
(2)由(1)得 sin B 3 ,根据已知及正弦定理得 2
理科数学答案 第 1 页 共 7 页
SABC
3 = 1 ac sin B , ac 4 ………………………………8 分
32
3
又由已知及正弦定理得
a c b 3 ,解得 b 3
380 550 330 410 400 430 2500 500
(2) P(B) 0.8 0.3 0.2 0.7 0.38. ………………………………………………6 分
(3)
1 1 0 P 0.6 0.4
2 1 0 P 0.9 0.1
D1=0.6 0.4=0.24,D2 =0.9 0.1=0.09 ………8 分
故只有一个解 x x1 即:直线 QE 与椭圆 C 只有一个公共点,
位置关系为相切.
………………………………………12 分
理科数学答案 第 4 页 共 7 页
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分
题号 1 2 3 4 5 6 7 8 9 10 11 12

2020年内蒙古自治区赤峰市林东蒙古族中学高三数学理下学期期末试卷含解析

2020年内蒙古自治区赤峰市林东蒙古族中学高三数学理下学期期末试卷含解析

2020年内蒙古自治区赤峰市林东蒙古族中学高三数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 给出的是计算的值的一个程序框图,其中判断框内应填入的条件是()A. B.C. D.参考答案:A2. 已知向量=(1,x),=(﹣1,x),若2﹣与垂直,则||=()A.B.C.2 D.4参考答案:C 【考点】数量积判断两个平面向量的垂直关系;平面向量数量积的坐标表示、模、夹角.【专题】平面向量及应用.【分析】根据向量的坐标运算先求出,然后根据向量垂直的条件列式求出x的值,最后运用求模公式求||.【解答】解∵,,∴2=(3,x),由?3×(﹣1)+x2=0,解得x=﹣,或x=,∴或,∴||=,或||=.故选C.【点评】本题考查了运用数量积判断两个平面向量的垂直关系,若,,则?x1x2+y1y2=0.3. 设的展开式中的系数为,二项式系数为,则A. B. C. D.参考答案:A,令,即,所以,所以的系数为,二项式系数为,所以,选A.4. 设点P是以F1、F2为左、右焦点的双曲线左支上一点,且满足,则此双曲线的离心率为()A. B. C. D.参考答案:D5. 函数在上有零点,则实数m的取值范围是A. B. C. D.参考答案:C略6.如图,已知平面平面,、是平面与平面的交线上的两个定点,,且,,,,,在平面上有一个动点,使得,则的面积的最大值是()A. B. C. D.参考答案:答案:C7. 已知函数,若在区间(0,16)内随机取一个数x0,则f(x0)>0的概率为()A.B.C.D.参考答案:D【考点】几何概型.【分析】由题意可得总的区间长度,解不等式可得满足条件的区间长度,由几何概型的概率公式可得.【解答】解:令f(x)=0,解得:x=4,故在区间(0,16)内随机取一个数x0,则f(x0)>0的概率p==,故选:D.8. 已知i是虚数单位,复数z满足,则()A. B. 2 C. 1 D.参考答案:A【分析】运用复数的除法运算法则,求出复数的表达式,最后利用复数求模公式,求出复数的模.【详解】,所以,故本题选A.【点睛】本题考查了复数的除法运算、求模公式,考查了数学运算能力.9. 已知函数的图象在点处的切线为l,若l也与函数的图象相切,则必满足()A.B.C. D.参考答案:C本題考查导数与切线问题,考查转化与化归、函数与方程的数学思想以及运算求解能力和推理论能力. 由于,所以直线的方程为.因为也与函数的图象相切,令切点为,所以的方程为,因此有又因为,所以,令,,所以是上的增函数.因为,,所以.10. 已知a,b都是实数,那么“2a>2b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 若点在直线上,则___________.参考答案:略12. 从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.参考答案:【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有种情况.若选出的2名学生恰有1名女生,有种情况,若选出的2名学生都是女生,有种情况,所以所求的概率为.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.13. 两封信随机投入三个空邮箱,则邮箱的信件数的数学期望.参考答案:答案:解析:ξ的取值有0,1,2,,所以E ξ=14. 在编号为1,2,3,4,5,6的六个盒子中放入两个不同的小球,每个盒子中最多放入一个小球,且不能在两个编号连续的盒子中同时放入小球,则不同的放小球的方法有种参考答案:设两个不同的小球为当放入1号盒或者6号盒时,有4种不同的放法;当放入2,3,4,5号盒时,有3种不同的放法,一共有=20种不同的放法.15. 已知平面向量满足,,若的夹角为,则.参考答案:316. 某几何体的三视图如图所示,则其表面积为.参考答案:17. 高三毕业时,甲,乙,丙等五位同学站成一排合影留念,已知甲,乙相邻,则甲丙相邻的概率为参考答案:略三、解答题:本大题共5小题,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年赤峰市高三数学下期末模拟试题(带答案)一、选择题1.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .32.设向量a r ,b r满足2a =r ,||||3b a b =+=r r r ,则2a b +=r r ( )A .6B .32C .10D .423.函数()1ln 1y x x=-+的图象大致为( ) A . B .C .D .4.函数2||()x x f x e -=的图象是( )A .B .C .D .5.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C 5D .726.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为A .12B .512C .14D .167.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .3248.已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B =I ð( ) A .{}1- B .{}0,1 C .{}1,2,3-D .{}1,0,1,3-9.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A .3B .2C 3D 210.已知数列{}n a 的前n 项和2n S n n =-,数列{}n b 满足1sin2n n n b a π+=,记数列{}n b 的前n 项和为nT,则2017T =( ) A .2016 B .2017C .2018D .201911.设5sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<12.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .54钱 B .43钱 C .32钱 D .53钱二、填空题13.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______14.已知二次函数f (x )=ax 2+2x+c (x ∈R )的值域为[0,+∞),则11a c c a+++的最小值为_____.15.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是16.若过点()2,0M ()2:0C y ax a =>的准线l 相交于点B ,与C 的一个交点为A ,若BM MA =v u u u v,则a =____.17.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3A π=,a =b=1,则c =_____________18.已知α,β均为锐角,4cos 5α=,1tan()3αβ-=-,则cos β=_____. 19.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 .20.在ABC ∆中,若AB =3BC =,120C ∠=︒,则AC =_____.三、解答题21.已知函数()21f x x =-. (1)若不等式121(0)2f x m m ⎛⎫+≥+> ⎪⎝⎭的解集为][(),22,-∞-⋃+∞,求实数m 的值; (2)若不等式()2232y y af x x ≤+++对任意的实数,x y R ∈恒成立,求正实数a 的最小值.22.ABC V 的内角,,A B C 所对的边分别为,,a b c .已知ABC V 的面积21tan 6S b A = (1)证明: 3 b ccos A =;(2)若1,c a ==求S .23.如图,直三棱柱ABC-A 1B 1C 1中,D,E 分别是AB ,BB 1的中点.(Ⅰ)证明: BC 1//平面A 1CD;(Ⅱ)设AA 1= AC=CB=2,AB=22,求三棱锥C 一A 1DE 的体积.24.已知复数12i z m =-,复数21i z n =-,其中i 是虚数单位,m ,n 为实数. (1)若1m =,1n =-,求12z z +的值; (2)若212z z =,求m ,n 的值.25.如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值.26.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a b A B =知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.2.D解析:D 【解析】 【分析】3=,求得2a b ⋅=-r r,再根据向量模的运算,即可求解. 【详解】∵向量a r ,b r 满足2a =r ,3b a b =+=r r r 3=,解得2a b ⋅=-r r .则2a b +==r r .故选D .【点睛】本题主要考查了向量的数量积的运算,及向量的模的运算问题,其中解答中熟记向量的数量积的运算和向量的模的运算公式,合理、准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.3.A解析:A 【解析】确定函数在定义域内的单调性,计算1x =时的函数值可排除三个选项. 【详解】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A. 【点睛】本题考查由函数解析式选择函数图象,可通过解析式研究函数的性质,如奇偶性、单调性、对称性等等排除,可通过特殊的函数值,函数值的正负,函数值的变化趋势排除,最后剩下的一个即为正确选项.4.A解析:A 【解析】 【分析】通过(0)1f =,和函数f(x)>0恒成立排除法易得答案A . 【详解】2||()x x f x e-=,可得f(0)=1,排除选项C,D;由指数函数图像的性质可得函数f(x)>0恒成立,排除选项B , 故选A【点睛】图像判断题一般通过特殊点和无穷远处极限进行判断,属于较易题目.5.C解析:C 【解析】 【分析】利用正方体1111ABCD A B C D -中,//CD AB ,将问题转化为求共面直线AB 与AE 所成角的正切值,在ABE ∆中进行计算即可. 【详解】在正方体1111ABCD A B C D -中,//CD AB ,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan 22BE EAB AB a ∠===.故选C.【点睛】求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角;(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.6.B解析:B 【解析】记两个零件中恰好有一个一等品的事件为A ,即仅第一个实习生加工一等品(A 1)与仅第二个实习生加工一等品(A 2)两种情况, 则P (A )=P (A 1)+P (A 2)=2 3×14+13×34=512故选B.7.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算8.A解析:A【解析】 【分析】本题根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-I【点睛】易于理解集补集的概念、交集概念有误.9.B解析:B 【解析】 【分析】 【详解】M N Q ,是双曲线的两顶点,M O N ,,将椭圆长轴四等分 ∴椭圆的长轴长是双曲线实轴长的2倍 Q 双曲线与椭圆有公共焦点,∴双曲线与椭圆的离心率的比值是2故答案选B10.A解析:A 【解析】 【分析】由2n S n n =-得到22n a n =-,即n b =2(1)cos2n n π-,利用分组求和法即可得到结果. 【详解】由数列{}n a 的前n 项和为2n S n n =-,当1n =时,11110a S ==-=;当2n …时,1n n n a S S -=-22(1)(1)22n n n n n ⎡⎤=-----=-⎣⎦,上式对1n =时也成立, ∴22n a n =-, ∴cos2n n n b a π==2(1)cos 2n n π-, ∵函数cos 2n y π=的周期242T ππ==,∴()2017152013T b b b =++++L (26b b +)2014b ++L ()()3720154820162017b b b b b b b +++++++++L L02(152013)0=-+++++L 2(3+72015)045042016+++=⨯=L ,故选:A. 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,利用分组法求数列的和,主要考查学生的运算能力和转化能力,属于中档题.11.D解析:D 【解析】 【分析】 【详解】 因为,,所以,,且,所以,,所以,故选D.12.B解析:B 【解析】设甲、乙、丙、丁、戊所得钱分别为2,,,,2a d a d a a d a d --++,则22a d a d a a d a d -+-=++++,解得6a d =-,又225,a d a d a a d a d -+-+++++=1a \=,则4422633a a d a a ⎛⎫-=-⨯-== ⎪⎝⎭,故选B.二、填空题13.【解析】【分析】根据题意化简得利用式相加得到进而得到即可求解结果【详解】因为所以所以将以上各式相加得又所以解得或【点睛】本题主要考查了数列的递推关系式应用其中解答中利用数列的递推关系式得到关于数列首解析:34,- 【解析】 【分析】根据题意,化简得22111n n n a a a ++-=-,利用式相加,得到2213113112S a a a --=-,进而得到211120a a --=,即可求解结果.【详解】因为22111n n n a a a ++-=-,所以22111n n n a a a ++-=-, 所以2222222213321313121,1,,1a a a a a a a a a -=--=--=-L ,将以上各式相加,得2213113112S a a a --=-,又21313S a =,所以211120a a --=,解得13a =-或14a =.【点睛】本题主要考查了数列的递推关系式应用,其中解答中利用数列的递推关系式,得到关于数列首项的方程求解是解答的关键,着重考查了推理与运算能力,属于中档试题.14.4【解析】【分析】先判断是正数且把所求的式子变形使用基本不等式求最小值【详解】由题意知则当且仅当时取等号∴的最小值为4【点睛】】本题考查函数的值域及基本不等式的应用属中档题解析:4 【解析】 【分析】先判断a c 、是正数,且1ac =,把所求的式子变形使用基本不等式求最小值. 【详解】由题意知,044010a ac ac c =-=∴=V >,,,>,则111111 2224a c a c a c c a c c a a c a c a +++=+++=+++≥+=+=()(),当且仅当1a c ==时取等号.∴11a c c a +++的最小值为4. 【点睛】】本题考查函数的值域及基本不等式的应用.属中档题.15.【解析】【分析】【详解】由得由整数有且仅有123知解得 解析:(5,7)【解析】 【分析】 【详解】 由|3|4x b -<得4433b b x -+<< 由整数有且仅有1,2,3知40134343b b -⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得57b <<16.【解析】【分析】由直线方程为与准线得出点坐标再由可得点为线段的中点由此求出点A 的坐标代入抛物线方程得出的值【详解】解:抛物线的准线方程为过点且斜率为的直线方程为联立方程组解得交点坐标为设A 点坐标为因 解析:8【解析】由直线方程为2)y x =-与准线:al x 4=-得出点B 坐标,再由BM MA u u u u v u u u v =可得,点M 为线段AB 的中点,由此求出点A 的坐标,代入抛物线方程得出a 的值.【详解】解:抛物线()2:0C y ax a =>的准线方程为:a l x 4=-过点()2,0M2)y x =-,联立方程组2)4y x a x ⎧=-⎪⎨=-⎪⎩,解得,交点B坐标为)(,)a a 844+-, 设A 点坐标为00(,)x y , 因为BM MA u u u u v u u u v=,所以点M 为线段AB 的中点,所以00()442402a x y ⎧+-⎪=⎪⎪⎨⎪+⎪=⎪⎩,解得)()a a 8A 444++,将)()a a 8A 444++代入抛物线方程,即()2aa 44=+, 因为0a >, 解得8a =. 【点睛】本题考查了抛物线的性质、向量相等等知识,解决几何问题时,往往可以转化为代数问题来进行研究,考查了数形结合的思想.17.2【解析】【分析】根据条件利用余弦定理可建立关于c 的方程即可解出c 【详解】由余弦定理得即解得或(舍去)故填2【点睛】本题主要考查了利用余弦定理求三角形的边属于中档题解析:2 【解析】 【分析】根据条件,利用余弦定理可建立关于c 的方程,即可解出c.由余弦定理2222cos a b c bc A =+-得231c c =+-,即220c c --=,解得2c =或1c =-(舍去).故填2. 【点睛】本题主要考查了利用余弦定理求三角形的边,属于中档题.18.【解析】【分析】先求得的值然后求得的值进而求得的值【详解】由于为锐角且故由解得由于为锐角故【点睛】本小题主要考查同角三角函数的基本关系式考查两角差的正切公式属于中档题【解析】 【分析】先求得tan α的值,然后求得tan β的值,进而求得cos β的值. 【详解】由于α为锐角,且4cos 5α=,故3sin 5α==,sin 3tan cos 4ααα==.由()tan tan 1tan 1tan tan 3αβαβαβ--==-+⋅,解得13tan 9β=,由于β为锐角,故cos β====. 【点睛】本小题主要考查同角三角函数的基本关系式,考查两角差的正切公式,属于中档题.19.【解析】试题分析:设等比数列的公比为由得解得所以于是当或时取得最大值考点:等比数列及其应用 解析:64【解析】试题分析:设等比数列的公比为q ,由132410{5a a a a +=+=得,2121(1)10{(1)5a q a q q +=+=,解得18{12a q ==.所以2(1)1712(1)22212118()22n n n n n n nn a a a a qL L --++++-==⨯=,于是当3n =或4时,12na a a L 取得最大值6264=. 考点:等比数列及其应用20.1【解析】【分析】由题意利用余弦定理得到关于AC 的方程解方程即可确定AC 的值【详解】由余弦定理得解得或(舍去)【点睛】本题主要考查余弦定理解三角形的方法方程的数学思想等知识意在考查学生的转化能力和计解析:1【分析】由题意利用余弦定理得到关于AC 的方程,解方程即可确定AC 的值. 【详解】由余弦定理得21393AC AC =++,解得1AC =或4AC =-(舍去). 【点睛】本题主要考查余弦定理解三角形的方法,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1) 32m =;(2)4. 【解析】试题分析:(Ⅰ)先根据绝对值定义解不等式解集为][(),22,-∞-⋃+∞,再根据解集相等关系得122m +=,解得32m =.(Ⅱ)不等式恒成立问题,一般转化为对应函数最值问题,即()max212322y yax x --+≤+,根据绝对值三角不等式可得()max21234x x --+=,再利用变量分离转化为对应函数最值问题:()max242y ya ⎡⎤≥-⎣⎦,根据基本不等式求最值: ()()224224242y yy y ⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,因此4a ≥,所以实数a 的最小值为4.试题解析:(Ⅰ)由题意知不等式221(0)x m m ≤+>的解集为][(),22,-∞-⋃+∞. 由221x m ≤+,得1122m x m --≤≤+, 所以,由122m +=,解得32m =. (Ⅱ)不等式()2232y y a f x x ≤+++等价于212322yya x x --+≤+, 由题意知()max212322y y ax x --+≤+. 因为()()212321234x x x x --+≤--+=, 所以242y y a +≥,即()242y y a ⎡⎤≥-⎣⎦对任意y R ∈都成立,则()max 242y ya ⎡⎤≥-⎣⎦.而()()224224242y yyy⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,当且仅当242y y =-,即1y =时等号成立,故4a ≥,所以实数a 的最小值为4.22.(1)证明解析 【解析】 【分析】(1)由正弦定理面积公式得:211sin tan 26S bc A b A ==,再将sin tan cos A A A=代入即可.(2)因为1c =,a =3b cosA =.代入余弦定理2222cos a b c bc A =+-得22cos 3A =,cos 3A =tan 2A ⇒=,b =⇒16622S =⨯⨯=. 【详解】(1)由211sin tan 26S bc A b A ==,得3sin tan c A b A = 因为sin tan cos A A A =,所以sin 3sin cos b Ac A A=, 又0A π<<,所以sin 0A ≠,因此3cos b c A =.(2)由(1)得3b ccosA =.因为1c =,a =3b cosA =.由余弦定理2222cos a b c bc A =+-得:2229cos 16cos A A =+-,解得:22cos 3A =.因为3b cosA =,所以cos 0A >,cos 3A =.tan 2A ⇒=,b .211tan 666S b A ==⨯=【点睛】本题第一问主要考查正弦定理中的面积公式和边角互化,第二问考查了余弦定理的公式应用,属于中档题.23.(Ⅰ)见解析(Ⅱ)111132C A DE V -=⨯= 【解析】试题分析:(Ⅰ)连接AC 1交A 1C 于点F ,则DF 为三角形ABC 1的中位线,故DF ∥BC 1.再根据直线和平面平行的判定定理证得BC 1∥平面A 1CD .(Ⅱ)由题意可得此直三棱柱的底面ABC 为等腰直角三角形,由D 为AB 的中点可得CD ⊥平面ABB 1A 1.求得CD 的值,利用勾股定理求得A 1D 、DE 和A 1E 的值,可得A 1D ⊥DE .进而求得S △A 1DE 的值,再根据三棱锥C-A 1DE 的体积为13•S △A1DE •CD ,运算求得结果 试题解析:(1)证明:连结AC 1交A 1C 于点F ,则F 为AC 1中点又D 是AB 中点, 连结DF ,则BC 1∥DF . 3分因为DF ⊂平面A 1CD ,BC 1不包含于平面A 1CD , 4分 所以BC 1∥平面A 1CD . 5分(2)解:因为ABC ﹣A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC=CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB=A ,于是CD ⊥平面ABB 1A 1. 8分 由AA 1=AC=CB=2,得∠ACB=90°,,,,A 1E=3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D 10分 所以三菱锥C ﹣A 1DE 的体积为:==1. 12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积24.(15(2)0,1.m n =⎧⎨=⎩【解析】 【分析】(1)根据题意求出()()121212i z i z i +=-++=-,即可得到模长; (2)根据212z z =,化简得()2212m i n ni -=--,列方程组即可求解.【详解】(1)当1m =,1n =-时112z i =-,21z i =+, 所以()()121212i z i z i +=-++=-,所以()2212215z z +=+-=.(2)若212z z =,则()221m i ni -=-,所以()2212m i n ni -=--,所以2122m n n⎧=-⎨-=-⎩解得0,1.m n =⎧⎨=⎩【点睛】此题考查复数模长的计算和乘法运算,根据两个复数相等,求参数的取值范围. 25.(Ⅰ)证明见解析;(Ⅱ13(Ⅲ3.【解析】分析:(Ⅰ)由面面垂直的性质定理可得AD⊥平面ABC,则AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.由几何关系可知∠DMN(或其补角)为异面直线BC与MD所成的角.计算可得113226MNcosDMNDM∠==.则异面直线BC与MD所成角的余弦值为13.(Ⅲ)连接CM.由题意可知CM⊥平面ABD.则∠CDM为直线CD与平面ABD所成的角.计算可得3CMsin CDMCD∠==.即直线CD与平面ABD所成角的正弦值为3.详解:(Ⅰ)证明:由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM22=13AD AM+AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN22=13AD AN+.在等腰三角形DMN中,MN=1,可得1132cosMNDMNDM∠==.所以,异面直线BC与MD所成角的余弦值为1326.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM3ABC⊥平面ABD,而CM⊂平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD22AC AD+.在Rt△CMD中,3sinCMCDMCD∠==.所以,直线CD与平面ABD3点睛:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.26.(1)19;(2)89. 【解析】试题分析:(1)所有的可能结果(,,)a b c 共有33327⨯⨯=种,而满足a b c +=的(,,)a b c 共计3个,由此求得“抽取的卡片上的数字满足a b c +=”的概率;(2)所有的可能结果(,,)a b c 共有33327⨯⨯=种,用列举法求得满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 共计三个,由此求得“抽取的卡片上的数字a 、b 、c 完全相同”的概率,再用1减去此概率,即得所求.试题解析:(1) 所有的可能结果(,,)a b c 共有33327⨯⨯=种, 而满足a b c +=的(,,)a b c 有(1,1,2)、(1,2,3)、(2,1,3)共计3个 故“抽取的卡片上的数字满足a b c +=”的概率为31279= (2) 所有的可能结果(,,)a b c 共有33327⨯⨯=种满足“抽取的卡片上的数字a 、b 、c 完全相同”的(,,)a b c 有(1,1,1)、(2,2,2)、(3,3,3)共计三个故“抽取的卡片上的数字a 、b 、c 完全相同”的概率为31279= 所以“抽取的卡片上的数字a 、b 、c 不完全相同”的概率为18199-= 考点:独立事件的概率.【方法点睛】求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式求解.如果采用方法一,一定要将事件拆分成若干个互斥事件,不能重复和遗漏;如果采用方法二,一定要找准其对立事件,否则容易出现错误.。

相关文档
最新文档