2017-2018年江西省南昌二中高二(上)期末数学试卷(理科)及答案

合集下载

江西省南昌市第二中学2018届高三上学期第七次月考(期末)数学(理)试卷及答案

江西省南昌市第二中学2018届高三上学期第七次月考(期末)数学(理)试卷及答案

南昌二中2017~2018学年度上学期第七次考试高三数学(理)试卷一、选择题(每小题5分,共60分。

每小题所给选项只有一项符合题意,请将正确答案的选项填涂在答题卡上)1.已知集合2{|4},{|1}A x y x B x a x a ==-=≤≤+,若A B A ⋃=,则实数的取值 范围为( )A. ][(),32,-∞-⋃+∞ B.C. D.2.已知实数,m n 满足()()4235m ni i i +-=+,则m n +=( ) A.95B.115C.94D.1143.给出下列命题:①已知,a b R ∈,“1a >且1b >”是“1ab >”的充分条件;②已知平面向量,a b ,"1,1"a b >>是“1a b +>”的必要不充分条件; ③已知,a b R ∈,“221a b +≥”是“1a b +≥”的充分不必要条件; ④命题:P “0x R ∃∈,使00e1x x ≥+且00ln 1x x ≤-”的否定为:p ⌝ “x R ∀∈,都有e 1x x <+且ln 1x x >-”.其中正确命题的个数是( )A. 0B. 1C. 2D. 34.若定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时,f(x)=x,则函数y=f(x)- 3log x 的零点个数是( )A. 6个B. 4个C. 3个D. 2个5.若将函数()sin2cos2f x x x =+的图象向左平移()0ϕϕ>个单位,所得的图象关于y 轴对称,则ϕ的最小值是( ) A.4πB.8πC.38πD.58π6.如图,在△ABC 中, 21,,33AD AC BP BD ==u u u v u u u v u u u v u u u v 若AP AB AC λμ=+u u u v u u u v u u u v ,则λμ的值为( )A. -3B. 3C. 2D. -27.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A. 94- B.94C.274D. 274-8.执行如图所示的程序框图,如果输出s =4,那么判断框内应填入的条件是( )A. k ≤ 14?B. k ≤ 15?C. k ≤ 16?D. k ≤ 17?9.如图是一个几何体的三视图,在该几何体的各个面中,面积最小 的面的面积为( ) A. 8B. 4C. 43D. 4210.北京某大学为第十八届四中全会招募了30名志愿者(编号分别是1,2,,30号),现从中任意选取6人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一厅的选取种数是( ) A .25 B .32 C .60D .10011.已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左右焦点,过2F 作双曲线一条渐近线的垂线,垂足为点A ,交另一条渐近线于点B ,且2213AF F B =u u u u r u u u u r,则该双曲线的离心率为( )D. 212.已知定义域为R 的奇函数()y f x =的导函数为()y f x =',当0x ≠时, ()()0f x f x x+'>,若()1a f =,()22b f =--,11ln ln 22c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,()1a f =, 则,,a b c 的大小关系正确的是( ) A. a c b <<B. b c a <<C. a b c <<D. c a b <<二、填空题(每小题5分,共20分,把答案填写在答题纸的相应位置上)13.设n= 26sinx π⎰dx ,则二项式22nx x ⎛⎫- ⎪⎝⎭展开式中常数项为 ________.14.已知实数,x y 满足⎪⎩⎪⎨⎧+≤≤+-≥113337y x y x x y 则23412x y z -+⎛⎫= ⎪⎝⎭的最小值为__________.15.已知椭圆22194x y +=与x 轴交于,A B 两点,过椭圆上一点()00,P x y (P 不与,A B 重合)的切线l 的方程为00194x x y y +=,过点,A B 且垂直于x 轴垂线分别与l 交于,C D 两点,设CB AD 、交于点Q ,则点Q 的轨迹方程为__________. 16.有下列命题:①等比数列{}n a 中,前n 项和为n s ,公比为q ,则n n n n n s s s s s 232,,--仍然是等比数列,其公比为n q ;②一个正方体的顶点都在球面上,它的棱长为2cm ,则球的体积是π34cm 3;③若数列{}n a 是正项数列,且221n a a a n =+++Λn 3+()*∈N n ,则n n n a a a n 62132221+=++++Λ; ④在ABC ∆中,1,2,1200===∠AC AB BAC ,D 是边BC 上的一点(包括端点),则的取值范围是[]2,5-.其中正确命题的序号是_____(填序号)三、解答题(本大题共70分=10分+12×5分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题12分)已知数列{}n a 为等差数列,公差为d ,其前n 项和为n S , 且1357915a a a a a ++++=, 24681025a a a a a ++++=. (1)求数列{}n a 的通项公式n a 及前n 项和n S ;(2)若数列{}n b 满足14b a =, ()*13n n n b b n N +=+∈,求满足6n n b S n ≤+的所有n 的值.18.(本小题12分)高二某班共有20名男生,在一次体验中这20名男生被平均分成两个小组,第一组和第二组男生的身高(单位: cm )的茎叶图如下:(1)根据茎叶图,分别写出两组学生身高的中位数;(2)从该班身高超过180cm 的7名男生中随机选出2名男生参加校篮球队集训,求这2名男生至少有1人来自第二组的概率;(3)在两组身高位于[)170,180(单位: cm )的男生中各随机选出2人,设这4人中身高位于[)180,175(单位: cm )的人数为X ,求随机变量X 的分布列和数学期望.19.(本小题12分)如图,在等腰梯形ABCD 中, 060ABC ∠=,上底2CD =,下底4AB =,点E 为下底AB 的中点,现将该梯形中的三角形BEC 沿线段EC 折起,形成四棱锥B AECD -.(1)在四棱锥B AECD -中,求证: AD BD ⊥;(2)若平面BEC 与平面AECD 所成二面角的平面角为0120,求直线AE 与平面ABD 所成角的正弦值.20.(本小题12分)设抛物线()240y mx m =>的准线与x 轴交于1F ,抛物线的焦点为2F ,以12F F 、为焦点,离心率12e =的椭圆与抛物线的一个交点为226,33E ⎛⎫ ⎪ ⎪⎝⎭;自1F 引直线交抛物线于P Q 、两个不同的点,设11F P FQ λ=u u u v u u u v.(1)求抛物线的方程和椭圆的方程; (2)若1,12λ⎡⎫∈⎪⎢⎣⎭,求PQ 的取值范围.21.(本小题12分)已知函数()2ln f x ax x x x =+-, ()2xg x e x =-(e 为自然对数的底数).(1)当[)0,x ∈+∞时,求()g x 的最小值; (2)若函数()f x 恰有两个不同极值点12,x x .①求a 的取值范围;②求证: 212x x e ≥.四、请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分.做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.(本小题10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 过()2,0M ,倾斜角为()0αα≠.以O 为极点, x 轴非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2sin 4cos ρθθ=.(1)求直线l 的参数方程和曲线C 的直角坐标方程;(2)已知直线l 与曲线C 交于A 、B 两点,且2MA MB =,求直线l 的斜率k .23.(本小题10分)选修4-5:不等式选讲已知函数()12f x x x m =++--, (1)当m =5时,求f(x)>0的解集;(2)若关于的不等式f(x)≥2的解集是R ,求m 的取值范围.南昌二中2017~2018学年度上学期第七次考试高三数学(理)试卷参考答案一、 选择题(每小题5分,共60分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CACBBBCBDCAD二、填空题(每小题5分,共20分)13.60 14.164. 15. ()22139x y x +=≠± 16. ②③④ 一、单选题1.已知集合2{|4},{|1}A x y x B x a x a ==-=≤≤+,若A B A ⋃=,则实数的取值范围为( )A. ][(),32,-∞-⋃+∞ B. C. D.【答案】C【解析】试题分析:集合2{|4}{|22}A x y x x x ==-=-≤≤,若A B A ⋃=,则B A ⊆,所以有2{12a a ≥-+≤,所以21a -≤≤,故选C. 考点:集合间的关系.2.已知实数,m n 满足()()4235m ni i i +-=+,则m n +=( ) A.95 B. 115 C. 94 D. 114【答案】A【解析】∵()()()424m 2n 4235m ni i n m i i +-=++-=+,∴425{ 423m n n m +=-=,解得: 710{ 1110m n ==,∴m n +=95故选:A3.给出下列命题:①已知,a b R ∈,“1a >且1b >”是“1ab >”的充分条件; ②已知平面向量,a b ,"1,1"a b >>是“1a b +>”的必要不充分条件; ③已知,a b R ∈,“221a b +≥”是“1a b +≥”的充分不必要条件; ④命题:P “0x R ∃∈,使00e1x x ≥+且00ln 1x x ≤-”的否定为:p ⌝ “x R ∀∈,都有e 1x x <+且ln 1x x >-”.其中正确命题的个数是 A. 0 B. 1 C. 2 D. 3 【答案】C【解析】①已知,a b ∈R ,“1a >且1b >”能够推出“1ab >”,“1ab >”不能推出“1ab >”,本选项正确;②已知平面向量,a b , “1,1>>a b ”不能推出“1+>a b ”,本选项不正确; ③已知,a b ∈R ,“221a b +≥”是“1+≥a b ”的充分不必要条件,正确; ④命题:P “0x ∃∈R ,使00e1x x ≥+且00ln 1x x ≤-”的否定为:p ⌝ “x ∀∈R ,都有e 1x x <+或ln 1x x >-”本选项不正确.正确的个数为2. 故选:C4.若定义在R 上的偶函数()f x 满足()()2f x f x +=,且当[]0,1x ∈时,f(x)=x,则函数y=f(x)-3log x 的零点个数是( )A. 6个B. 4个C. 3个D. 2个 【答案】B【解析】因为偶函数()f x 满足()()2f x f x +=,所以()f x 的周期为2,当[]0,1x ∈时, ()f x x =,所以当[]1,0x ∈-时, ()f x x =-,函数()3log y f x x =-的零点等价于函数()y f x =与3log y x =的交点个数,在同一坐标系中,画出()y f x =的图象与3log y x =的图象,如上图所示,显然()y f x =的图象与3log y x =的图象有4个交点。

江西省南昌市第二中学2017-2018学年高二上学期第三次月考数学(理)试题

江西省南昌市第二中学2017-2018学年高二上学期第三次月考数学(理)试题

南昌二中2017—2018学年度上学期第三次月考高二数学(理)试卷命题人:周启新 审题人:谭 佳一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选项符合题意.) 1. 已知命题:p 0x ∀≤,1xe ≤,则p ⌝为( ) A. 000,1x x e∃≤≤ B. 000,1x x e ∃≤>C. 000,1x x e∃>≤ D. 000,1x x e ∃>>2. sin 2x 的导函数为( ) A. cos2x B. 2cos2xC. sin 4xD. cos4x3.函数21()ln 2f x x x =-的单调递增区间为( ) A. (0,)+∞ B. [1,0)[1,)-+∞ C. [1,)+∞ D. [1,0)-和[1,)+∞4. 在极坐标系中,极点关于直线cos sin 10ρθρθ-+=对称的点的极坐标为( )A. 3)4πB. 3)4π-C. )4πD. )4π-5. 设P 为曲线2:2C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为30[44πππ⎡⎤⋃⎢⎥⎣⎦,,),则点P 横坐标的取值范围为( ) A. 1[,0]2-B. [1,0]-C. [0,1]D. 1[,1]26. 设命题p :a R ∃∈,直线210x y +-=与直线10x ay ++=垂直,命题q :若0()0f x ,则0x 是函数()f x 的极值点.则下列命题为真命题的是( ) A. q p ∧ B. ()p q ⌝∨C. )(q p ⌝∧D. )()(q p ⌝∧⌝7. 若关于x 的方程21x bx 有两个不同的实数解,则实数b 的取值范围是( )A. (2,2) B. (1,1)C.D.8. 对任意正实数x ,不等式ln 1x x a 恒成立的一个充分不必要条件是( ) A. 1aB. 2aC. 1aD. 3a9. 设,,A B C 是抛物线24y x =上的三点,若ABC ∆的重心恰好是该抛物线的焦点F ,则FA FB FC ++=( )A. 2B. 4C. 6D. 810.点P 是曲线xy e x =+上的点,Q 是直线21y x =-上的点,则||PQ 的最小值为( )D.11. 已知双曲线22221x y a b-=(0a >,0b >)的右焦点为F ,若过点F 且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A. (1,2)B. (1,2]C. [2,)+∞D. (2,)+∞12. 若函数()(2)ln xf x a x e x x =-+-存在唯一的极值点,且此极值小于0,则实数a 的取值范围为( ) A. 2211(,)e e - B. 11(,)e e-C. 21(,0]e -D. 1(,0]e-二、填空题(本大题共4小题,每小题5分,共20分)13. “若220x y +=,则x ,y 全为零”的否命题是________________________; 14. 若函数()24ln b f x ax x x =-+在1x =与13x =处都取得极值,则a b +=________; 15. 若函数32()3f x x tx x =-+在区间[1,4]上单调递减,则实数t 的取值范围是________; 16. 设过曲线()xf x e x =+上任意一点处的切线为1l ,总存在过曲线()cosg x ax x =+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围是______.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)给定两个命题,p :对任意实数x 都有012>++ax ax 恒成立;q :关于x 的方程02=+-a x x 有实数根;如果命题“p 且q ”为假命题,“p 或q ”为真命题,求实数a 的取值范围.18.(本小题满分12分)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为)4πρθ=+,直线l的参数方程为1x t y =⎧⎪⎨=-+⎪⎩ (t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点.(I)求圆心C 的极坐标; (II)求△P AB 面积的最大值.19.(本小题满分12分)双曲线22122:1x y C a b -=(00a b >>,)的左、右焦点分别为1F 、2F ,抛物线22:2C y px =(0)p >的准线过1F 且与双曲线1C 的实轴垂直,若抛物线2C 上的任意一点到2F 的距离比它到y 轴的距离大3,过2F 的直线与双曲线1C 的右支相交于A 、B 两点,若弦长||AB 等于抛物线2C 的通径长的2倍,且1ABF ∆的周长为56,求双曲线1C 和抛物线2C 的方程.20.(本小题满分12分)已知函数()2ln f x ax bx x =+-(,a b ∈R ).(I )当1,3a b =-=时,求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(II )当0a =时,是否存在正实数b ,当(]0,e x ∈(e 是自然对数底数)时,函数()f x 的最小值是3,若存在,求出b 的值;若不存在,说明理由;21.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+= >>其左、右焦点分别为1F 、2F ,P为椭圆C 上的动点,且12||||PF PF ⋅的最大值为16.(I )求椭圆C 的方程;(II )设A 、B 分别为椭圆的右顶点和上顶点,当P 在第一象限时,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,问PMN ∆与PAB ∆面积之差是否为定值?说明理由.22.(本小题满分12分)已知函数()1ln (2)(1),f x a x a a x=+-+∈R . (Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )xf x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围.南昌二中2017—2018学年度上学期第三次月考高二数学(理)参考答案一、选择题BBCAB CDACB CD 二、填空题13. “若220x y +≠,则x ,y 不全为零”; 14.52-15.51[,)8+∞ 16. [1,0]- 三、解答题17.解:对任意实数x 都有012>++ax ax 恒成立⎩⎨⎧<∆>=⇔00a a 或40<≤⇔a ;关于x 的方程02=+-a x x 有实数根41041≤⇔≥-⇔a a ;……………………4分 因为命题“p 且q ”为假命题,“p 或q ”为真命题,则命题p 和q 一真一假。

2018-2019学年江西省南昌市第二中学高二上学期期末考试数学(理)试题 Word版

2018-2019学年江西省南昌市第二中学高二上学期期末考试数学(理)试题 Word版

南昌二中2018—2019学年度上学期期末考试高二数学(理)试卷一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数3()f x x =,()f x '是()f x 的导函数,若0()12f x '=,则0x =( )A.2B . 2-C .2±D .2.命题“对任意R x ∈,都有22019x ≥”的否定是( )A. 对任意R x ∈,都有22019x <B. 不存在R x ∈,使得22019x <C. 存在R x ∈0,使得202019x ≥D. 存在R x ∈0,使得202019x <3.复数(1)(2)z i i =++,则其对应复平面上的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限4.由直线6x π=-,6x π=,0y =与曲线cos y x =所围成的封闭图形的面积为( )A.12 B.1 5.已知函数2()xf x e x -=+,[1,3]x ∈,则下列说法正确的是( )A .函数()f x 的最大值为13e +B .函数()f x 的最小值为13e+ C .函数()f x 的最大值为3 D .函数()f x 的最小值为36. 用反证法证明某命题时,对结论:“自然数a ,b ,c 中恰有一个偶数”正确的反设为( ) A .a ,b ,c 中至少有两个偶数 B .a ,b ,c 中至少有两个偶数或都是奇数 C .a ,b ,c 都是奇数 D .a ,b ,c 都是偶数7. 已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A. B. C. D.8.设函数()()2ln 1f x x m x =++有两个极值点,则实数m 的取值范围是( )A.()11,2-B.(10,2)C.(10,2]D. (]11,2-9. 已知函数2()1x f x e x x =+++与()23g x x =-,P 、Q 分别是函数()f x 、()g x 图象上的动点,则PQ 的最小值为( )A B C D .10.下列命题中,真命题是( )A .设12,z z C ∈,则12z z +为实数的充要条件是21,z z 为共轭复数;B .“直线l 与曲线C 相切”是“直线l 与曲线C 只有一个公共点”的充分不必要条件; C .“若两直线12l l ⊥,则它们的斜率之积等于1-”的逆命题;D .()f x 是R 上的可导函数,“若0x 是()f x 的极值点,则0()0f x '=”的否命题.11.已知12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,两条渐近线分别为12,l l ,经过右焦点2F 垂直于1l 的直线分别交12,l l 于,A B 两点,若||||2||OA OB AB +=,且2F 在线段AB 上,则该双曲线的离心率为( )A B C. 2 D 12.已知函数20()(2)xt f x t t e dt ⎡⎤=-⎣⎦⎰,则()f x 在()0,+∞的单调递增区间是( )A .(0,)+∞B .C .)+∞D .(2,)+∞二、填空题(本题共4道小题,每小题5分,共20分) 13.设函数)0(1)(>+=x x x x f ,观察:1)()(1+==x x x f x f ,12))(()(12+==x x x f f x f , 13))(()(23+==x x x f f x f ,14))(()(34+==x xx f f x f ,,根据以上事实,由归纳推理可得:2019()f x = .14.4322x dx ππ- -+=⎰⎰.15.已知直线1:43110l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是.16.已知[1,2)a ∀∈,0(0,1]x ∃∈,使得00ln 22aax ax e m +>++,则实数m 的取值范围为 .三、解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知命题:p 函数1)(23+-=mx x x f 在[1,2]x ∈上单调递减;命题:q 曲线22126x y m m-=--为双曲线. (Ⅰ)若“p 且q ”为真命题,求实数m 的取值范围;(Ⅱ)若“p 或q ”为真命题,“p 且q ”为假命题,求实数m 的取值范围.18.(本小题满分12分)已知函数3()2f x x x =+-.(Ⅰ)求曲线()y f x =在点(2,8)处的切线方程;(Ⅱ)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.19.(本小题满分12分)已知直线l 过点()0,1P ,圆22:680C x y x +-+=,直线l 与圆C 交于,A B 不同两点. (Ⅰ)求直线l 的斜率k 的取值范围;(Ⅱ)是否存在过点()6,4Q 且垂直平分弦AB 的直线1l ?若存在,求直线1l 斜率1k 的值,若不存在,请说明理由.20.(本小题满分12分)已知函数1()ln(1)1xf x ax x-=+++(0x ≥),其中0a >. (Ⅰ)若()f x 在1x =处取得极值,求实数a 的值; (Ⅱ)若()f x 的最小值为1,求实数a 的取值范围.21.(本小题满分12分)已知椭圆2222:1x y C a b+=(0)a b >>的左右焦点分别为1(1,0)F -、2(1,0)F ,经过2F 的直线l 与椭圆C 交于A 、B 两点,且1F AB ∆的周长为8.(Ⅰ)求椭圆C 的方程;(Ⅱ)记12AF F ∆与12BF F ∆的面积分别为1S 和2S ,求12S S -的最大值.22. (本小题满分12分)已知函数()(2)(ln ln )f x ax a x =--(其中0x >,0a >),记函数()f x 的导函数为()()g x f x '=.(Ⅰ)求函数()g x 的单调区间;(Ⅱ)是否存在实数a ,使得()0f x ≤对任意正实数x 恒成立?若存在,求出满足条件的实数a ;若不存在,请说明理由.南昌二中2018—2019学年度上学期期末考试高二数学(理)试卷参考答案一、选择题:本大题共12小题,每小题5分,共60分. CDABD BABBC AD二、填空题(本题共4道小题,每小题5分,共20分) 13.20191xx + 14.8π 15.3 16. (,e 1)-∞-三、解答题:本大题共6小题,共70分.17.【解析】(Ⅰ)若p 为真命题,2()320f x x mx '=-≤在[1,2]x ∈恒成立,即32m x ≥在[1,2]x ∈恒成立,∵32x 在[1,2]x ∈的最大值是3,∴3m ≥①若q 为真命题,则(2)(6)0m m -->,解得26m <<,②若“p 且q ”为真命题,即p ,q 均为真命题,所以326m m ≥⎧⎨<<⎩,解得36m ≤<,综上所述,若“p 且q ”为真命题,则实数m 的取值范围为[3,6);………………5分 (Ⅱ)若“p 或q ”为真命题,“p 且q ”为假命题,即p ,q 一真一假, 当p 真q 假时,326m m m ≥⎧⎨≤≥⎩或,解得6m ≥,当p 假q 真时,326m m <⎧⎨<<⎩,解得23m <<,综上所述,实数m 的取值范围为(2,3)[6,)+∞.………………………………………10分18.【解析】(Ⅰ)2()31f x x '=+,所以(2)13f '=………………………………………3分所以所求的切线方程为813(2)y x -=-,即13180x y --=………………………6分(Ⅱ)设切点为3000,2)x x x +-(,则200()31f x x '=+…………………………………7分所以切线方程为()()320000231()y x x x x x -+-=+- ……………………………9分 因为切线过原点,所以 ()()320000231x x x x -+-=-+,所以3022x =-,解得01x =-,…………………………………………………………11分 所以(1)4f '-=,故所求切线方程为4y x =, 又因为(1)4f -=-,切点为(1,4)-- ………12分 19. 【解析】(Ⅰ)法1:直线l 的方程为1y kx =+,则由{221680y kx x y x =++-+=得()()212690k x x x ++-+=由()()22=263610k k ∆--+>得224360k k -->,故304k -<<………………6分 法2:直线l 的方程为1y kx =+,即10kx y -+=,圆心为C (3,0),圆的半径为1则圆心到直线的距离d =,因为直线与有交于A ,B1<,故304k -<<.………………6分(Ⅱ)假设存在直线1l 垂直平分于弦AB ,此时直线1l 过()()6,4,3,0Q C , 则1404633k -==-,故AB 的斜率34k =-,由(1)可知,不满足条件. 所以,不存在直线1l 垂直于弦AB . ………………12分20.【解析】(Ⅰ)求导函数可得22222()1(1)(1)(1)a ax a f x ax x ax x +-'=+=++++. ∵()f x 在1x =处取得极值,∴(1)0f '=,∴2204(1)a a -=+,解得1a =;…………4分经检验,1a =时()f x 在1x =处取得极小值,符合题意,所以1a = …………5分(Ⅱ)222()(1)(1)ax a f x ax x +-'=++, ∵0x ≥,0a >,∴10ax +>,10x +>.当2a ≥时,在区间[0,)+∞上()0f x '≥,()f x 递增,()f x 的最小值为(0)1f =.…8分当02a <<时,由()0f x '>,解得x >;由()0f x '<,解得0x ≤<.∴()f x的单调减区间为,单调增区间为)+∞.…………10分 于是,()f x在x =处取得最小值(0)1f f <=,不合. 综上可知,若f (x )的最小值为1,则实数a 的取值范围是[2,)+∞.…………12分 21.【解析】(Ⅰ)因为1(1,0)F -为椭圆C 的焦点,所以1c =,由椭圆的定义知,1F AB ∆的周长为1212(||||)(||||)2248AF AF BF BF a a a +++=+==,解得2a =,所以2223b a c =-=,所以椭圆C 的方程为22143x y +=;………………4分 (Ⅱ)设直线l 的方程为1x my =+,11(,)A x y ,22(,)B x y ,由221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得22(34)690m y my ++-=,则122634m y y m +=-+,…………7分 12121212216||||(||||)234m S S F F y y y y m -=-=+=+,当0m =时,120S S -=, 当0m ≠时,1226||64343||||m S S m m m -==≤=++,(当且仅当3m =±12S S -的最大值为2.…………12分 22.【解析】(Ⅰ)12()()(ln ln )(2)()ln ln g x f x a a x ax a a a x a xx'==-+--=--+, ∴22()a g x x x '=--,∵0x >,0a >,∴22()0a g x x x'=--<恒成立, ∴()g x 的单调减区间为(0,)+∞,无递增区间;………………4分(Ⅱ)解法一:由(Ⅰ)知()g x 在(0,)+∞上单调递减,所以()0g x =在(0,)+∞上必存在实数根,不妨记0()0g x =,即002ln ln 0a a a x a x --+=,可得002ln ln 1x a ax =-+………(*)当0(0,)x x ∈时,()0g x >,即()0f x '>,当0(,)x x ∈+∞时,()0g x <,即()0f x '<, 所以()f x 在0(0,)x 上单调递增,在0(,)x +∞上单调递减, 所以max 000()()(2)(ln ln )f x f x ax a x ==--,………………8分 把(*)式代入可得max 000024()(2)(1)4f x ax ax ax ax =--=+-, 依题意max 0004()()40f x f x ax ax ==+-≤恒成立,又由基本不等式有00440ax ax +-≥,当且仅当0042ax ax ==时等号成立,解得02ax =,所以02x a =.代入(*)式得,2lnln a a =,所以2a a=,又∵0a >,所以解得a =综上所述,存在实数a =()0f x ≤对任意正实数x 恒成立.………………12分解法二:要使(2)(ln ln )0ax a x --≤对(0,)x ∀∈+∞恒成立,①20ax -≥即2x a ≥时,ln ln a x ≤,解得x a ≥,所以2max{,}x a a ≥, ②20ax -≤即2x a ≤时,ln ln a x ≥,解得x a ≤,所以2min{,}x a a≤,依题意可知,①、②应同时成立,则2a a=,又∵0a >,所以解得a =。

江西省南昌市第二中学2017-2018学年高二上学期期末考试化学试卷及答案

江西省南昌市第二中学2017-2018学年高二上学期期末考试化学试卷及答案

南昌二中2017~2018学年度上学期期末考试高二化学试卷命题人: 审题人:可能用到的相对原子质量:H :1 N :14 C :12 O :16 S :32 Mg :24 Cl :35.5 Cu :64 Fe :56第Ⅰ卷 选择题一、选择题(每小题只有一个选项符合题意,每小题3分,共计48分) 1.下列各式中,属于正确的电离方程式的是( )A. HCO 3- + H 2O ⇌ H 2CO 3 + OH -B.HCO 3- +OH - = H 2O + CO 32-C. NH 3 + H + = NH 4+D.NH 3·H 2O ⇌ NH 4+ + OH -2.下列有关电解质溶液的说法正确的是( )A .向0.1mol 1L -⋅CH 3COOH 溶液中加入少量水,溶液中3(H )(CH COOH)c c +减小B .将CH 3COONa 溶液从20℃升温至30℃,溶液中33(CH COO )(CH COOH)(OH )c c c --⋅增大C .向盐酸中加入氨水至中性,溶液中4(NH )1(Cl )c c +-> D .向AgCl 、AgBr 的饱和溶液中加入少量AgNO 3,溶液中(Cl )(Br )c c --不变3.下列事实对应的离子方程式或电极反应式书写正确的是( )A .用石墨作电极电解CuSO 4溶液:2Cu 2++2H 2O=====通电2Cu +O 2↑+4H +B .碳酸钠溶液显碱性:CO 2-3+2H 2O⇌ H 2CO 3+2OH -C .钢铁发生吸氧腐蚀时,铁作负极被氧化:Fe -3e -===Fe 3+D .在强碱溶液中与NaClO 反应生成Fe(OH)3反应生成Na 2FeO 4: 3ClO -+2Fe(OH)3===2FeO 2-4+3Cl -+H 2O +4H +4. 在一密闭容器中,充入一定量的反应物A ,反应达平衡后,保持温度不变,将容器体积缩到一半,当达到新的平衡时,B 的浓度是原来的1.6倍,则下列判断正确的是( )A. B. 物质A的转化率降低C. 物质B的质量增加D. 平衡向正反应方向移动了5. 烷烃C7H16所有的同分异构体中,含有三个甲基的同分异构体有A.2种B.3种C.4种D.5种6.镍氢电池(NiMH)目前已经成为混合动力汽车的一种主要电池类型。

江西省南昌二中2017-2018学年高二上学期第一次月考数学(理)试题 Word版含答案

江西省南昌二中2017-2018学年高二上学期第一次月考数学(理)试题 Word版含答案

南昌二中2017—2018学年度上学期第一次月考高二数学(理)试卷一、选择题:(本大题共12小题;每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.直线tan 706π+-=x y 的倾斜角是( )A .π6-B .π6C .2π3 D .5π62.焦点在x 轴上的椭圆221(0)3+=>x y m m的焦距为 )A. 11B.33C. 3.直线(1)10+-+=k x ky (k R ∈)与圆22(2)(1)3++-=x y 的位置关系为( ) A. 相交B. 相切C. 相离D. 与k 的值有关4.已知直线1:30-+=l mx y 与2l 关于直线y x =对称, 2l 与311:22=-+l y x 垂直,则=m ( ) A. 12-B.12C. -2D. 25.点(0,2)k 为圆22:8280+-+-=C x y x y 上一点,过点K 作圆切线为,l l 与'l :420-+=x ay 平行,则'l 与l 之间的距离是( ) A.85B.45C.285D.1256.曲线()2412≤-+=x x y 与直线()42+-=x k y 有两个交点时,实数k 的取值范围是 A .⎥⎦⎤⎝⎛43125, B .⎪⎭⎫⎝⎛43125, C .⎪⎭⎫ ⎝⎛4331,D .⎪⎭⎫ ⎝⎛1250,7.若圆22:(1)(2)25-++=C x y 上有四个不同的点到直线4:33=--al y x 的距离为2,则a 的取值范围是( )A. (-12,8)B. (-8,12)C. (-13,17)D. (-17,13)8.两圆222240+++-=x y px p 和2224140+--+=x y qy q 恰有三条公切线,若∈p R , ∈q R ,且0≠pq ,则2211+p q 的最小值为( ) A. 49B.109C. 1D. 39.已知圆22:230C x y x +--=,过原点且互相垂直的两直线分别交圆C 于点A ,B ,D ,E ,则四边形ABDE面积的最大值为( )A .4 3B .7C .4 2D .410. 一束光线从点(1,1)-P 出发,经x 轴反射到圆22:x 46120C y x y +--+=上的最短路程是( )A .4B .5C .1D .1112,F F ,弦AB 过1F ,若2ABF ∆的内切圆面积为π,A 、B 两点的坐标分别为11(,)x y 和22(,)x y ,则21y y -的值为( )12.设直线系:cos (2)sin 1(02)M x y θθθπ+-=≤≤,则下列命题中是真命题的个数是 ①存在一个圆与所有直线不相交 ②存在一个圆与所有直线相切③M 中所有直线均经过一个定点 ④存在定点P 不在M 中的任一条直线上⑤M 中的直线所能围成的正三角形面积都相等 A .1 B .2 C .3 D .4二、填空题:(本大题共4小题,每小题5分,共20分.)13.经过点()4,2A ,且在x 轴上的截距等于在y 轴上的截距的3倍的直线l 的方程的一 般式为__________.14.椭圆22192y x +=的焦点为12,F F ,点P 在椭圆上,若1||4PF =,则12F PF ∠的大小为__________ 15.直线1:l y x a=+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=_______16.已知椭圆C 的方程为x 24+y23=1,A 、B 为椭圆C 的左、右顶点,P 为椭圆C 上不同于A 、B 的动点,直线x =4与直线PA 、PB 分别交于M 、N 两点;若D(7,0),则过D 、M 、N 三点的圆必过x 轴上不同于点D 的定点,其坐标为________.三、解答题:(本大题共6小题,共70分.) 17.(本小题10分)已知∆MNQ 的三个顶点分别为()2,3M ,()1,2--N ,()3,4-Q ,求 (1)NQ 边上的中线MD 所在的直线方程的一般式;(2)求∆MNQ 的面积18. (本小题12分)已知直线l 过点(21),且与圆O :224x y +=相交于,A B 两点,0120=∠AOB .求直线AB 方程的一般式.19.(本小题12分)求与圆M :x 2+y 2= 2x 外切,并且与直线x+3y=0相切于点Q(3,-3)的圆的方程的标准式.20.(本小题12分)已知直线l : ()()12530k x y k k R --+-=∈恒过定点P ,圆C 经过点()4,0A 和点P ,且圆心在直线210x y -+=上.(1)求圆C 的方程的一般式;(2)已知点P 为圆C 直径的一个端点,若另一个端点为点Q ,问:在y 轴上是否存在一点()0,M m ,使得PMQ 为直角三角形,若存在,求出m 的值,若不存在,请说明理由.21.(本小题10分)已知过原点的动直线l 与圆221:650C x y x +-+=相交于不同的两点,A B . (1)求线段AB 的中点M 的轨迹C 的方程;(2)是否存在实数k ,使得直线():4L y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.22. (本小题12分)已知椭圆2222:1(0)+=>>x y C a b a b ,四点1234((1,1),p (0,1)P ---- 中恰有三点在椭圆C 上(1)求椭圆C 的方程.(2)经过原点作直线l (不与坐标轴重合)交椭圆于A , B 两点, AD x ⊥轴于点D ,点E 在椭圆C 上,且()()0AB EB DB AD -⋅+=,求证: B , D , E 三点共线.南昌二中2017—2018学年度上学期第一次月考高二数学(理)试卷1—6 DCCBBA 7—12 CCBADC 13、3100+-=x y 或20-=x y 14、120015、2 16、(1,0)17、解:(1)由已知得BC 中点D 的坐标为(2,1)D -, ∴中线AD 所在直线的方程是1(2)312(2)y x ---=---,即240x y -+=(2)∵BC ==直线BC 的方程是350x y ++=,点A 到直线BC的距离是d==∴△ABC 的面积是1142S BC d =⋅=. 18、解:由2r=,0120=∠AOB ,得圆心到直线距离为1⇒32||=AB设AB 所在直线方程为(2)1y k x =-+即210kx y k --+=,10k =⇒=或43k =, 故所求直线方程:1y =或4350x y --=19、【解析】设所求圆的方程为C :(x-a)2+(y-b)2=r 2,圆心为C(a,b),∵圆C 与直线x+3y=0相切于点Q(3,-3)∴CQ⊥直线x+3y=0, ∴K CQ =33-+a b 即b= 343-a ,r= |CQ|=22)3()3(++-b a =2|a-3|, 由于圆C 与圆M 外切,则有|CM|=22)1(b a +-=1+r=1+2|a-3|, 即|3|21)4(3)1(22-+=-+-a a a(1)当a≥3时,得a=4,b=0,r=2 .圆的方程为(x -4)2+y 2= 4 ;(2)当a<3时,可得a=0,b=-43,r=6, 圆的方程为x 2+ (y+43)2=36 ∴所求圆的方程为(x -4)2+y 2= 4或 x 2+ (y+43)2=36 .20、【解析】(1)设圆C 的方程为220x y Dx Ey F ++++=,由条件得1640{913021022D F D E F D E ++=++++=⎛⎫⎛⎫---+= ⎪ ⎪⎝⎭⎝⎭,解得14{840D E F =-=-=.所以圆C 的方程为22148400x y x y +--+=.(2)圆C 的标准方程为()()227425x y -+-=, 413734CP k -==-, 设点()3,1P 关于圆心()7,4的对称点为()00,x y ,则有00314{18x y +=+=,解得011x =,07y =,故点Q 的坐标为()11,7.因为M 在圆外,所以点M 不能作为直角三角形的顶点, 若点P 为直角三角形的顶点,则有131034m -⋅=--, 5m =, 若点Q 是直角三角形的顶点,则有7310114m -⋅=--, 653m =, 综上, 5m =或653. 21、解析:(1)圆()22221:65034C x y x x y +-+=⇒-+=∴圆心坐标为()3,0设(),M x y ,则可知1C M AB ⊥1113C M ABy y k k x x ∴⋅=-⇒⋅=--,整理可得:223924x y ⎛⎫-+= ⎪⎝⎭当动直线与圆相切时,设直线方程:y kx =则()22226501650x y x k x x y kx⎧+-+=⇒+-+=⎨=⎩ ()2243620105k k ∴∆=-+=⇒=∴切点的横坐标为2165213x k =⋅=+ 由圆的性质可得:M 横坐标的取值范围为5,33⎛⎤ ⎥⎝⎦所以轨迹方程为22393,,3245x y x ⎛⎫⎛⎤-+=∈ ⎪ ⎥⎝⎭⎝⎦(2)由(1)可得曲线C 为圆22395,,3243x y x ⎛⎫⎛⎤-+=∈ ⎪ ⎥⎝⎭⎝⎦的一部分圆弧EF (不包括,E F ),其中55,,,3333E F ⎛⎛- ⎝⎭⎝⎭直线():4L y k x =-过定点()4,0① 当直线与圆相切时:3324C l d k -==⇒=±② 当直线与圆不相切时,可得03543DEk -==-,05743DF k ⎛- ⎝⎭==-数形结合可得:当77k ⎡∈-⎢⎣⎦时,直线与圆有一个交点综上所述:33,44k ⎡⎧⎫∈-⎨⎬⎢⎩⎭⎣⎦ 时,直线L 与曲线C 只有一个交点 22、解析:(1)椭圆C 的方程为2212x y +=. (2)证明:设()11,Ax y , ()22,E x y ,则()11,B x y --, ()1,0D x .因为点A , E 都在椭圆C 上,所以2211222222,22,x y x y ⎧+=⎨+=⎩ 所以()()1212x x x x -++ ()()121220y y y y -+=, 即()121212122y y x xx x y y -+=--+.又()()AB EB DB AD -⋅+0AE AB =⋅= ,所以1AB AE k k ⋅=-,即1121121y y y x x x -⋅=--,所以()11211212y x x x y y +⋅=+所以()1211122y y y x x x +=+ 又1211212BE BD y y y k k x x x +-=-=+ 121212120y y y yx x x x ++-=++,所以BE BD k k =,所以B , D , E 三点共线.。

江西省南昌市第二中学2017-2018学年高二上学期第一次月考数学(理)试题(考试卷)

江西省南昌市第二中学2017-2018学年高二上学期第一次月考数学(理)试题(考试卷)

南昌二中2017—2018学年度上学期第一次月考高二数学(理)试卷一、选择题:(本大题共12小题;每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 直线tan706x y π+-=的倾斜角是( ) A. π6- B.π6 C. 2π3 D. 5π62. 焦点在x 轴上的椭圆221(0)3x y m m+=>的焦距为 )A. 11B. 33C.D. 3. 直线(1)10k x ky +-+=(k ∈R )与圆22(2)(1)3x y ++-=的位置关系为( )A. 相交B. 相切C. 相离D. 与k 的值有关 4. 已知直线1:30l mx y -+=与2l 关于直线y x =对称, 2l 与311:22l y x =-+垂直,则m =( ) A. 12- B. 12 C. -2D. 2 5. 点(0,2)k 为圆22:8280C x y x y +-+-=上一点,过点K 作圆切线为,l l 与'l :420x ay -+=平行,则'l 与l 之间的距离是( ) A. 85 B. 45 C. 285 D. 1256. 曲线1(2)y x =≤与直线(2)4y k x =-+有两个交点时,实数k 的取值范围是( ) A. 53(,]124 B. 53(,)124 C. 13(,)34 D. 5(0,)127. 若圆22:(1)(2)25C x y -++=上有四个不同的点到直线4:33a l y x =--的距离为2,则a 的取值范围是( )A. (-12,8)B. (-8,12)C. (-13,17)D. (-17,13) 8. 两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈,且0ab ≠,则2211a b +最小值为( )A. 49B. 109C. 1D. 39. 已知圆22:230C x y x +--=,过原点且互相垂直的两直线分别交圆C 于点A ,B ,D ,E ,则四边形ABDE 面积的最大值为( )A. 4B. 7C. 4D. 410. 一束光线从点()1,1A -出发,经x 轴反射到圆()()22:231C x y -+-=上的最短路程是 A. 321 B. 26 C. 4 D. 511. 椭圆221259x y +=的左、右焦点分别为12,F F ,弦AB 过1F ,若2ABF 的内切圆面积为π,A 、B 两点的坐标分别为11(,)x y 和22(,)x y ,则21y y -的值为( )A. 5B. 103C. 203D. 5212. 设直线系:cos (2)sin 1(02)M x y θθθπ+-=≤≤,则下列命题中是真命题的个数是①存在一个圆与所有直线不相交②存在一个圆与所有直线相切③M 中所有直线均经过一个定点④存在定点P 不在M 中的任一条直线上⑤M 中的直线所能围成的正三角形面积都相等A. 1B. 2C. 3D. 4填空题:(本大题共4小题,每小题5分,共20分.)13. 经过点()4,2A ,且在x 轴上的截距等于在y 轴上的截距的3倍的直线l 的方程的一般式为__________.14. 22192x y +=焦点为F 1、F 2,点Р在椭圆上,若|PF 1|=4,则∠F 1PF 2的大小为_________. 15. 直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += .16. 已知椭圆C 的方程为+=1,A 、B 为椭圆C 的左、右顶点,P 为椭圆C 上不同于A 、B 的动点,直线x =4与直线PA 、PB 分别交于M 、N 两点;若D(7,0),则过D 、M 、N 三点的圆必过x 轴上不同于点D 的定点,其坐标为________.三、解答题:(本大题共6小题,共70分.)17. 已知MNQ ∆的三个顶点分别为()2,3M ,()1,2N --,()3,4-Q ,求(1)NQ 边上的中线MD 所在的直线方程的一般式;(2)求MNQ ∆的面积18. 已知直线l 过点(21),且与圆O :224x y +=相交于,A B 两点,0120AOB ∠=.求直线AB 方程的一般式.19. 求与圆A:2220x y x +-=外切且与直线l:30x y +=相切于点(3,3M -的圆B 的方程.20. 已知直线:(1)2530()l k x y k k R --+-=∈恒过定点P ,圆C 经过点(4,0)A 和点P ,且圆心直线-2 10x y +=上.(1)求定点P 的坐标与圆C 的方程;(2)已知点P 为圆C 直径的一个端点,若另一个端点为点Q ,问:在y 轴上是否存在一点(0, )M m ,使得PMQ ∆为直角三角形,若存在,求出m 的值,若不存在,请说明理由.21. 已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.22. 已知椭圆2222:1(0)x y C a b a b +=>>,四点1234((1,1),(0,1)P P p p ---- 中恰有三点在椭圆C 上 (1)求椭圆C 方程. (2)经过原点作直线l (不与坐标轴重合)交椭圆于A , B 两点, AD x ⊥轴于点D ,点E 在椭圆C 上,且()*()0AB EB DB AD -+= 求证:B , D E , 三点共线.。

江西省南昌二中高二上期末数学试卷理科

江西省南昌二中高二上期末数学试卷理科

2016-2017学年江西省南昌二中高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.命题:“∃x0>0,使2(x0﹣a)>1”,这个命题的否定是()A.∀x>0,使2x(x﹣a)>1 B.∀x>0,使2x(x﹣a)≤1C.∀x≤0,使2x(x﹣a)≤1 D.∀x≤0,使2x(x﹣a)>12.“cosα=0”是“sinα=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知直线(t为参数)上两点A,B对应的参数值是t1,t2,则|AB|等于()A.|t1+t2|B.|t1﹣t2|C. |t1﹣t2|D.4.用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是()A.(k+1)2+2k2B.(k+1)2+k2C.(k+1)2D.5.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.4B.4 C.2D.26.若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点且∠AOB=120°则r=()A.1 B.2 C.D.7.过原点作曲线y=lnx的切线,则切线斜率为()A.e2B.C.e D.8.若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值范围是()A.[﹣,+∞)B.(﹣∞,﹣]C.[,+∞)D.(﹣∞,]9.函数在R上不是单调增函数则b范围为()A.(﹣1,2) B.(﹣∞,﹣1]∪[2,+∞)C.[﹣1,2]D.(﹣∞,﹣1)∪(2,+∞)10.设函数则使f(2x)>f(x﹣1)成立的x范围为()A.B.C.D.11.已知双曲线(a>0,b>0)的离心率e=2,过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,则k1•k2的值为()A.2 B.3 C.D.12.设函数f(x)在R上存在导数f′(x),对任意的x∈R,有f(﹣x)+f(x)=x2,且x∈(0,+∞)时,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,则实数a的取值范围为()A.[1,+∞)B.(﹣∞,1] C.(﹣∞,2] D.[2,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13.化极坐标方程ρ2cosθ﹣ρ=0为直角坐标方程为.14.定积分|sinx﹣cosx|dx的值是.15.设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|1+2|=||,则=.16.数列{a n}的前n项和为S n.若数列{a n}的各项按如下规则排列:,,,,,,,,,…,,……若存在正整数k,使S k<10,S k>10,则a k=.﹣1三、解答题(本大题共6小题,共70分)17.已知命题p:方程表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.18.已知,试用反证法证明:a,b,c中至少有一个不小于1.19.给定直线l:y=2x﹣16,抛物线G:y2=ax(a>0)(1)当抛物线G的焦点在直线l上时,求a的值;(2)若△ABC的三个顶点都在(1)所确定的抛物线G上,且点A的纵坐标y A=8,△ABC的重心恰是抛物线G的焦点F,求直线BC的方程.20.已知函数f(x)=(a+1)lnx+x2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若对任意不相等的x1,x2∈(0,+∞),恒有|f(x1)﹣f(x2)≥4|x1﹣x2|成立,求非负实数a的取值范围.21.已知椭圆+=1(a>b>0),其右顶点为A(2,0),上、下顶点分别为B1,B2.直线A B2的斜率为,过椭圆的右焦点F的直线交椭圆于M,N两点(M,N均在y轴右侧).(Ⅰ)求椭圆的方程;(Ⅱ)设四边形M N B1 B2面积为S,求S的取值范围.22.设函数f(x)=ax+(a,b∈R),若f(x)在点(1,f(x))处的切线斜率为1.(Ⅰ)用a表示b;(Ⅱ)设g(x)=lnx﹣f(x),若g(x)≤﹣1对定义域内的x恒成立,(ⅰ)求实数a的取值范围;(ⅱ)对任意的θ∈[0,),证明:g(1﹣sinθ)≤g(1+sinθ).2016-2017学年江西省南昌二中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.命题:“∃x0>0,使2(x0﹣a)>1”,这个命题的否定是()A.∀x>0,使2x(x﹣a)>1 B.∀x>0,使2x(x﹣a)≤1C.∀x≤0,使2x(x﹣a)≤1 D.∀x≤0,使2x(x﹣a)>1【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题的否定为∀x>0,使2x(x ﹣a)≤1,故选:B.2.“cosα=0”是“sinα=1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】由cosα=0可得α=kπ+(k∈Z),即可判断出结论.【解答】解:cosα=0可得α=kπ+(k∈Z),∴sinα=±1,反之成立,∴“cosα=0”是“sinα=1”的必要不充分条件.故选:B.3.已知直线(t为参数)上两点A,B对应的参数值是t1,t2,则|AB|等于()A.|t1+t2|B.|t1﹣t2|C. |t1﹣t2|D.【考点】参数方程化成普通方程.【分析】设A(x0+at1,y0+bt1),B(x0+at2,y0+bt2),利用两点之间的距离公式即可得出.【解答】解:设A(x0+at1,y0+bt1),B(x0+at2,y0+bt2),则|AB|==•|t1﹣t2|.故选:C.4.用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12═时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是()A.(k+1)2+2k2B.(k+1)2+k2C.(k+1)2D.【考点】数学归纳法.【分析】根据等式左边的特点,各数是先递增再递减,分别写出n=k与n=k+1时的结论,即可得到答案.【解答】解:根据等式左边的特点,各数是先递增再递减,由于n=k,左边=12+22+…+(k﹣1)2+k2+(k﹣1)2+…+22+12n=k+1时,左边=12+22+…+(k﹣1)2+k2+(k+1)2+k2+(k﹣1)2+…+22+12比较两式,从而等式左边应添加的式子是(k+1)2+k2故选B.5.直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.4B.4 C.2D.2【考点】定积分在求面积中的应用.【分析】由题意首先求出第一象限的交点,然后利用定积分表示围成的图形的面积,然后计算即可.【解答】解:先根据题意画出图形,两个图形在第一象限的交点为(2,8),所以曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫02(4x﹣x3)dx,而∫02(4x﹣x3)dx=(2x2﹣x4)|02=8﹣4=4∴曲封闭图形的面积是4,故选B.6.若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点且∠AOB=120°则r=()A.1 B.2 C.D.【考点】直线与圆的位置关系.【分析】若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)交于A、B两点,∠AOB=120°,则△AOB为顶角为120°的等腰三角形,顶点(圆心)到直线3x﹣4y+5=0的距离d=r,代入点到直线距离公式,可构造关于r的方程,解方程可得答案.【解答】解:若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)交于A、B两点,O为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x﹣4y+5=0的距离d=r,即=r,解得r=2,故选B.7.过原点作曲线y=lnx的切线,则切线斜率为()A.e2B.C.e D.【考点】利用导数研究曲线上某点切线方程.【分析】设切点坐标为(a,lna),求函数的导数,可得切线的斜率,切线的方程,代入(0,0),求切点坐标,切线的斜率.【解答】解:解:设切点坐标为(a,lna),∵y=lnx,∴y′=,切线的斜率是,切线的方程为y﹣lna=(x﹣a),将(0,0)代入可得lna=1,∴a=e,∴切线的斜率是=;故选:D.8.若函数y=x2+(2a﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a的取值范围是()A.[﹣,+∞)B.(﹣∞,﹣]C.[,+∞)D.(﹣∞,]【考点】函数单调性的性质.【分析】由已知中函数的解析式,结合二次函数的图象和性质,可以判断出函数y=x2+(2a﹣1)x+1图象的形状,分析区间端点与函数图象对称轴的关键,即可得到答案.【解答】解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又∵函数在区间(﹣∞,2]上是减函数,故2≤解得a≤﹣故选B.9.函数在R上不是单调增函数则b范围为()A.(﹣1,2) B.(﹣∞,﹣1]∪[2,+∞)C.[﹣1,2]D.(﹣∞,﹣1)∪(2,+∞)【考点】利用导数研究函数的单调性.【分析】三次函数y=x3+bx2+(b+2)x+3的单调性,通过其导数进行研究,故先求出导数,利用其导数恒大于0即可解决问题.【解答】解:∵y=x3+bx2+(b+2)x+3,∴y′=x2+2bx+b+2,∵f(x)是R上的单调增函数,∴x2+2bx+b+2≥0恒成立,∴△≤0,即b2﹣b﹣2≤0,则b的取值是﹣1≤b≤2.∴y=x3+bx2+(b+2)x+3在R上不是单调增函数,实数b取值范围是b<﹣1或b>2,故选:D.10.设函数则使f(2x)>f(x﹣1)成立的x范围为()A.B.C.D.【考点】函数奇偶性的性质.【分析】根据函数的表达式可知函数f(x)为偶函数,判断函数在x大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,可得|2x|>|x ﹣1|,解绝对值不等式即可.【解答】解:函数,定义域为R,∵f(﹣x)=f(x),∴函数f(x)为偶函数,当x>0时,函数单调递增,根据偶函数性质可知:得f(2x)>f(x﹣1)成立,∴|2x|>|x﹣1|,∴4x2>(x﹣1)2,∴(3x﹣1)(x+1)>0∴x的范围为,故选:A.11.已知双曲线(a>0,b>0)的离心率e=2,过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,则k1•k2的值为()A.2 B.3 C.D.【考点】直线与圆锥曲线的关系;直线的斜率;双曲线的简单性质.【分析】设出M、A、B,表示出k1•k2,M、A、B代入双曲线方程并化简,代入双曲线的离心率乘积,求出k1•k2的值.【解答】解:因为过双曲线上一点M作直线MA,MB交双曲线于A,B两点,且斜率分别为k1,k2.若直线AB过原点,所以A、B关于原点对称,设M(p,q),A(﹣p,﹣q),B(s,t),则有k1•k2==,,,两式相等得:,即,=,k1•k2====22﹣1=3.故选B.12.设函数f(x)在R上存在导数f′(x),对任意的x∈R,有f(﹣x)+f(x)=x2,且x∈(0,+∞)时,f′(x)>x.若f(2﹣a)﹣f(a)≥2﹣2a,则实数a的取值范围为()A.[1,+∞)B.(﹣∞,1] C.(﹣∞,2] D.[2,+∞)【考点】导数的运算.【分析】令g(x)=f(x)﹣x2,由g(﹣x)+g(x)=0,可得函数g(x)为奇函数.利用导数可得函数g(x)在R上是增函数,f(2﹣a)﹣f(a)≥2﹣2a,即g(2﹣a)≥g (a),可得2﹣a≥a,由此解得a的范围.【解答】解:∵f(﹣x)+f(x)=x2,∴f(x)﹣x2 +f(﹣x)﹣x2 =0,令g(x)=f(x)﹣x2,∵g(﹣x)+g(x)=f(﹣x)﹣x2+f(x)﹣x2=0,∴函数g(x)为奇函数.∵x∈(0,+∞)时,f′(x)>x.∴x∈(0,+∞)时,g′(x)=f′(x)﹣x>0,故函数g(x)在(0,+∞)上是增函数,故函数g(x)在(﹣∞,0)上也是增函数,由f(0)=0,可得g(x)在R上是增函数.f(2﹣a)﹣f(a)≥2﹣2a,等价于f(2﹣a)﹣≥f(a)﹣,即g(2﹣a)≥g(a),∴2﹣a≥a,解得a≤1,故选:B.二、填空题(本大题共4小题,每小题5分,共20分)13.化极坐标方程ρ2cosθ﹣ρ=0为直角坐标方程为x2+y2=0或x﹣1=0.【考点】点的极坐标和直角坐标的互化.【分析】由极坐标方程ρ2cosθ﹣ρ=0可得ρ=0或ρcosθ﹣1=0,再利用极坐标与直角坐标的互化公式即可得出.【解答】解:由极坐标方程ρ2cosθ﹣ρ=0可得ρ=0或ρcosθ﹣1=0,ρ=0表示原点O(0,0).由ρcosθ﹣1=0,化为x﹣1=0.综上可知:所求直角坐标方程为x2+y2=0或x﹣1=0.14.定积分|sinx﹣cosx|dx的值是2.【考点】定积分.【分析】由题意可得|sinx﹣cosx|dx=(cosx﹣sinx)dx+(sinx﹣cosx)dx,再根据定积分的计算法则计算即可.【解答】解: |sinx﹣cosx|dx=(cosx﹣sinx)dx+(sinx﹣cosx)dx,=(sinx+cosx)|+(﹣cosx﹣sinx)|,=[(sin+cos)﹣(sin0+cos0)]﹣[(sinπ+cosπ﹣(sin+cos)],=(﹣1)﹣(﹣1﹣),=2,故答案为:2.15.设e1、e2分别为具有公共焦点F1、F2的椭圆和双曲线的离心率,P是两曲线的一个公共点,且满足|1+2|=||,则=.【考点】椭圆的标准方程.【分析】设出椭圆的长半轴,双曲线的实半轴,它们的半焦距,利用椭圆的和双曲线的定义可得焦半径,写出两个曲线的离心率,即可得到结果.【解答】解:设椭圆的长半轴是a1,双曲线的实半轴是a2,它们的半焦距都是c.并设|PF1|=m,|PF2|=n,m>n,根据椭圆的和双曲线的定义可得m+n=2a1,m﹣n=2a2,解得m=a1+a2,n=a1﹣a2.∵设椭圆的长半轴是a1,双曲线的实半轴是a2,它们的半焦距是c.并设|PF1|=m,|PF2|=n,m>n,根据椭圆的和双曲线的定义可得m+n=2a1,m﹣n=2a2,解得m=a1+a2,n=a1﹣a2,∵|1+2|=||,即2|PO|=2|OF2|,故△PF1F2为直角三角形,∴PF1⊥PF2,由勾股定理得|PF1|2+|PF2|2=|F1F2|2 ,可得(a1+a2)2+(a1﹣a2)2=(2c)2,化简可得a12+a22=2c2,∴+=2,∴===,故答案为:.16.数列{a n}的前n项和为S n.若数列{a n}的各项按如下规则排列:,,,,,,,,,…,,……若存在正整数k,使S k<10,S k>10,则a k=.﹣1【考点】归纳推理.【分析】把原数列划分,发现他们的个数是1,2,3,4,5…构建新数列b n,很显然是个等差数列,利用等差数列的和知道T5=,T6=,所以a k定在,,…,中,<10,S k≥10求出具体结果.在根据S k﹣1【解答】解:把原数列分组,分母相同的为一组,发现他们的个数是1,2,3,4,5…构建新数列{b n},表示数列中每一组的和,则b n=是个等差数列,记{b n}的前n项和为T n,利用等差数列的和知道T5=,T6=,所以a k定在,,…,中,<10,S k≥10,而T5+++…+=9+<10,T5+++…++=10+>10,又因为S k﹣1故第k项为a k=.故答案为.三、解答题(本大题共6小题,共70分)17.已知命题p:方程表示焦点在y轴上的椭圆,命题q:关于x的方程x2+2mx+2m+3=0无实根,若“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.【考点】命题的真假判断与应用.【分析】若“p∧q”为假命题,“p∨q”为真命题,则p,q为一个真命题,一个假命题,进而可得实数m的取值范围.【解答】解:∵方程表示焦点在y轴上的椭圆,∴0<m+1<3﹣m,解得:﹣1<m<1,∴若命题p为真命题,求实数m的取值范围是(﹣1,1);若关于x的方程x2+2mx+2m+3=0无实根,则判别式△=4m2﹣4(2m+3)<0,即m2﹣2m﹣3<0,得﹣1<m<3.若“p∧q”为假命题,“p∨q”为真命题,则p,q为一个真命题,一个假命题,若p真q假,则,此时无解,柔p假q真,则,得1≤m<3.综上,实数m的取值范围是[1,3).18.已知,试用反证法证明:a,b,c中至少有一个不小于1.【考点】反证法与放缩法.【分析】假设a,b,c均小于1,即a<1,b<1,c<1则有a+b+c<3,再结合配方法,引出矛盾,即可得出结论.【解答】证明:假设a,b,c均小于1,即a<1,b<1,c<1则有a+b+c<3,而矛盾,所以原命题成立.19.给定直线l:y=2x﹣16,抛物线G:y2=ax(a>0)(1)当抛物线G的焦点在直线l上时,求a的值;(2)若△ABC的三个顶点都在(1)所确定的抛物线G上,且点A的纵坐标y A=8,△ABC的重心恰是抛物线G的焦点F,求直线BC的方程.【考点】直线与抛物线的位置关系.【分析】(1)由抛物线G:y2=ax(a>0)的焦点在x轴上,且其坐标为,对方程y=2x﹣16,令y=0得x=8,可得,解得a.(2)由(1)知:抛物线G的方程是y2=32x,F(8,0).点A在抛物线G上,且y A=8,可得A(2,8).延长AF交BC于点D,则由点F是△ABC的重心得:点D为线段BC的中点.设点D(x,y),由,可得:D.设B(x1,y1),C(x2,y2),由点B,C在抛物线y2=32x上得:代入抛物线方程相减得:,进而得出.【解答】解:(1)∵抛物线G:y2=ax(a>0)的焦点在x轴上,且其坐标为,∴对方程y=2x﹣16,令y=0得x=8,从而由已知得,a=32.(2)由(1)知:抛物线G的方程是y2=32x,F(8,0).又∵点A在抛物线G上,且y A=8,∴A(2,8).延长AF交BC于点D,则由点F是△ABC的重心得:点D为线段BC的中点.设点D(x,y),则由得(8﹣2,0﹣8)=2(x﹣8,y﹣0),解之得:.∴D(11,﹣4)设B(x1,y1),C(x2,y2),则由点B,C在抛物线y2=32x上得:,两式相减得:,又由点D为线段BC的中点得y1+y2=﹣8,k BC=﹣4.∴直线BC方程为y﹣(﹣4)=﹣4(x﹣11),即4x+y﹣40=0.20.已知函数f(x)=(a+1)lnx+x2+1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若对任意不相等的x1,x2∈(0,+∞),恒有|f(x1)﹣f(x2)≥4|x1﹣x2|成立,求非负实数a的取值范围.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)先求函数的定义域,再求导,分类讨论,根据导数和函数的单调性即可求函数的单调区间;(Ⅱ)不妨设x1>x2,转化为(x1)﹣4x1≥f(x2)﹣4x2恒成立,构造函数,利用导数和函数的最值的关系即可求出a的取值范围.【解答】解:(Ⅰ)∵f(x)的定义域为(0,+∞)∴,当a+1≥0时,f′(x)>0恒成立,∴当a≥﹣1时,y=f(x)在区间(0,+∞)单调递增,当a+1<0时,若x>,f′(x)>0,若0<x<,f′(x)<0,∴当a<﹣1时,函数y=f(x)在区间(0,)上单调递减,在区间(,+∞)上单调递增,(Ⅱ)不妨设x1>x2,又∵a≥0,∴y=f(x)在区间(0,+∞)上单调递增|f(x1)﹣f(x2)|≥4|x1﹣x2|恒成立,等价于f(x1)﹣f(x2)≥4x1﹣4x2恒成立,即就是f(x1)﹣4x1≥f(x2)﹣4x2恒成立令g(x)=f(x)﹣4x,x∈(0,+∞),则y=g(x)为单调递增函数即就是g'(x)≥0恒成立,∵令h(x)=2x2﹣4x+a+1,x∈(0,+∞),∵h(x)min=h(1)=a﹣1,∴a≥1,故a的取值范围为[1,+∞)21.已知椭圆+=1(a>b>0),其右顶点为A(2,0),上、下顶点分别为B1,B2.直线A B2的斜率为,过椭圆的右焦点F的直线交椭圆于M,N两点(M,N均在y轴右侧).(Ⅰ)求椭圆的方程;(Ⅱ)设四边形M N B1 B2面积为S,求S的取值范围.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【分析】(Ⅰ)因为a=2,,所以b=1,可求得椭圆方程(Ⅱ)设M(x1,y1)N(x2,y2),直线MN方程为x=my+,将直线x=my+代入椭圆方程得(m2+4)y2+2my﹣1=0,求得面积,利用均值不等式求得取值范围.【解答】解:(Ⅰ)因为a=2,,所以b=1,所以椭圆方程为;(Ⅱ)设M(x1,y1)N(x2,y2),直线MN方程为x=my+,将直线x=my+代入椭圆方程得(m2+4)y2+2my﹣1=0,则y1+y2=,|y1﹣y2|=∵x1>0,x2>0,∴;面积S======;令t=,则==,即S.所以四边形MNB1B2面积S的取值范围为S.22.设函数f(x)=ax+(a,b∈R),若f(x)在点(1,f(x))处的切线斜率为1.(Ⅰ)用a表示b;(Ⅱ)设g(x)=lnx﹣f(x),若g(x)≤﹣1对定义域内的x恒成立,(ⅰ)求实数a的取值范围;(ⅱ)对任意的θ∈[0,),证明:g(1﹣sinθ)≤g(1+sinθ).【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)由f′(1)=1可得结果;(Ⅱ)(ⅰ)g(x)≤﹣1恒成立,等价于g(x)max≤﹣1.由g(1)+1≤0可得a的范围,利用导数可求得函数的最大值,可验证此时满足要求,从而得到a的范围.(ii)由(ⅰ)知,g(x)≤﹣1恒成立,实数a的取值范围为a≥1,令sinθ=t∈[0,1),构造函数p(t)=g(1+t)﹣g(1﹣t),只需证明p(t)≥0恒成立,利用导数进而转化为求函数p(t)的最小值问题,利用导数可求得;【解答】解:(Ⅰ)函数的导数为f′(x)=a﹣,因为f(x)在点(1,f(x))处的切线斜率为1,所以f′(1)=a﹣b=1,解得b=a﹣1;(Ⅱ)因为g(x)=lnx﹣f(x),所以g(x)=lnx﹣f(x)=lnx﹣(ax+),要使g(x)≤﹣1≤﹣1恒成立.则(ⅰ)g(x)≤﹣1恒成立,等价于g(x)max≤﹣1.g(x)≤﹣1恒成立,则g(1)+1=﹣a﹣a+1+1≤0⇒a≥1.当a≥1时,==0⇒x=1,x=﹣1+,﹣1+≤0,x2g′(x)≥0,则x∈(0,1),g′(x)>0,g(x)单调递增,当x∈(1,+∞),g′(x)<0,g(x)单调递减,则g(x)max=g(1)=1﹣2a≤﹣1,符合题意,即g(x)≤﹣1恒成立.所以,实数a的取值范围为a≥1.(ⅱ)由(ⅰ)知,g(x)≤﹣1恒成立,实数a的取值范围为a≥1.令sinθ=t∈[0,1),考虑函数p(t)=g(1+t)﹣g(1﹣t)=ln(1+t)﹣a(1+t)﹣=ln(1+t)﹣ln(1﹣t)﹣2at﹣(a﹣1)[],+=﹣2a+(a﹣1)[],下证明p′(t)≥0,即证:﹣2a+(a﹣1)[]≥0,即证明,由,即证1﹣a+(a﹣1)[]≥0,又a﹣1≥0,只需证﹣1+≥0,即证1+t2≥(1+t)2(1﹣t)2⇐t4﹣3t2≤0⇐t2(t2﹣3)≤0,显然成立.故p(t)在t∈[0,1)上单调递增,p(t)min=p(0)=0,则p(t)≥0,得g(1+t)≥g(1﹣t)成立,则对任意的θ∈[0,),g(1﹣sinθ)≤g(1+sinθ)成立.2017年3月11日。

数学---江西省南昌市第二中学2017-2018学年高二上学期期末考试(理)

数学---江西省南昌市第二中学2017-2018学年高二上学期期末考试(理)

江西省南昌市第二中学2017-2018学年高二上学期期末考试(理)一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选项符合题意.) 1.证明不等式“2367-<-”最适合的方法是( ) A .综合法B .分析法C .反证法D .数学归纳法2.命题“x R a R ∀∈∃∈,,使得|1||2|n x x >---”的否定形式是( ) A .x R a R ∃∈∃∈,,使得|1||2|n x x ≤--- B .x R a R ∀∈∀∈,,使得|1||2|n x x ≤--- C .x R a R ∀∈∃∈,,使得|1||2|n x x ≤--- D .x R a R ∃∈∀∈,,使得|1||2|n x x ≤--- 3.在复平面内,复数201812z i i=++对应的点位于( ) A . 第一象限 B .第二象限C .第三象限D .第四象限4.经过点(2,4)-且与双曲线2212y x -=有同渐近线的双曲线方程是( ) A .22184y x -= B .22184x y -= C .22148x y -= D .22148y x -= 5.已知函数()f x 的导函数为()f x ',且满足2()ln (1)f x x x f '=+,则(1)f '=( )A .e -B .eC . 1-D . 16.设x ,y ,z 都是正数,则三个数1x y+,1y z +,1z x +( )A . 至少有一个不小于2B .至少有一个大于2C .都大于2D .至少有一个不大于27.若关于x 的不等式|2|||4x x a -++>的解集为R ,则实数a 的取值范围为( ) A .(,6)(2,)-∞-+∞ B .(6,2)- C .(,6)(2,)-∞--+∞ D . (6,2)-- 8.在下列结论中,正确的结论为( ) ①“p 且q”为真是“p 或q”为真的充分不必要条件②“p 且q”为假是“p 或q”为真的充分不必要条件 ③“p 或q”为真是“p Ø”为假的必要不充分条件 ④“p Ø”为真是“p 且q”为假的必要不充分条件 A .①②B .①③C .②④D .③④9.若不等式|23||25|4x x -+-<的解集为(,)a b ,则曲线1y x=与直线3y x =-及直线x a =,x b =所围成的封闭图形的面积为( )A .89B . ln 3C .8ln 39+D .ln 32+10.已知函数()33f x x x =-,若过点()3,M t 可作曲线()y f x =的三条切线, 则实数t 的取值范围是( ) A .()9,18-B .()18,18-C .()18,6-D .()6,6-11.若关于x 的不等式|||2|0k x x -->恰好有4个整数解,则实数k 的取值范围是( ) A .32(,)53B .32(,]53C .3(,1)5D .3(,1]512.已知函数()f x 是定义在()0,+∞的可导函数, ()'f x 为其导函数,当0x >且1x ≠ 时,()()2'01f x xf x x +>-,若曲线()y f x =在1x =处的切线的斜率为1-,则 ()1f =( )A .12-B .0C .12D .1二、填空题(本大题共4小题,每小题5分,共20分)13.已知a ,b R ∈,i 是虚数单位,若21a i bi +=-,则复数z a bi =+的模||z = ;14.已知函数2()sin 1f x x x =+-,则11()f x dx -=⎰;15.在平面直角坐标系中,ABC ∆的顶点A ,B 分别是离心率为e 的圆锥曲线221x y m n+= 的焦点,顶点C 在该曲线上.一同学已正确地推得:当0m n >>时,有(sin sin )sin e A B C +=.类似地,当0m >,0n <时,有____________;16.共焦点的椭圆与双曲线的离心率分别为1e ,2e ,若椭圆的短轴长为双曲线的虚轴长的2倍,则1212e e +的最大值为 . 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)在平面直角坐标系xOy 中,曲线C 的参数方程为42{(4x cosa a y sina=+=为参数),以O 为极点,以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为()6R πθρ=∈.(Ⅰ)求曲线C 的极坐标方程;(Ⅱ)设直线l 与曲线C 相交于,A B 两点,求AB 的值.18.(本小题满分12分)已知函数()f x x a a =-+.(Ⅰ)若不等式()2f x ≤的解集为{|12}x x ≤≤,求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n 使()()f n m f n ≤--成立,求实数m 的取值范围.19.(本小题满分12分)已知函数321()3f x x ax b =-+在2x =-处有极值. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 在区间[3,3]-上有且仅有一个零点,求实数b 的取值范围.20.(本小题满分12分)已知数列的前n 项和满足:,且. (I)求;(Ⅱ)猜想的通项公式,并用数学归纳法证明.21.(本小题满分12分){}n a n S 112n n na S a =+-0,n a n N *>∈123,,a a a {}n a设顶点在原点,焦点在x 轴上的拋物线过点()1,2P ,过P 作抛物线的动弦PA ,PB ,并设它们的斜率分别为PA k ,PB k . (Ⅰ)求拋物线的方程;(Ⅱ)若0PA PB k k +=,求证:直线AB 的斜率为定值,并求出其值; (III )若1PA PB k k =,求证:直线AB 恒过定点,并求出其坐标.22.(本小题满分12分)已知函数2()ln 2a f x x x x x a =--+(a R ∈)在其定义域内有两个不同的极值点. (Ⅰ)求实数a 的取值范围;(Ⅱ)记两个极值点分别为1x ,2x (12x x <),求证:2111a x x <<.参考答案一、选择题1-12、BDCAC AABDA BC二、填空题(本大题共4小题,每小题5分,共20分) 13.5 14.2π15.|sin sin |sin e A B C -= 16.10 三、解答题17.解:(Ⅰ)将方程42{4x cosa y sina=+=消去参数a 得224120x y x +--=,∴曲线C 的普通方程为224120x y x +--=,将222x cos x y ρρθ+==,代入上式可得24cos 12ρρθ-=, ∴曲线C 的极坐标方程为:24cos 120ρρθ--=.………5分(Ⅱ)设,A B 两点的极坐标方程分别为12,,,66ππρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由24cos 16{ 6ρρθπθ-==消去θ得223120ρρ--=, 根据题意可得12,ρρ是方程223120ρρ--=的两根, ∴121223,12ρρρρ+==-, ∴()21212122215AB ρρρρρρ=-=+-=. ………10分18.解:(Ⅰ) 2x a a -+≤,222a x -≤≤,即得221a -=,得32a =.………5分(Ⅱ)∵()()f n m f n ≤--,∴()()m f n f n ≥+- 33322n n =-+++. ∵min 33(322n n -++=),且存在实数n 使()()f n m f n ≤--, ∴6m ≥.………………12分19.解: (Ⅰ)2()2f x x ax '=- ,由题意知: (2)440f a '-=+=,得a =1-, …… 2分∴2()2f x x x '=+, 令()0f x '>,得2x <-或0x >, 令()0f x '<,得20x -<<,∴()f x 的单调递增区间是(,2)-∞-和(0,)+∞, 单调递减区间是(2,0)-……… 6分(Ⅱ)由(Ⅰ)知,321()3f x x x b =++, 4(2)3f b -=+为函数()f x 的极大值,(0)f b =为极小值 ………………… 8分 又∵f (-3)=f (0)=b要使得函数()f x 在区间[3,3]-上有且仅有一个零点则(2)0(3)0f f -<⎧⎨≥⎩, 即180403b b +≥⎧⎪⎨+<⎪⎩ , ∴4183b -≤<-,即b 的取值范围是4[18,)3-- …………………… 12分 20.解: (Ⅰ),所以. 又因为,所以22122112a S a a a =+=+-,所以 331233112a S a a a a =++=+-,所以 …………………… 5分 (Ⅱ)由(Ⅰ)猜想,n N +∈.…………………… 6分 下面用数学归纳法加以证明:①当时,由(1)知成立.②假设(k N +∈)时,2121k a k k =+--成立. 当时,111111(1)(1)22k k k k k k ka a a S S a a ++++=-=+--+- 所以,解得:,所以 即当时猜想也成立.111111,2a a s a ==+-113a =-±0n a >131a =-253a =-375a =-2121n a n n =+--1n =131a =-n k =1n k =+11111212111212222121k k k k a a k k k a a k k +++++--=+--=+-++--21122120k k ak a ++++-=12321k a k k +=+-+12(1)12(1)1k a k k +=++-+-1n k =+综上可知,猜想对一切n N +∈都成立.…………………… 12分 21.解:(Ⅰ)依题意,可设所求拋物线的方程为()220y px p =>,因拋物线过点()1,2P ,故222,2p p ==,拋物线的方程为24y x =. …………… 2分 (Ⅱ)设()()1122,,,A x y B x y ,则1121112241214PA y y k y x y --===-+-, 同理21244,,2PB AB k k y y y ==++ 12440,022PA PB k k y y +=∴+=++ ,∴1222y y +=--,124y y +=-. 1241AB k y y ∴==-+,即直线AB 的斜率恒为定值,且值为1-. …………… 7分(III )1PA PB k k = ,∴1244122y y ⋅=++,∴()12122120y y y y ++-=. 直线AB 的方程为2111244y y y x y y ⎛⎫-=- ⎪+⎝⎭,即()12124y y y y y x +-=.将()1212212y y y y -=+-代入上式得()()()12243y y y x ++=+即为直线AB 的方程, 所以直线AB 恒过定点()3,2--,命题得证. …………… 12分22.解:(Ⅰ)依题,函数的定义域为,所以方程在有两个不同根,即,方程在有两个不同根.转化为,函数与函数的图象在上有两个不同交点,可见,若令过原点且切于函数图象的直线斜率为,只须. 令切点,所以,又,所以,解得,,于是,所以.………………4分(Ⅱ)由(Ⅰ)可知1x ,2x 分别是方程的两个根,即.()f x (0,)+∞'()0f x =(0,)+∞ln 0x ax -=(0,)+∞ln y x =y ax =(0,)+∞ln y x =k 0a k <<00(,ln )A x x 0'1x x k yx ===00ln x k x =000ln 1x x x =0x e =1k e=10a e <<ln 0x ax -=1122ln ,ln x ax x ax ==作差得,2211ln ()xa x x x =-,即2121lnx x a x x =-.所以不等式2111a x x <<,等价于212211ln11x x x x x x <<-,………………8分 下面先证21221ln1x x x x x <-,即证2211122ln 1x x x xx x x ->=-,令21x t x =,∵120x x <<,∴1t >,即证1ln 1t t >-(1t >),令1()ln 1g t t t =+-(1t >),则22111()0t g t t t t -'=-=>, ∴1()ln 1g t t t=+-在(1,)+∞上单调递增,∴()(1)0g t g >=,即1ln 1t t >-得证,从而21221ln1x x x x x <-得证;………………10分 再证21211ln1x x x x x <-,即证2212111ln 1x x x xx x x -<=-,即证ln 1t t <-(1t >), 令()ln 1h t t t =-+(1t >),则11()10th t t t-'=-=<, ∴()ln 1h t t t =-+在(1,)+∞上单调递减,∴()(1)0h t h <=,即ln 1t t <-得证,从而21211ln1x x x x x <-得证,综上所述,212211ln11x x x x x x <<-成立,即2111a x x <<.………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年江西省南昌二中高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选项符合题意.)1.(5分)证明不等式“”最适合的方法是()A.综合法B.分析法C.反证法D.数学归纳法2.(5分)命题“∀x∈R,∃a∈R,使得n>|x﹣1|﹣|x﹣2|”的否定形式是()A.∃x∈R,∃a∈R,使得n≤|x﹣1|﹣|x﹣2|B.∀x∈R,∀a∈R,使得n≤|x﹣1|﹣|x﹣2|C.∀x∈R,∃a∈R,使得n≤|x﹣1|﹣|x﹣2|D.∃x∈R,∀a∈R,使得n≤|x﹣1|﹣|x﹣2|3.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(5分)经过点(2,﹣4)且与双曲线有同渐近线的双曲线方程是()A.B.C.D.5.(5分)已知函数f(x)的导函数为f′(x),且满足f(x)=lnx+x2f′(1),则f′(1)=()A.﹣1B.e C.﹣e D.16.(5分)设x,y,z都是正数,则三个数()A.都大于2B.至少有一个不小于2C.至少有一个大于2D.至少有一个不大于27.(5分)若关于x的不等式|x﹣2|+|x+a|>4的解集为R,则实数a的取值范围为()A.(﹣∞,﹣6)∪(2,+∞)B.(﹣6,2)C.(﹣∞,﹣6)∪(﹣2,+∞)D.(﹣6,﹣2)8.(5分)在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“¬p”为假的必要不充分条件④“¬p”为真是“p且q”为假的必要不充分条件.A.①②B.①③C.②④D.③④9.(5分)若不等式|2x﹣3|+|2x﹣5|<4的解集为(a,b),则曲线与直线y=x﹣3及直线x=a,x=b所围成的封闭图形的面积为()A.B.ln3C.D.ln3+2 10.(5分)已知函数f(x)=x3﹣3x,若过点M(3,t)可作曲线y=f(x)的三条切线,则实数t的取值范围是()A.(﹣9,﹣8)B.(﹣18,18)C.(﹣18,6)D.(﹣6,6)11.(5分)若关于x的不等式k|x|﹣|x﹣2|>0恰好有4个整数解,则实数k 的取值范围是()A.B.C.D.12.(5分)已知函数f(x)是定义在(0,+∞)的可导函数,f'(x)为其导函数,当x>0且x≠1时,,若曲线y=f(x)在x=1处的切线的斜率为﹣1,则f(1)=()A.B.0C.D.1二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知a,b∈R,i是虚数单位,若a+2i=1﹣bi,则复数z=a+bi的模|z|=.14.(5分)已知函数,则=.15.(5分)在平面直角坐标系中,△ABC的顶点A、B分别是离心率为e的圆锥曲线的焦点,顶点C在该曲线上.一同学已正确地推得:当m>n>0时,有e•(sinA+sinB)=sinC.类似地,当m>0、n<0时,有e•()=sinC.16.(5分)共焦点的椭圆与双曲线的离心率分别为e1,e2,若椭圆的短轴长为双曲线的虚轴长的2倍,则的最大值为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),以O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为(ρ∈R).(Ⅰ)求曲线C的极坐标方程;(Ⅱ)设直线l与曲线C相交于A,B两点,求|AB|的值.18.(12分)已知函数f(x)=|x﹣a|+a.(1)若不等式f(x)≤2的解集为{x|1≤x≤2},求实数a的值;(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m 的取值范围.19.(12分)已知函数f(x)=在x=﹣2处有极值.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间[﹣3,3]上有且仅有一个零点,求b的取值范围.20.(12分)已知数列{a n}的前n项和S n满足:S n=+﹣1,且a n>0,n∈N*.(Ⅰ)求a1,a2,a3;(Ⅱ)猜想{a n}的通项公式,并用数学归纳法证明.21.(12分)设顶点在原点,焦点在x轴上的拋物线过点P(1,2),过P作抛物线的动弦PA,PB,并设它们的斜率分别为k PA,k PB.(Ⅰ)求拋物线的方程;(Ⅱ)若k PA+k PB=0,求证:直线AB的斜率为定值,并求出其值;(III)若k PA k PB=1,求证:直线AB恒过定点,并求出其坐标.22.(12分)已知函数(a∈R)在其定义域内有两个不同的极值点.(Ⅰ)求实数a的取值范围;(Ⅱ)记两个极值点分别为x1,x2(x1<x2),求证:.2017-2018学年江西省南昌二中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.每小题只有一个选项符合题意.)1.(5分)证明不等式“”最适合的方法是()A.综合法B.分析法C.反证法D.数学归纳法【解答】解:欲证明不等式”,只要证明+<+,分别求出左右两式的平方,再比较出两平方式的大小.从结果来找原因,或从原因推导结果,证明不等式所用的最适合的方法是分析法.故选:A.故选:B.2.(5分)命题“∀x∈R,∃a∈R,使得n>|x﹣1|﹣|x﹣2|”的否定形式是()A.∃x∈R,∃a∈R,使得n≤|x﹣1|﹣|x﹣2|B.∀x∈R,∀a∈R,使得n≤|x﹣1|﹣|x﹣2|C.∀x∈R,∃a∈R,使得n≤|x﹣1|﹣|x﹣2|D.∃x∈R,∀a∈R,使得n≤|x﹣1|﹣|x﹣2|【解答】解:命题“∀x∈R,∃a∈R,使得n>|x﹣1|﹣|x﹣2|”的否定形式是:∃x∈R,∀a∈R,使得n≤|x﹣1|﹣|x﹣2|.故选:D.3.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵==,∴在复平面内,复数对应的点的坐标为(),位于第三象限角.故选:C.4.(5分)经过点(2,﹣4)且与双曲线有同渐近线的双曲线方程是()A.B.C.D.【解答】解:依题意与双曲线有同渐近线的双曲线方程设为:,把点(2.﹣4)代入中,求得m=﹣4,∴双曲线的方程为:.故选:A.5.(5分)已知函数f(x)的导函数为f′(x),且满足f(x)=lnx+x2f′(1),则f′(1)=()A.﹣1B.e C.﹣e D.1【解答】解:根据题意,f(x)=lnx+x2f′(1),则f′(x)=+2xf′(1),令x=1可得:f′(1)=1+2f′(1),解可得:f′(1)=﹣1,故选:A.6.(5分)设x,y,z都是正数,则三个数()A.都大于2B.至少有一个不小于2C.至少有一个大于2D.至少有一个不大于2【解答】解:三个数中至少有一个不小于2.下面利用反证法证明:x,y,z都是正数,假设三个数都小于2.则6>x++y++z+=x+++y++z≥2+2+2=6,当且仅当x=y=z=1时取等号.即6>6,矛盾,因此假设不成立,∴三个数中至少有一个不小于2.故选:B.7.(5分)若关于x的不等式|x﹣2|+|x+a|>4的解集为R,则实数a的取值范围为()A.(﹣∞,﹣6)∪(2,+∞)B.(﹣6,2)C.(﹣∞,﹣6)∪(﹣2,+∞)D.(﹣6,﹣2)【解答】解:由于|x﹣2|+|x+a|表示数轴上的x对应点到2和﹣a的距离之和,它的最小值等于|2+a|,由题意可得|2+a|>4,解得a>2,或a<﹣6,故选:A.8.(5分)在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“¬p”为假的必要不充分条件④“¬p”为真是“p且q”为假的必要不充分条件.A.①②B.①③C.②④D.③④【解答】解:①“p且q”为真,则p,q同时为真,“p或q”为真,则p,q至少有一个为真,则“p且q”为真是“p或q”为真的充分不必要条件,正确.②当p,q同时为假时,满足“p且q”为假,但“p或q”为真不成立,即“p且q”为假是“p或q”为真的充分不必要条件,错误,③当p假q真时,“p或q”为真,但“¬p”为假不成立,即充分性不成立,若¬p为假,则p为真,此时,“p或q”为真,即必要性成立,则“p或q”为真是“¬p”为假的必要不充分条件,正确,④“¬p”为真,则p为假,则“p且q”为假的,此时充分性成立,故④错误,故选:B.9.(5分)若不等式|2x﹣3|+|2x﹣5|<4的解集为(a,b),则曲线与直线y=x﹣3及直线x=a,x=b所围成的封闭图形的面积为()A.B.ln3C.D.ln3+2【解答】解:∵不等式|2x﹣3|+|2x﹣5|<4的解集为(a,b),∴x≥时,2x﹣3+2x﹣5<4,解得:x<3,<x<时,2x﹣3+5﹣2x<4,成立,x≤时,3﹣2x+5﹣2x<4,解得:x>1,故不等式的解集是(1,3),故a=1,b=3,故(﹣x+3)dx=(lnx﹣x2+3x)=ln3+2,故选:D.10.(5分)已知函数f(x)=x3﹣3x,若过点M(3,t)可作曲线y=f(x)的三条切线,则实数t的取值范围是()A.(﹣9,﹣8)B.(﹣18,18)C.(﹣18,6)D.(﹣6,6)【解答】解:设切点为(a,a3﹣3a),∵f(x)=x3﹣3x,∴f'(x)=3x2﹣3,∴切线的斜率k=f′(a)=3a2﹣3,由点斜式可得切线方程为y﹣(a3﹣3a)=(3a2﹣3)(x﹣a),∵切线过点M(3,t),∴t﹣(a3﹣3a)=(3a2﹣3)(3﹣a),即2a3﹣3a2=﹣t﹣9,∵过点M(3,t)可作曲线y=f(x)的三条切线,∴关于a的方程2a3﹣3a2=﹣t﹣9有三个不同的根,令g(x)=2x3﹣3x2,∴g′(x)=6x2﹣6x=0,解得x=0或x=1,当x<0时,g′(x)>0,当0<x<1时,g′(x)<0,当x>1时,g′(x)>0,∴g(x)在(﹣∞,0)上单调递增,在(0,1)上单调递减,在(1,+∞)上单调递增,∴当x=0时,g(x)取得极大值g(0)=0,当x=1时,g(x)取得极小值g(1)=﹣1,关于a的方程2a3﹣3a2=﹣t﹣9有三个不同的根,等价于y=g(x)与y=﹣t﹣9的图象有三个不同的交点,∴﹣1<﹣t﹣9<0,∴﹣9<t<﹣8,∴实数t的取值范围为(﹣9,﹣8).故选:A.11.(5分)若关于x的不等式k|x|﹣|x﹣2|>0恰好有4个整数解,则实数k 的取值范围是()A.B.C.D.【解答】解:依题意可得,0<k<1,函数y=k|x|与y=﹣|x﹣2|的图象如下,由0<k<1,可得x A>1,∴关于x的不等式k|x|﹣|x﹣2|>0恰好有4个整数解,他们是2,3,4,5,由⇒x B=,故<k≤;故选:B.12.(5分)已知函数f(x)是定义在(0,+∞)的可导函数,f'(x)为其导函数,当x>0且x≠1时,,若曲线y=f(x)在x=1处的切线的斜率为﹣1,则f(1)=()A.B.0C.D.1【解答】解:当x>0且x≠1时,,可得x>1时,2f(x)+xf′(x)>0;0<x<1时,2f(x)+xf′(x)<0.令g(x)=x2f(x),x∈(0,+∞),∴g′(x)=2xf(x)+x2f′(x)=x[2f(x)+xf′(x)].可得:x>1时,g′(x)>0;0<x<1时,g′(x)<0.可得函数g(x)在x=1处取得极值,∴g′(1)=2f(1)+f′(1)=0,由f′(1)=﹣1,可得f(1)=,故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.(5分)已知a,b∈R,i是虚数单位,若a+2i=1﹣bi,则复数z=a+bi的模|z|=.【解答】解:由a+2i=1﹣bi,得a=1,b=﹣2.∴复数z=a+bi的模|z|=.故答案为:.14.(5分)已知函数,则=.【解答】解:f(x)=sinx+,∴=sinxdx+dx,∵sinxdx=﹣cosx|=0,dx表示以原点为圆心,半径为1的圆的面积的二分之一,∴dx=,∴=sinxdx+dx=,故答案为:15.(5分)在平面直角坐标系中,△ABC的顶点A、B分别是离心率为e的圆锥曲线的焦点,顶点C在该曲线上.一同学已正确地推得:当m>n >0时,有e•(sinA+sinB)=sinC.类似地,当m>0、n<0时,有e•(|sinA ﹣sinB| )=sinC.【解答】解:设△ABC中角A,角B,角C所对的边长分别为a,b,c.∵△ABC的顶点A、B分别是离心率为e的圆锥曲线的焦点,顶点C在该曲线上,∴m>0>n时,曲线是双曲线,离心率e=,由双曲线定义|b﹣a|=2,∴e|b﹣a|=c,由正弦定理,得e|sinA﹣sinB|=sinC.故答案为:|sinA﹣sinB|.16.(5分)共焦点的椭圆与双曲线的离心率分别为e1,e2,若椭圆的短轴长为双曲线的虚轴长的2倍,则的最大值为.【解答】解:设椭圆的短半轴是b1,双曲线的虚半轴是b2,它们的半焦距都是c;则b1=2b2,∴椭圆的长半轴是a1==,双曲线的实半轴是a2=;∴椭圆的离心率为e1=,双曲线的离心率为e2=;∴=+==;∵0<b2<c,∴0<<1,设=x,x∈(0,1),则函数y=+,x∈(0,1);求导数y′=•+•,令y′=0,解得x=,∴x=时,函数y取得最大值为y max=,的最大值为.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),以O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为(ρ∈R).(Ⅰ)求曲线C的极坐标方程;(Ⅱ)设直线l与曲线C相交于A,B两点,求|AB|的值.【解答】解:(Ⅰ)∵曲线C的参数方程为(a为参数),消去参数α得x2+y2=16,∴曲线极坐标方程为ρ2=16,即ρ=4.…(5分)(Ⅱ)∵直线l的极坐标方程为(ρ∈R),∴直线l的直角坐标方程为y=x,联立,得或,∴|AB|==8.…(10分)18.(12分)已知函数f(x)=|x﹣a|+a.(1)若不等式f(x)≤2的解集为{x|1≤x≤2},求实数a的值;(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,求实数m 的取值范围.【解答】解:(1)|x﹣a|+a≤2,2a﹣2≤x≤2,即得2a﹣2=1,得.(2)∵f(n)≤m﹣f(﹣n),∴m≥f(n)+f(﹣n)=.∵,且存在实数n使f(n)≤m﹣f(﹣n),∴m≥6.19.(12分)已知函数f(x)=在x=﹣2处有极值.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)在区间[﹣3,3]上有且仅有一个零点,求b的取值范围.【解答】解:(Ⅰ)f′(x)=x2﹣2ax由题意知:f′(﹣2)=4+4a=0,得a=﹣1,∴f′(x)=x2+2x,令f′(x)>0,得x<﹣2或x>0,令f′(x)<0,得﹣2<x<0,∴f(x)的单调递增区间是(﹣∞,﹣2)和(0,+∞),单调递减区间是(﹣2,0).(Ⅱ)由(Ⅰ)知,f(x)=,f(﹣2)=为函数f(x)极大值,f(0)=b为极小值.∵函数f(x)在区间[﹣3,3]上有且仅有一个零点,∴或或或或,即,∴,即b 的取值范围是.20.(12分)已知数列{a n }的前n 项和S n 满足:S n =+﹣1,且a n >0,n ∈N*.(Ⅰ)求a 1,a 2,a 3;(Ⅱ)猜想{a n }的通项公式,并用数学归纳法证明. 【解答】解:(Ⅰ)a 1=S 1=+﹣1,所以a 1=﹣1±;又因为a n >0,所以a 1=﹣1+;,所以a 2=﹣;,所以a 3=﹣;(Ⅱ)由(Ⅰ)猜想a n =﹣,n ∈N +.下面用数学归纳法加以证明:①当n=1时,由(1)知a 1=﹣1+成立;②假设n=k (k ∈N +)时,成立.当n=k +1时,=+﹣﹣=+﹣所以a k +12+2a k +1﹣2=0,解得a k +1=﹣,即当n=k +1时猜想也成立.综上可知,猜想对一切n ∈N +都成立.21.(12分)设顶点在原点,焦点在x 轴上的拋物线过点P (1,2),过P 作抛物线的动弦PA,PB,并设它们的斜率分别为k PA,k PB.(Ⅰ)求拋物线的方程;(Ⅱ)若k PA+k PB=0,求证:直线AB的斜率为定值,并求出其值;(III)若k PA k PB=1,求证:直线AB恒过定点,并求出其坐标.【解答】解:(Ⅰ)依题意,可设所求拋物线的方程为y2=2px(p>0),因拋物线过点P(1,2),故22=2p,p=2,拋物线的方程为y2=4x.…(2分)(Ⅱ)设A(x1,y1),B(x2,y2),则,同理,∵k PA+k PB=0,∴,∴y1+2=﹣y2﹣2,y1+y2=﹣4.∴,即直线AB的斜率恒为定值,且值为﹣1.…(7分)(III)∵k PA k PB=1,∴,∴y1y2+2(y1+y2)﹣12=0.直线AB的方程为,即(y1+y2)y﹣y1y2=4x.将﹣y1y2=2(y1+y2)﹣12代入上式得(y1+y2)(y+2)=4(x+3)即为直线AB的方程,所以直线AB恒过定点(﹣3,﹣2),命题得证.…(12分)22.(12分)已知函数(a∈R)在其定义域内有两个不同的极值点.(Ⅰ)求实数a的取值范围;(Ⅱ)记两个极值点分别为x1,x2(x1<x2),求证:.【解答】解:(Ⅰ)依题,函数f(x)的定义域为(0,+∞),所以方程f′(0)=0在(0,+∞),有两个不同根,即方程lnx﹣ax=0在(0,+∞),有两个不同根.转化为:函数y=lnx与函数y=ax的图象在(0,+∞),上有两个不同交点,可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),所以k=,又k=,所以,解得,x0=e,于是k=,所以0<a<.…(4分)(Ⅱ)由(Ⅰ)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2,作差得,,即.所以不等式,等价于,…(8分)下面先证,即证,令,∵0<x1<x2,∴t>1,即证(t>1),令(t>1),则,∴在(1,+∞)上单调递增,∴g(t)>g(1)=0,即得证,从而得证;…(10分)再证,即证,即证lnt<t﹣1(t>1),令h(t)=lnt﹣t+1(t>1),则,∴h(t)=lnt﹣t+1在(1,+∞)上单调递减,∴h(t)<h(1)=0,即lnt<t﹣1得证,从而得证,综上所述,成立,即.…(12分)。

相关文档
最新文档