历年全国卷高考数学真题大全解析版

合集下载

高考数学历年真题及答案详解

高考数学历年真题及答案详解

高考数学历年真题及答案详解一、选择题1. 题目描述:在平面直角坐标系中,点A(-3, 4)关于y轴的对称点是()。

A. (3, -4)B. (-3, -4)C. (-3, 4)D. (3, 4)答案解析:点关于y轴对称即x取相反数,所以答案为A.(3, -4)。

2. 题目描述:已知函数 f(x) = 2^(2x-3),则当 x = 1 时,f(x) 的值是()。

A. 1B. 2C. 4D. 8答案解析:将x=1代入函数中,即f(1) = 2^(2*1-3),化简得f(1)= 2^(-1) = 1/2,所以答案为A. 1。

二、填空题1. 题目描述:已知三角形ABC中,∠B = 90°,AC = 5 cm,BC =12 cm,求AB的长度。

答案解析:根据勾股定理,AB^2 + BC^2 = AC^2,代入已知数据得AB^2 + 12^2 = 5^2,化简得AB^2 = 25 - 144 = -119,由于长度不能为负数,所以不存在满足要求的三角形ABC。

2. 题目描述:若a1, a2, a3为等差数列的前三项,且满足a1 + a3 = 18,a2 - a3 = 4,求a1, a2和a3的值。

答案解析:由等差数列的性质可知,a2 = (a1 + a3) / 2,代入已知数据得a2 = 9.5,将a2带入a2 - a3 = 4解得a3 = 5.5,再将a3带入a1 +a3 = 18解得a1 = 12.5,所以a1 = 12.5,a2 = 9.5,a3 = 5.5。

三、解答题1. 题目描述:设函数f(x) = cos(x + 1) - sin(x - 1),求f(x)的单调递增区间。

答案解析:对f(x)求导得f'(x) = -sin(x + 1) - cos(x - 1),令f'(x) = 0,解方程得x = 1/4 (4πn + 3π/2) - 1,其中n为整数。

通过二阶导数的符号判断可知,当x < -1或x > -3/4 + 4πn,f(x)单调递增;当-3/4 + 4πn < x< -1,f(x)单调递减。

全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)——集合专题(附解析)

全国高考数学真题分类汇编(2013-2022)集合专题(附解析)一、选择题1.【2022年全国甲卷理科·第3题】设全集{2,1,0,1,2,3}U =--,集合{}2{1,2},430A B x x x =-=-+=∣,则()U A B ⋃=ð()A.{1,3}B.{0,3}C.{2,1}-D.{2,0}-【答案】D 解析:由题意,{}{}2=4301,3B x x x -+==,所以{}1,1,2,3A B ⋃=-,所以(){}U 2,0A B ⋃=-ð.故选:D.2.【2022年全国乙卷理科·第1题】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈B.3M ∈C.4M ∉D.5M∉【答案】A 解析:由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误3.【2022新高考全国II 卷·第1题】已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B = ()A.{1,2}-B.{1,2}C.{1,4}D.{1,4}-【答案】B 解析:{}|02B x x =≤≤,故{}1,2A B = .故选B.4.【2022新高考全国I 卷·第1题】若集合{4},{31}M x N x x =<=≥∣,则M N = ()A.{}02x x ≤<B.123x x ⎧⎫≤<⎨⎬⎩⎭C.{}316x x ≤<D.1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D 解析:1{16},{}3M x x N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭ ,故选:D5.【2021年新高考全国Ⅱ卷·第2题】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A.{3}B.{1,6}C.{5,6}D.{1,3}【答案】B 解析:由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选B.6.【2021年新高考Ⅰ卷·第1题】设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2B.{}2,3C.{}3,4D.{}2,3,4【答案】B 解析:由题设有{}2,3A B ⋂=,故选B.7.【2020年新高考I 卷(山东卷)·第1题】设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =()A.{x |2<x ≤3}B.{x |2≤x ≤3}C.{x |1≤x <4}D.{x |1<x <4}【答案】C 解析:[1,3](2,4)[1,4)A B ==U U 故选:C8.【2020新高考II 卷(海南卷)·第1题】设集合A={2,3,5,7},B ={1,2,3,5,8},则A B =()A.{1,3,5,7}B.{2,3}C.{2,3,5}D.{1,2,3,5,7,8}【答案】C 解析:因为{2,3,5,7},{1,2,3,5,8}A B ==,所以{2,3,5}A B = ,故选:C9.【2021年高考全国乙卷理科·第2题】已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A.∅B.S C.T D.Z 【答案】C 解析:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C.10.【2021年高考全国甲卷理科·第1题】设集合{}104,53M x x N x x ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A.103x x ⎧⎫<≤⎨⎬⎩⎭B.143x x ⎧⎫≤<⎨⎬⎩⎭C.{}45x x ≤<D.{}05x x <≤【答案】B 解析:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B.11.【2020年高考数学课标Ⅰ卷理科·第2题】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A.–4B.–2C.2D.4【答案】B 解析:求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选:B.12.【2020年高考数学课标Ⅱ卷理科·第1题】已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 解析:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A .13.【2020年高考数学课标Ⅲ卷理科·第1题】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A.2B.3C.4D.6【答案】C 解析:由题意,A B 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C.14.【2019年高考数学课标Ⅲ卷理科·第1题】已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B = ()A.{}1,0,1-B.{}0,1C.{}1,1-D.{}0,1,2【答案】A 解析:因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A.15.【2019年高考数学课标全国Ⅱ卷理科·第1题】设集合{}2560A x x x =-+>,{}10B x x =-<,则A B = ()A.(),1-∞B.()2,1-C.()3,1--D.()3,+∞【答案】A 解析:{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A.16.【2019年高考数学课标全国Ⅰ卷理科·第1题】已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N = ().{|43}A x x -<<.{|42}B x x -<<-.{|22}C x x -<<.{|23}D x x <<【答案】C 解析:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< 故选C.17.【2018年高考数学课标Ⅲ卷(理)·第1题】已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ()A.{}0B.{}1C.{}1,2D.{}0,1,2【答案】C 解析:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C.18.【2018年高考数学课标Ⅱ卷(理)·第2题】已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A.9B.8C.5D.4【答案】A 解析:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y x y x y =+∈∈=-------Z Z ,≤,,,故选A.19.【2018年高考数学课标卷Ⅰ(理)·第2题】己知集合{}220A x x x =-->,则R A =ð()A.{}12x x -<<B.{}12x x -≤≤C.{}{}12x x x x <-> D.{}{}12x x x x ≤-≥ 【答案】B 解析:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B.20.【2017年高考数学新课标Ⅰ卷理科·第1题】已知集合{}|1A x x =<,{}|31x B x =<,则()A.{|0}A B x x =< B.A B =R C.{|1}A B x x => D.A B =∅ 【答案】A 解析:由31x <得033x <,所以0x <,故{|1}{|0}{|0}A B x x x x x x ⋂=<⋂<=<,故选A.21.【2017年高考数学课标Ⅲ卷理科·第1题】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为().A.3B.2C.1D.0【答案】B 解析:法1:集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有点组成的集合,联立圆与直线的方程,可得圆221x y +=与直线y x =相交于两点,22⎛⎫ ⎪ ⎪⎝⎭,,22⎛⎫- ⎪ ⎪⎝⎭,所以A B 中有两个元素.法2:结合图形,易知交点个数为2,即A B 的元素个数为2.故选B22.【2017年高考数学课标Ⅱ卷理科·第2题】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A.{}1,3-B.{}1,0C.{}1,3D.{}1,5【答案】C 解析:法1:常规解法∵{}1A B = ∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=故{}1,3B =法2:韦达定理法∵{}1A B = ∴1是方程240x x m -+=的一个根,∴利用伟大定理可知:114x +=,解得:13x =,故{}1,3B =法3:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴124x x +=,从四个选项A﹑B﹑C﹑D 看只有C 选项满足题意.23.【2016高考数学课标Ⅲ卷理科·第1题】设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T = ()A.[]2,3B.(][),23,-∞+∞ C.[)3,+∞D.(][)0,23,+∞ 【答案】D 解析:由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{}23S x x x =或≤≥,所以{}023S T x x x =< 或≤≥,故选D.24.【2016高考数学课标Ⅱ卷理科·第2题】已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()A.{1}B.{12},C.{0123},,,D.{10123}-,,,,【答案】C 解析:{|(1)(2)0,}={0,1}B x x x x Z =+-<∈,又{1,}A =2,3,所以{0,1,2,3}A B =,故选C.25.【2016高考数学课标Ⅰ卷理科·第1题】设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B = ()(A)3(3,)2--(B)3(3,2-(C)3(1,)2(D)3(,3)2【答案】D 解析:{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎩⎭.故332A B x x ⎧⎫=<<⎨⎬⎩⎭.故选D.26.【2015高考数学新课标2理科·第1题】已知集合21,0,1,2A =--{,},{}(1)(20B x x x =-+<,则A B = ()A.{}1,0A =-B.{}0,1C.{}1,0,1-D.{}0,1,2【答案】A 解析:由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A.27.【2014高考数学课标2理科·第1题】设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N = ()A.{1}B.{2}C.{0,1}D.{1,2}【答案】D 解析:因为N ={x|1x 2}≤≤,所以M N={12},⋂,故选D.28.【2014高考数学课标1理科·第1题】已知集合A={x |2230x x --≥},B={}22x x -≤<,则A B ⋂=()A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)【答案】A 解析:∵A={x |2230x x --≥}={}13x x x ≤-≥或,B={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A.29.【2013高考数学新课标2理科·第1题】已知集合=2{|(1)4,},N {1,0,1,2,3}M x x x R -<∈=-,则M N ⋂=()A.{0,1,2}B.{1,0,1,2}-C.{1,0,2,3}-D.{0,1,2,3}【答案】A 解析:化简集合M 得{|13,}M x x x R =-<<∈,则{0,1,2}M N ⋂=.30.【2013高考数学新课标1理科·第1题】已知集合A=2{|20}x x x ->,B={|x x <<,则()A.A B =∅ B.A B R = C.B A⊆D.A B ⊆【答案】D 解析:(,0)(2,),A A B R =-∞+∞∴= ,故选B.。

集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)

 集合-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(解析版)
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考全国Ⅱ卷·第2题
6.(2021年新高考Ⅰ卷·第1题)设集合 , ,则 ()
A. B. C. D.
【答案】B
解析:由题设有 ,故选B.
【题目栏目】集合\集合的基本运算
【题目来源】2021年新高考Ⅰ卷·第1题
7.(2020年新高考I卷(山东卷)·第1题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()
【解析】 或 , ,
故 ,故选A.
【点评】本题主要考查一元二次不等式,一元二次不等式的解法,集合的运算,属于基础题.
本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
【题目栏目】集合\集合的基本运算
【题目来源】2019年高考数学课标全国Ⅱ卷理科·第1题
【题目栏目】集合\集合的基本运算
【题目来源】2021年高考全国甲卷理科·第1题
11.(2020年高考数学课标Ⅰ卷理科·第2题)设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()
A.–4B.–2C.2D.4
【答案】B
【解析】求解二次不等式 可得: ,
求解一次不等式 可得: .
A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}
【答案】A
解析:由题意可得: ,则 .
故选:A
【点睛】本题主要考查并集、补集的定义与应用,属于基础题.
【题目栏目】集合\集合的基本运算
【题目来源】2020年高考数学课标Ⅱ卷理科·第1题
13.(2020年高考数学课标Ⅲ卷理科·第1题)已知集合 , ,则 中元素的个数为()

十年高考(2012-2021)高考数学真题详解集合篇

十年高考(2012-2021)高考数学真题详解集合篇

T 专题01 集合【2021 年】1.(2021 年全国高考乙卷数学(文)试题)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则U(M ⋃N ) =()A.{5} B.{1, 2} C.{3, 4} D.{1, 2,3, 4}【答案】A 由题意可得:M N ={1, 2,3, 4},则U (M U N )={5}.故选:A.2.(2021 年全国高考乙卷数学(理)试题)已知集合S={s s=2n+1,n∈Z},T={t t=4n+1,n∈Z},则S ()A.∅B.S C.T D.Z【答案】C【分析】任取t ∈T ,则t = 4n +1 = 2⋅(2n)+1,其中n ∈Z ,所以,t ∈S ,故T ⊆S ,因此,S I T =T .故选:C.3.(2021 年全国高考甲卷数学(文)试题)设集合M={1,3,5,7,9},N={x2x>7},则M I N =()A.{7,9} B.{5, 7,9} C.{3,5, 7,9} D.{1,3,5, 7,9}【答案】B【分析】N =⎛7, +∞⎫,故M ⋂N ={5, 7,9},2 ⎪⎝⎭故选:B.(2021 年全国高考甲卷数学(理)试题)设集合M ={x 0 <x < 4}, N =⎧ 1x ≤ 5⎫,则M I N =()⎬A.⎧x 0 <x ≤1 ⎫⎭B.⎧x1≤x < 4⎫⎨3⎬⎨3⎬⎩⎭C.{x 4 ≤x < 5}⎩⎭D.{x 0 <x ≤ 5}【答案】B【分析】因为 M ={x | 0 <x < 4}, N ={x | 1≤x ≤ 5} ,所以 M ⋂N =⎧x|1≤x < 4⎫, 3⎨3⎬⎩⎭故选:B.5.(2021 年全国新高考Ⅰ卷数学试题)设集合A={x-2<x<4},B={2,3,4,5},则AIB =()A.{2} B.{2,3} C.{3, 4} D.{2,3, 4}【答案】B【分析】由题设有A ⋂B ={2,3},故选:B .【2012 年——2020 年】1.(2020 年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合A={x|x2-3x-4<0},B={-4,1,3,5},则A IB =()A.{-4,1} B.{1,5}C.{3,5} D.{1,3}【答案】D【分析】由x2 -3x - 4 < 0 解得-1 <x < 4 ,所以A ={x | -1 <x < 4},又因为B ={-4,1,3,5},所以A I B ={1,3},故选:D.2.(2020 年全国统一高考数学试卷(理科)(新课标Ⅰ))设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4 B.–2 C.2 D.4【答案】B【分析】求解二次不等式x2 - 4 ≤ 0 可得:A ={x | -2 ≤x ≤ 2},求解一次不等式2x + a ≤ 0 可得: B = ⎧x | x ≤ -a ⎫ . ⎨ 2 ⎬ ⎩⎭由于 A ⋂ B ={x | -2 ≤ x ≤1} ,故: - a= 1,解得: a = -2 . 2故选:B.3.(2020 年全国统一高考数学试卷(文科)(新课标Ⅱ))已知集合 A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则 A ∩B =( )A . ∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}【答案】D因为 A = {x x < 3, x ∈ Z} = {-2, -1, 0,1, 2} ,B = {x x > 1, x ∈ Z} = {x x > 1或 x < -1, x ∈ Z },所以 AI B ={2, -2}.故选:D.4.(2020 年全国统一高考数学试卷(理科)(新课标Ⅱ))已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则 = ()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A【分析】由题意可得: A ⋃ B ={-1, 0,1, 2},则U ( A U B ) ={-2,3} .故选:A.5.(2020 年全国统一高考数学试卷(文科)(新课标Ⅲ))已知集合A = {1,2,3,5,7,11} ,B = {x | 3 < x < 15} ,则 A ∩B 中元素的个数为()A .2B .3C .4D .5【答案】B【分析】由题意, A⋂ B = {5,7,11},故 A IB 中元素的个数为 3.故选:B6.(2020 年全国统一高考数学试卷(理科)(新课标Ⅲ))已知集合 A ={(x , y ) | x , y ∈ N * , y ≥ x },U ( A ⋃ B )⎩ B = {(x , y ) | x + y = 8},则 A I B 中元素的个数为()A .2B .3C .4D .6【答案】C【分析】由题意, A I B 中的元素满足⎧y ≥ x,且 x , y ∈ N * ,由 x + y = 8 ≥ 2x ,得 x ≤ 4 ,⎨x + y = 8所以满足 x + y = 8 的有(1,7),(2,6),(3,5),(4,4) ,故 A I B 中元素的个数为 4.故选:C.7.(2019 年全国统一高考数学试卷(文科)(新课标Ⅰ))已知集合U = {1, 2,3, 4,5, 6, 7},A ={2,3, 4,5},B ={2,3, 6, 7} ,则 B I C U AA .{1, 6}B .{1, 7}C .{6, 7}D .{1, 6, 7}【答案】C【分析】由已知得C U A = {1, 6, 7},所以 B ⋂ C U A = {6, 7},故选 C . 8.(2019 年全国统一高考数学试卷(理科)(新课标Ⅰ))已知集合M = {x -4 < x < 2},N = {x x 2 - x - 6 < 0} ,则 M ⋂ N =A .{x -4 < x <3}B .{x -4 < x <-2}C .{x -2 < x < 2}D .{x 2 < x <3}【答案】C【分析】【详解】由题意得, M = {x -4 < x < 2}, N = {x -2 < x < 3} ,则M ⋂ N = {x -2 < x < 2}.故选 C .9.(2019 年全国统一高考数学试卷(文科)(新课标Ⅱ))已知集合 A ={x | x > -1},B ={x | x < 2},则 A ∩B = A .(–1,+∞) B .(–∞,2) C .(–1,2) D . ∅【答案】C【分析】本题借助于数轴,根据交集的定义可得.【详解】R A =由题知,A I B = (-1, 2) ,故选C.10.(2019 年全国统一高考数学试卷(理科)(新课标Ⅱ))设集合A={x|x2-5x+6>0},B={ x|x-1<0},则A∩B= A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)【答案】A【分析】由题意得, A ={x x2或x3}, B ={x x < 1},则A ⋂B ={x x < 1}.故选A.11.(2019 年全国统一高考数学试卷(文科)(新课标Ⅲ))已知集合A={-1,0,1,2},B={x x2 ≤1},则A I B =A.{-1, 0,1} B.{0,1} C.{-1,1} D.{0,1, 2}【答案】A【分析】Q x2 ≤ 1,∴-1 ≤x ≤ 1,∴B ={x -1 ≤x ≤1},则A I B ={-1, 0,1},故选A.12.(2018 年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知集合A={0,2},B={-2,-1,0,1,2},则A I B=A.{0,2} B.{1,2} C.{0} D.{-2,-1,0,1,2}【答案】A【分析】详解:根据集合交集中元素的特征,可以求得A B ={0, 2},故选A.13.(2018 年全国普通高等学校招生统一考试理科数学(新课标I 卷))已知集合A={x x2 -x-2>0},则A.{x -1 <x < 2} C.{x |x <-1}⋃{x x 2} B.{x -1 ≤x ≤ 2} D.{x | x ≤-1}⋃{x | x ≥ 2}【答案】B【详解】:解不等式x2 -x - 2 > 0 得x <-1或x > 2 ,所以A ={x | x <-1或x > 2},所以可以求得C R A ={x | -1≤x ≤ 2},故选B.14.(2018 年全国普通高等学校招生统一考试文数(全国卷II))已知集合A={1,3,5,7},B={2,3,4,5},则 A I B =A.{3} B.{5} C.{3, 5} D.{1, 2,3, 4,5,7}【答案】C【详解】详解:Q A ={1,3,5,7}, B ={2,3, 4,5},∴A⋂B ={3,5},故选C15.(2018 年全国卷Ⅲ文数高考试题)已知集合A={x|x-1≥0},B={0,1,2},则A I B=A.{0} B.{1} C.{1, 2} D.{0,1, 2}【答案】C【分析】:由集合 A 得x ≥1,所以A ⋂B ={1, 2}故答案选C.16.(2018 年全国普通高等学校招生统一考试理数(全国卷II))已知集合A={(x,y)x2 +y2 ≤3,x∈Z,y∈Z},则A 中元素的个数为()A.9 B.8 C.5 D.4【答案】A【分析】Q x2 +y2 ≤ 3∴x2≤3,Q x∈Z∴x=-1,0,1当x =-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x = 1 时,y =-1,0,1;所以共有9 个,故选:A.17.(2018 年全国卷Ⅲ理数高考试题)已知集合A={x|x-1≥0},B={0,1,2},则A I B=A.{0} B.{1} C.{1,2} D.{0,1,2}【答案】C【解析】详解:由集合A 得x ≥1,所以A ⋂B ={1, 2}故答案选 C.(2017 年全国普通高等学校招生统一考试文科数学(新课标1 卷))已知集合A= {x|x<2},B= {x|3-2x>0},则A .A IB = ⎧x |x < 3 ⎫B .A I B =∅⎨ 2 ⎬⎩ ⎭ C .A U B = ⎧x |x < 3 ⎫D .A U B=R⎨ 2 ⎬⎩⎭ 【答案】A【详解】由3 - 2x > 0 得 x < 3 ,所以 A I 2 B ={x | x < 2}I {x | x < 3} ={x | x < 3},选 A .2 219.(2017 年全国普通高等学校招生统一考试理科数学(新课标 1 卷))已知集合A ={x |x <1},B ={x | 3x < 1},则A. A IB ={x | x < 0}B. A U B = RC. A U B ={x | x >1}D. A I B =∅【答案】A【解析】∵集合 B ={x | 3x< 1}∴ B = {x x < 0}∵集合 A ={x | x <1}∴ A ⋂ B = {x x < 0} , A ⋃ B ={x | x <1} 故选A20.(2017 年全国普通高等学校招生统一考试文科数学(新课标 2 卷))设集合A ={1, 2,3},B ={2,3, 4},则 A U B = A .{1,2,3, 4} B .{1,2,3} C .{2,3,4} D .{1,3,4}【答案】A【详解】由题意 A ⋃ B = {1,2,3,4},故选 A.21.(2017 年全国普通高等学校招生统一考试理科数学(新课标 2 卷))设集合 A = {1, 2, 4}, B ={x x 2 - 4x + m = 0}.若 A ⋂ B = {1},则 B =( )A .{1, -3}B .{1, 0}C .{1, 3}D .{1, 5}【答案】C【详解】∵ 集合 A = {1,2,4}, B = {x | x 2 - 4x + m = 0}, A IB = {1}∴ x = 1 是方程 x 2 - 4x + m = 0 的解,即1- 4 + m = 0 ∴ m = 3∴B = {x | x 2- 4x + m = 0} = {x | x 2- 4x + 3 = 0}= {1,3},故选 C2 2 2 2 3, ) 22.(2017 年全国普通高等学校招生统一考试文科数学(新课标3 卷))已知集合 A={1,2,3,4},B={2,4,6,8},则 A I B 中元素的个数为 A .1B .2C .3D .4【答案】B【详解】由题意可得 A IB ={2, 4},故 A IB 中元素的个数为 2,所以选 B. 23.(2017 年全国普通高等学校招生统一考试文科数学)已知集合A = {(x , y ) x 2 + y 2= 1}, B = {(x , y ) y = x } ,则 A IB 中元素的个数为( )A .3B .2C .1D .0【答案】B【解析】试题分析:集合中的元素为点集,由题意,可知集合 A 表示以(0, 0)为圆心,1为半径的单位圆上所有点组成的集合,集合 B 表示直线 y = x 上所有的点组成的集合,又圆x 2 + y 2 = 1 与直线 y = x⎛ ⎫ ⎛ 相交于两点, , - , - ⎫ ,则 A I B 中有 2 个元素.故选 B. 2 2 ⎪ 2 2 ⎪ ⎝ ⎭ ⎝ ⎭24.(2016 年全国普通高等学校招生统一考试文科数学)设集合 A = {1,3,5, 7} , B ={x | 2 ≤ x ≤ 5},则 A ⋂ B =A .{1,3}B .{3,5}C .{5,7}D .{1,7}【答案】B【解析】试题分析:集合 与集合 的公共元素有3,5,故,故选B.25.(2016 年全国普通高等学校招生统一考试文科数学)设集合 A ={x | x 2 - 4x + 3 < 0},B ={x | 2x -3 > 0},则 A I B =A . (-3, - 3) 2B . (- 32 3. (1, )2 3 . ( , 3)2【答案】D【详解】:集合A = {x | ( x -1)( x - 3) < 0}= {x |1 < x < 3},集合 ,所以C DA BA ⋂B =⎧x |3<x <⎫,故选D.⎨2 3⎬⎩⎭.2016 年全国普通高等学校招生统一考试文科数学(新课标2 卷)已知集合A={1,2,3},B ={x | x2 < 9},则A⋂B =A.{-2, -1,0,1, 2,3} B.{-2, -1,0,1, 2}C.{1,2,3} D.{1, 2}【答案】D【解析】试题分析:由x2< 9 得-3<x<3,所以B={x|-3<x<3},因为A={1,2,3},所以A⋂B={1,2},故选D.27.(2016 年全国普通高等学校招生统一考试文科数学)已知集合A={1,2,3},B ={x | (x +1)(x - 2) < 0, x ∈Z},则 A⋃B =A.{1}B.{1,2} C.{0,1,2,3}D.{-1,0,1,2,3}【答案】C【详解】试题分析:集合B ={x | -1 <x < 2, x ∈Z} ={0,1},而A ={1, 2,3},所以A⋃B ={0,1, 2,3},故选C.(2016 年全国普通高等学校招生统一考试文科数学(新课标3 卷))设集合A={0,2,4,6,8,10},B={4,8},则=A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}【答案】C【详解】试题分析:由补集的概念,得A B ={0, 2, 6,10},故选C.29.(2016 年全国普通高等学校招生统一考试理科数学(新课标3))设集合S ={x|(x - 2)(x -3) ≥ 0},T ={x|x > 0} ,则S ⋂T=A.[2,3] B.(−∞,2] ⋃[3,+ ∞)C.[3,+ ∞)D.(0,2] ⋃[3,+ ∞)【答案】D【详解】:由(x - 2)(x -3) ≥ 0 解得x ≥ 3 或x ≤ 2 ,所以S ={x | x ≤ 2或x ≥ 3},所以S ⋂T ={x | 0 <x ≤ 2或x ≥ 3},故选D.30.(2015 年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合A ={x | x = 3n + 2, n ∈N},B ={6,8,10,12,14},则集合A⋂B 中的元素个数为A.5 B.4 C.3 D.2【答案】D【详解】由已知得 A⋂B中的元素均为偶数,∴n应为取偶数,故 A⋂B ={8,14},故选D.31.(2015 年全国普通高等学校招生统一考试文科数学(新课标Ⅱ))已知集合A ={x | -1 <x < 2},B ={x | 0 <x < 3}, 则A U B =()A.(-1,3) B.(-1, 0) C.(0, 2) D.(2,3)【答案】A【详解】因为A ={x | -1<x < 2}, B ={x | 0 <x < 3},所以A U B={x | -1 <x < 3}. 故选A. 32.(2015 年全国普通高等学校招生统一考试理科数学(新课标Ⅱ))已知集合A={-2,-1,0,1,2},B ={x | (x -1)(x +2) <0},则A I B =()A.{-1, 0} B.{0,1} C.{-1, 0,1} D.{0,1, 2}【答案】A【详解】已知得B={x|-2<x<1},因为A={-2,-1,0,1,2},所以A⋂B={-1,0},故选A.33.(2014 年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))已知集合M ={x | -1<x < 3}, N ={x | -2 <x <1},则 M ⋂N =A. B. C. D.【答案】B【详解】试题分析:根据集合的运算法则可得:M ⋂N ={x | -1 <x < 1},即选B.34.(2014 年全国普通高等学校招生统一考试理科数学(新课标Ⅰ卷))已知集合,则A. B. C. D.【答案】A【详解】试题分析:由已知得,A ={x | x ≤-1或x ≥ 3},故A⋂B ={x | -2 ≤x ≤-1},选A.35.(2014 年全国普通高等学校招生统一考试文科数学(全国Ⅱ卷))设集合A ={-2, 0, 2},B ={x | x2 -x - 2 = 0} ,则 A⋂B =A.∅B. C.{0}【答案】B【详解】:由已知得,B={2,-1},故A⋂B={2},选B.D.{-2}36.(2013 年全国普通高等学校招生统一考试文科数学(新课标1 卷))已知集合A={1,2,3,4},B ={x | x =n2 , n ∈A} ,则A∩B=A.{1,4}B.{2,3}C.{9,16} D.{1,2}【答案】A【分析】依题意,,故A⋂B ={1, 4}.37.(2013 年全国普通高等学校招生统一考试理科数学(新课标1 卷)已知集合A={x|x2-2x>0},B={x|—5 <x<5 },则().A.A∩B=B.A∪B=R C.B ⊆A D.A ⊆B【答案】B【详解】依题意 A ={x | x 0或x2},又因为B={x|-5 <x<5 },由数轴可知A∪B=R,故选B.38.(2013 年全国普通高等学校招生统一考试文科数学)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0} D.{-3,-2,-1 }【答案】C【详解】因为集合M=,所以M∩N={0,-1,-2},故选C.39.(2013 年全国普通高等学校招生统一考试理科数学)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3}【答案】A【详解】:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选A40.(2012 年全国普通高等学校招生统一考试文科数学)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则A. B.C.A=B D.A∩B=Æ【答案】B【详解】集合,又,所以B 是A 的真子集,选B.41.(2012 年全国普通高等学校招生统一考试理科数学)已知集合A={1,2,3,4,5}, B ={(x, y) x ∈A, y ∈A, x -y ∈A},则B 中所含元素的个数为A.3 B.6 C.8 D.10【答案】D【详解】列举法得出集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含10 个元素.故答案选D .。

数学高考真题答案及解析版

数学高考真题答案及解析版

数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。

设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。

因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。

因此,选项A正确。

2. 根据题目,我们需要求解不等式。

首先,将不等式整理为标准形式:3x - 2 > 7。

解得x > 3,所以选项C是正确答案。

3. 题目涉及三角函数的图像和性质。

正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。

因此,选项B描述正确。

4. 这是一个关于复数的问题。

设复数z = a + bi,其中a和b是实数。

根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。

又因为z的实部为3,即a = 3。

代入模长公式,解得b = 4。

所以,复数z = 3 +4i,选项D正确。

5. 本题要求我们利用概率的基本原理计算事件的概率。

根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。

这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。

所以,P(A) = 3/8。

选项B是正确答案。

二、填空题1. 题目要求求解几何级数的和。

根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。

将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。

2. 本题考查圆的方程和直线与圆的位置关系。

设圆心为O(0,0),半径r = 3。

直线方程为y = x + 1。

圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。

因为 d < r,所以直线与圆相交。

根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。

三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。

历年高考数学真题(全国卷整理版)

历年高考数学真题(全国卷整理版)

参考公式:如果事件A 、B 互斥,则球的外表积公式如果事件A 、B 相互独立,则其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,则334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径普通高等学校招生全国统一考试一、选择题1、 复数131ii-++= A 2+I B 2-I C 1+2i D 1- 2i 2、集合A ={1.3. m },B ={1,m} ,AB =A, 则m=A 0或3B 0或3C 1或3D 1或3 3 椭圆的中心在原点,焦距为4 一条准线为*=-4 ,则该椭圆的方程为A 216x +212y =1B 212x +28y =1C 28x +24y =1D 212x +24y =1 4 正四棱柱ABCD- A 1B 1C 1D 1中,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2B 3C 2D 1〔5〕等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列的前100项和为(A)100101 (B) 99101 (C) 99100 (D) 101100〔6〕△ABC 中,AB 边的高为CD ,假设a ·b=0,|a|=1,|b|=2,则(A)〔B 〕 (C) (D)〔7〕α为第二象限角,sin α+sin β=33,则cos2α=(A)5-3〔B 〕5-9 (C)59 (D)53〔8〕F1、F2为双曲线C:*²-y²=2的左、右焦点,点P在C上,|PF1|=|2PF2|,则cos∠F1PF2=(A)14〔B〕35 (C)34 (D)45〔9〕*=lnπ,y=log52,12z=e,则(A)*<y<z 〔B〕z<*<y (C)z<y<* (D)y<z<*(10) 函数y=*²-3*+c的图像与*恰有两个公共点,则c=〔A〕-2或2 〔B〕-9或3 〔C〕-1或1 〔D〕-3或1〔11〕将字母a,a,b,b,c,c,排成三行两列,要求每行的字母互不一样,梅列的字母也互不一样,则不同的排列方法共有〔A〕12种〔B〕18种〔C〕24种〔D〕36种〔12〕正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73。

历年全国卷高考数学真题汇编(解析版)

历年全国卷高考数学真题汇编(解析版)

全国卷历年高考真题汇编三角1 (2017全国I卷9题)已知曲线G : y cosx , C2: y sin2 n2x —,则下面结论正确的3是()A .把G上各点的横坐标伸长到原来的2倍, 纵坐标不变, 再把得到的曲线向右平移上个单6位长度,得到曲线C2B.把C上各点的横坐标伸长到原来的2倍, 纵坐标不变, 再把得到的曲线向左平移单位长度,得到曲线C2C.把C上各点的横坐标缩短到原来的纵坐标不变, 再把得到的曲线向右平移丄个单6位长度,得到曲线C2D .把G上各点的横坐标缩短到原来的2倍, 纵坐标不变, 再把得到的曲线向左平移单位长度,得到曲线C2【答案】D【解析】C1: y cosx , C2: y sin 2x首先曲线G、C2统一为一三角函数名,可将G:y cosx用诱导公式处理.y cosx cos xsinsin x .横坐标变换需将2 2 21C1上各点横坐标缩短它原来一2ynsin 2x —2注意根据1变成y sin 2x 8 sin23的系数,在右平移需将2提到括号外面,这时"左加右减”原则,“I卷17题)nsin 2 x —4亍平移至n ”到“ x字需加上,即再向左平移n122 (2017全国2的面积为—3sin A(1 )求sin Bsin C ;(2 )若6cos B cosC 1 ,△ABC的内角A , B , C的对边分别为a, b , c,已知△ABC a 3,求△ABC的周长.【解析】本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应用(1) •/ △ ABC 面积S2a3sinA.且S ^bcsinA2^bcsin A 3sin A 2严2 A23 2••由正弦定理得 sin A —sin BsinCsin A ,2 2由 sin A 0 得 si n Bsi nC— 2,cosB cosC3•/ ABC n又A 0, n2, a.bc l sin A 由①②得b c——.a b c ———,即△ ABC 周长为———3. (2017 •新课标全国n 卷理 17)17. (12分)2 BABC 的内角A,B,C 的对边分别为a,b,c ,已知sin (A C ) 8si n 2—.2(1)求 cosB⑵若a c 6 , ABC 面积为2,求b.【命题意图】本题考查三角恒等变形,解三角形.【试题分析】在第(I )中,利用三角形内角和定理可知A C B ,将2B 2 Bsin (A C ) 8sin —转化为角B 的方程,思维方向有两个:①利用降幕公式化简 sin 2—,2 222Q B结合sin B cos B 1求出cosB ;②利用二倍角公式,化简 sinB 8sin 2 ,两边约去2B Bsin ,求得tan,进而求得cosB .在第(n )中,利用(I )中结论,禾U 用勾股定理和22面积公式求出a c 、ac ,从而求出b . (I )【基本解法1】(2)由(1)得 sin Bsin C cos A cos n B Ccos B C sin BsinC cosBcosC二 A 60 , sin A由余弦定理得 2 b 2 c 2cos A -2 bc由正弦定理得-sin B , sin Ac — sin C sin Asin BsinC 8、2 B由题设及A B C , si nB 8si n ,故20,si nB 4(1-cosB )上式两边平方,整理得217cos B-32cosB+15=0【基本解法2】由余弦定理及所以b=2【知识拓展】解三角形问题是高考高频考点,形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的 边角关系进行“边转角” “角转边”,另外要注意a c, ac,a 2 c 2三者的关系,这样的题目 小而活,备受老师和学生的欢迎. 4 (2017全国卷3理)17.( 12分)ABC 的内角A , B , C 的对边分别为a , b, c ,已知sin A 3cosA 0 , a 2 H , b 2 .(1) 求 c ;(2) 设D 为BC 边上一点,且 ADAC ,求△ ABD 的面积【解析】 (1)由 si nA3 cos An0 得 2sin A —0 ,3即Ank n k Z , 又A0, n ,3冗n ,得A2n二 A -33 •由余弦定理a 2 b 2 c 2 2bc cosA •又T a 2 7, b 2,cosA —代入并整理2/口2得 c 1 25,故 c 4 •解得cosB= 1 (舍去),cosB=^17由题设及ABC,sin B 8sin2-,所以 2B B 2 BB 2sin cos 8sin ,又 sin - 2 2 2 所以 tan B 1, cosB2 415(n)由 cosB=得 sin B174 + 2 B1 tan -_____ 2 + 2 B tan — 2—,故1715 17SABC1acsin B 24 ac 17又 S ABC =2, 则ac17 2.2 2 2b a c(a+c )2 : 2accosB36 22ac(1 口(12cosB)鸟17命题大多放在解答题的第一题, 主要利用三角(2) •/ AC 2,BC Z 7, AB 4 ,2 2 2由余弦定理cosC a b— ^7. 2ab 7 ••• AC AD ,即△ ACD 为直角三角形,cosC ,得 CD 7. 贝U AC CD由勾股定理AD 』CD | |AC73.n2 n n n 又 A ,贝V DAB -33 2 6 1n S A ABD AD AB sin §35 (2017全国卷文1) 14已知a10(法一) 0,2,tan又 sin 2 cos 21 ,辽 (cos sincos 42(cos2(法二) cos( 7)21sin coscos —4 2sin cos sin cos・2 2 sin cos 由 0,- 知 - __ — 2 4 4 【答案】 n (0,—),tana,=2U cos(-)=24sin22 sin 2coscos解得sin2、553 10)10 •sin ).又tan2tan22cos — tan1 5 4cos— 0,故 cos49 10, —3怖4 1056.( 2017全国卷2 文)3.函数f(x) A. 4 n B. 2 n C. n D. 【答案】C nsin (2x -)的最小正周期为3n2【解析】由题意T —2 【考点】正弦函数周期 ,故选C.【名师点睛】函数 y Asin ( x )B(A 0, 0)的性质(1)y max =A+B, y min A B .⑵周期Tn⑶由x — k M k Z)求对称轴2⑷由上2k n x n 2k^k Z) 求增区间;由2 2n 3 n-2k n x 2k n(k Z)求减区间;2 27 ( 2017 全国卷2 文)13.函数f(x) 2cosx sinx 的最大值为【答案】「5【解析】‘㈤乞Q+1 =/【考点】三角函数有界性【名师点睛】通过SB公式把三角函数化为—小i贰处+劝我的形式再借助三角函數團象研究性质,解题时注意观察角、函数名,结构等特征,一般可利用七如兀十处"•审后每求最值8 ( 2017全国卷2文)16. ABC的内角代B,C的对边分别为a,b,c ,若2bccosB acosC ccosA,贝U B【答案】—3【解析】由正弦定理可得2 sin^cos5 =5in. J:4CO5 C+ 5inCco5.4 = win(J. + C)=血占=ccs^ = —=>5 =—23[考点】正弦定理【宕师点睛】解三角形问題』多为边和角的求值问風遠就需要根抿正、余弦走理结合已知S件灵活转化边和角之间的关系,从而达到解决冋题的目的一其基本歩靈d第一步:定条件‘艮嚥定三角形中的已infMff求』在團形中标岀来,然后确主转化的方向第二宦走工具,即根揭臬件和所求合理选揺专化的工具,实S4边角之间的互亿第三步:求结果一9 (2017全国卷3文)4.已知Sin COS 43,则sin2=()7A.9C. D. 【答案】A【解析】気3“吐口W帥—町一'工-1 9本题选择A选顶10 (2017全国卷3文)6.函数f(x)=-sin( x+ )+cos( x-)的最大值为(5 3 6A. 65 B. 1 C.-5D.【答案】A【解析】由诱导公式可得: cos cos 一2sin小 1则:f x sin x —5 3 sin6 .Sin x5函数的最大值为65本题选择A选项•7•函数丫=1+*+里器的部分图像大致为(xh/丿-/ /■XA11F 1 ■十41\11 X\)【答案】D【解析】士= 1时,/(1)=1+1 + 511]1=2+3111>2, ®排除民G当工T+H时』PT1+•故科除昆满足条件的只有D故选D1、(2016全国I卷12题)已知函数f(x) sin( x+ )( 0, n,X P f(X)的n n 5 n零点,x 为y f (x)图像的对称轴,且f (x)在(一,二)单调,则的最大值为4 18 36(A) 11 ( B)9 ( C) 7 ( D) 5【答案】B【解析】JT TT JT T r趣另析;因为$为/XE的寧気。

以来历年全国高考数学试卷全试题标准答案解析

以来历年全国高考数学试卷全试题标准答案解析

1951年普通高等学校招生全国统一考试数学第一部分:1.设有方程组x+y=8,2x-y=7,求x ,y.解略:⎩⎨⎧==35y x2.若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形? 证:设△ABC 的重心与外接圆的圆心均为O (图1)∵OA=OC ,E 为AC 的中点,∴BE ⊥AC ;同理,CD ⊥AB ,AF ⊥BC 在Rt △ABE 与Rt △ACD 中,∠A 为公共角,BE=CD=R+21R=23R (R 为外接圆半径),所以△ABE ≌△ACD ,AB=AC ,同理可得AB=BC 由此可知△ABC 为等边三角形3.当太阳的仰角是600时,若旗杆影长为1丈,则旗杆长为若干丈? 解略:3丈0)()()(:)()(,)(,,:?,,,,.4=-+-+-=++-=-=-==-=-=-=++-=-=-t a c t c b t b a z y x t a c tz c b y t b a x t ac zc b y b a x z y x c b a a c zc b y b a x 由此可得则有设解则各不相等而若5.试题10道,选答8道,则选法有几种?解略:45810=c 6.若一点P 的极坐标是(r,θ),则它的直角坐标如何? 解:x=r θcos ,y=r θsin7.若方程x 2+2x+k=0的两根相等,则k=? 解:由Δ=b 2-4ac=0,得k=18.列举两种证明两个三角形相似的方法OABCEFD答:略9.当(x+1)(x-2)<0时,x 的值的范围如何? 解略:-1<x <210.若一直线通过原点且垂直于直线ax+by+c=0,求直线的方程解略:bx-ay=011.(x +x1)6展开式中的常数项如何? 解:由通项公式可求得是T 4=2012.02cos =θ的通解是什么? 解:).(4为整数k k π±π=θ13.系数是实数的一元三次方程,最少有几个根是实数,最多有几个根是实数?答:最少是一个,最多是三个14.解:原式=1003)5(4)2(4550554)5(55430)2(=⋅-⋅--⋅⋅-⋅⋅-⋅⋅-+⋅⋅+⋅⋅- 15.x 2-4y 2=1的渐近线的方程如何? 解略:02=±y x?345505542=--16.三平行平面与一直线交于A ,B ,C 三点,又与另一直线交于A ',B ',C '三点,已知AB=3,BC=7及A 'B '=9求A 'C '解:如图易证:3011=''∴''''==C A C A B A AC AB AC AB 17.有同底同高的圆柱及圆锥,已知圆柱的体积为18立方尺,求圆锥的体积略:6立方尺18.已知lg2=0.3010,求lg5. 略:lg5=1-lg2=0.699019.二抛物线y 2=12x 与2x 2=3y 的公共弦的长度是多少?解略:解方程组得两公共点为(0,0)及(3,6)故其公共弦长为:5320.国旗上的正五角星的每一个顶角是多少度? 解:由图可知:∠AFG=∠C+∠E=2∠C, ∠AGF=∠B+∠D=2∠B,∴∠A+∠AFG+∠AGF=∠A+2∠C+2∠B=5∠A ∴5∠A=1800,∴∠A=360 第二部分:A A ' αB B ' βB 1γ C C 'C 1FGAC EBD1.P ,Q ,R 顺次为△ABC 中BC ,CA ,AB 三边的中点,求证圆ABC 在A 点的切线与圆PQR 在P 点的切线平行证:如图:由AD 是大圆的切线, 可得: ∠1=∠2由RQ ∥BC ,可得:∠2=∠3, 由QP ∥AB ,可得:∠3=∠4由PE 是小圆的切线, 可得: ∠4=∠5由RP ∥AC ,可得:∠5=∠6综上可得:∠1=∠6,故AD ∥PE2.设△ABC 的三边BC=4pq,CA=3p 2+q 2,AB=3p 2+2pq-q 2,求∠B ,并证∠B 为∠A 及∠C 的等差中项解:由余弦定理可得:.C A B A,-B 60)180(60B 214)23(2)3()4()23(2cos 222222222222的等差中项与是∠∠∠∴∠∠=∠-︒=∠-∠-∠-︒=∠-∠︒=∠∴=⋅-+--+-+=⋅-+=A B B A B C pqq pq p q p pq q pq p BC AB CA BC AB B 3.(1)求证,若方程x 3+ax 2+bx+c=0的三根可排成等比数列, 则a 3c=b 3.证:设α,β,γ是方程x 3+ax 2+bx+c=0的三根,由根与系数关系可知:α+β+γ=-aαβ+βγ+γα=b αβγ=-c564321E QPRA BC又因α,β,γ排成等比数列,于是β2=αγ33333233a )()()(bc c a b ==αβγ-=β-=⎥⎦⎤⎢⎣⎡γ+β+αβγ+β+α-=⎥⎦⎤⎢⎣⎡γ+β+αβ+βγ+α-=⎥⎦⎤⎢⎣⎡γ+β+α-γα+βγ+αβ=⎪⎭⎫⎝⎛此即 (2)已知方程x 3+7x 2-21x-27=0的三根可以排成等比数列,求三根解:由⑴可知β3=-c ,∴β3=27,∴β=3代入α+β+γ=-7可得α+γ=-10,又由α,β,γ成等比数列,∴β2=αγ, 即αγ=9,故可得方程组:⎩⎨⎧--=γ--=α=αγ-=γ+α.91,19,910或或可得解之 于是,所求之三根为-9,3,-1或-1,3,-94.过抛物线顶点任做互相垂直的两弦,交此抛物线于两点,求证此两点联线的中点的轨迹仍为一抛物线证:设抛物线方程为y 2=2px ……………①过抛物线顶点O 任作互相垂直的二弦OA 和 OB ,设OA 的斜率为k ,则直线OB 的斜率为 -k 1,于是直线OA 的方程为: y =kx ………………………②直线OB 的方程为:x k y 1-=③ 设点A (x 1 ,y 1),点B(x 2 ,y 2)由①,②可得: .2,2121k p y k p x ==由①,③可得:YA·P (x,y)O XBx 2=2pk 2, y 2=-2pk设P (x ,y )为AB 的中点,由上可得: ④ ⑤ 由⑤可得: ⑥ 由④可知:px 2222k p kp +=,代入⑥,2p -px y 22222222222=-=-⎪⎪⎭⎫ ⎝⎛+=即p px p k p k p y 所以,点P 的轨迹为一抛物线1952年普通高等学校招生全国统一考试数学第一部分:1.因式分解x 4 – y 4 =?解:x 4 – y 4 =(x 2+y 2)(x+y)(x-y)2.若lg2x=21lgx ,问x=? 解:2x=x 21,x ≠0,∴202=X3.若方程x 3+bx 2+cx+d=0的三根为1,-1,21,则c=?解:由根与系数的关系可知:c=1·(-1)+(-1)·21+21·1=1pk kpy y y pk kp x x x -=+=+=+=222122212222222k p p kp y +-=4.若x x 求,0472=-+解:两边平方,得:x 2 +7=16,∴3±=x5.解:原式=-246.两个圆的半径都是4寸,并且一个圆过另一个圆的圆心,则此两圆的公共弦长是多少寸?解:设两圆O 1及O 2之公共弦为AB 连结O 1O 2交AB 于点C ,则AB垂直平分O 1O 2∴O 1C=21O 1O 2=2(寸)).(342),(3224222121寸寸==∴=-=-=AC AB C O AO AC连结AO 1,则△ACO 1为直角三角形, 7.三角形ABC 的面积是60平方寸,M 是AB 的中点,N 是AC 的中点,△AMN 的面积是多少? 解:∵MN ∥BC ,∴41ABC AMN 22==∆∆ANAM 的面积的面积, △AMN 的面积=41△ABC 的面积=15(平方寸)8.正十边形的一个内角是多少度? 解:由公式,)2(180nn -︒此处n=10于是一个内角为:︒144AO 1 O 2CB?123054321=9.祖冲之的圆周率π=? 答:22/7,355/13310.球的面积等于大圆面积的多少倍? 解:球的面积4πR 2为大圆面积πR 2的4倍11.直圆锥之底半径为3尺,斜高为5尺,则其体积为多少立方尺? 解:圆锥高h=4(尺),故此直圆锥的体积:V 锥 =31πR 2h=12π(立方尺) 12.正多面体有几种?其名称是什么?答:共有五种,其名称为:正四面体,正六面体,正八面体,正十二面体和正二十面体13.已知 sin θ=31,求cos2θ=? 解:cos2θ=1-2sin 2θ=97 14.方程tg2x=1的通解x=? 解:).(82为整数k k x π+π=15.太阳的仰角为300时,塔影长为5丈,求塔高是多少? 解:塔高=5×tg300=335(寸) 16.△ABC 的b 边为3寸,c 边为4寸,A 角为300,问△ABC 的面积为多少平方寸?解:).(330sin 4321sin 21平方寸的面积=︒⋅⋅⋅==∆A bc ABC17.已知一直线经过(2,3),其斜率为-1,则此直线方程如何? 解:即x+y –5=018.若原点在一圆上,而此圆的圆心为(3,4)则此圆的方程如何?解:圆的半径.54322=+=R所以,圆的方程为:(x-3)2+(y-4)2=25,也即:x 2+y 2-6x-8y=019.原点至3x+4y+1=0的距离是什么? 解:.51431040322=++⋅+⋅=d 20.抛物线y 2-8x+6y+17=0的顶点坐标是什么? 解:原方程可变形为:(y+3)2=8(x-1), 故顶点坐标为(1,-3)第二部分:1.解方程x 4+5x 3-7x 2-8x-12=0解:左式=(x 4+5x 3-6x 2)-(x 2+8x+12)=(x+6)[x 2(x-1)-(x+2)] =(x+6)(x 3-x 2-x-2) =(x+6)[(x 3-2x 2)+(x 2-x-2)] =(x+6)(x-2)(x 2+x+1)=0 可得原方程的四根为:.231,231,2,64321ix i x x x --=+-==-= 2.△ABC 中,∠A 外角的平分线与此三角形外接圆相交于P ,求证:BP=CP证:如图,∠CBP=∠CAP=∠PAD 又∠1=∠2由∠CAD=∠ACB+∠CBA=∠ACB+∠CBP+∠2=∠ACB+∠1+∠CBP =∠BCP+∠CBP∴∠BCP=∠CBP ,∴BP=CP 3.设三角形的边长为a =4,b=5,c=6,其对角依次为A ,B ,C 求A B C C sin ,sin ,sin ,cos .问A ,B ,C 三角为锐角或钝角? 解:应用余弦定理,可得: .812cos 222=-+=ab c b a C由此可知C 为锐角;另外,由已知条件,三边边长适合关系式a <b <c ,从而可知∠A <∠B <∠C 由于C 为锐角,故A ,B 亦为锐角.741c asinC sinA .7165sin sin ,.783)81(-1sinC cos -1sinC 22=======c C b B C 可得应用正弦定理可得由 4.一椭圆通过(2,3)及(-1,4)两点,中心为原点,长短轴重合于坐标轴,试求其长轴,短轴及焦点解:由于椭圆过(2,3)及(-1,4)两点,所以将此两点代入标准方程可得:C1P2D A B.75522,35522,355,755,1161194222222==∴==⎪⎩⎪⎨⎧=+=+a b b a b ab a 短轴长轴解之 .2155221220,22222==-=∴-=a b c a b c 又 ).21552,0(),21552,0(21F F -故焦点坐标为1954年普通高等学校招生全国统一考试数学1.甲、化简.])()()[(317212131223b ab b a --- 解:原式=.)()(32310231272321223a b a b b a b a ==--乙、解c b a x lg lg 2lg 31lg 61++= 解略:x=a 2b 12c 6.丙、用二项式定理计算(3.02)4,使误差小于千分之一.,,,001.0)1002()1002(34)1002(36100234310023)02.3(:43223444千分之一其误差必小于计算可到第三项为止所以可知第四项之值已小于解+⋅⋅+⋅⋅+⋅⋅+=⎪⎭⎫ ⎝⎛+=.182.830216.016.281)02.3(4=++=丁、试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和证:由c 2 =a 2+b 2∴弦上半圆的面积= 22222221221421221⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛b a b a c ππππ=勾上半圆的面积+股上半圆的面积戊、已知球的半径等于r ,试求内接正方形的体积解:内接正方体的中心即该球的球心正方体过中心的对角线为该球的直径,故其长为2r 若设内接正方体的边长为a ,则有3a 2=4r 2,.398332.332333r r a r a =⎪⎭⎫⎝⎛==∴=内接正方体的体积己、已知a 是三角形的一边,β及γ是这边的两邻角,试求另一边b 的计算公式解:由正弦定理可知.)sin(sin )](180sin[sin ,sin )](180sin[γββγβββγβ+=--︒=∴=--︒a a b b a2.描绘y=3x 2-7x-1的图象,并按下列条件分别求x 的值所在的范围: 1)y >0, 2)y <0).1261(31)67(:2+=-y x 将原方程变形可得解 ).1261,67(,-抛物线顶点为于是)0,6617(,)0,6617(:+-N M x 轴的交点为与).,6617(),6617,(,0+∞+--∞>的值所在范围为时当x y ).6617,6617(,0+-<的值所在范围为时当x y YM O N X)1261,67(-3.假设两圆互相外切,求证用连心线做直径的圆,必与前两圆的外公切线相切证:设⊙O 1及⊙O 2为互相外切之二圆,其一外公切线为A 1A 2,切点为A 1及A 2令点O 为连心线O 1O 2的中点,过O 作OA ⊥A 1A 2∵OA=21(O 1A 1+O 2A 2)=21O 1O 2,∴以O 1O 2为直径,即以O 为圆心,OA 为半径的圆必与直线A 1A 2相切同理可证,此圆必切于⊙O 1及⊙O 2的另一条外公切线4.试由.,2sin 111通值求的x x tgxtgx+=-+ )(0sin 4,1,0sin cos ,0sin )sin (cos 20)sin cos 1)(sin (cos )sin (cos sin cos sin cos :22222为整数或者即或者所以解k k x x k x tgx x x x x x x x x x x x x x x x π=∴=π-π=∴-==+=⋅+=+-++=-+由检验可知,均为其通解5.有一直圆锥,另外有一与它同底同高的直圆柱,假设a 是圆锥的全面积,a '是圆柱的全面积,试求圆锥的高与母线的比值解:设直圆锥的高为h ,底面半径为R ,母线长为L ,则,)(2)(2)(h R L R h R R L R R a a ++=++='ππ .2)2(),()(2,).()(222222222ah L a h L a a L h L a h h L a h L R L R a h R a -'=-'-+-'=+--=+'=+∴代入可得由A 2AA 1O 1 O O 2,.21)2(,2等式两边平方可得两边同除以L h a a L h a a L -'=⎪⎭⎫⎝⎛-'-.)2(4)2()2(22])2(4[2)2()2(44)48(2)2(164:,,0)2(16)4)(48(4)4(.0)4(4)48(,441)44(2222223322222222222222a a a a a a a a a a a a a a a a a a a a a a a a a a a a a L h a a a a a a a a a a a a Lha a a L h a a L h a a a a L h a L h a a a L h a a a a '-+'-'-±'='-+'-'-±'='+'-'-±'=∴>'-='+''+'--'-=∆='+'+'-⎪⎭⎫⎝⎛'+'-⎪⎭⎫⎝⎛+⋅'-'=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-'+'-母线的比此二实根即圆锥的高与实根该一元二次方程有二个式的一元二次方程的判别这个关于1958年普通高等学校招生全国统一考试数学1.甲、求二项式5)21(x +展开式中3x 的系数解:设求的项为.802,32)2(333354551x x C T r x C x C T r r r r r r ==∴===+今乙、求证.sin 88sin 4cos 2cos cos xxx x x =⋅⋅ 证:x x x 4cos 4sin 28sin =xx x x xx x 4cos 2cos cos sin 84cos 2cos 2sin 4=⌒ ⌒⌒ ⌒ ⌒ ⌒ .sin 88sin 4cos 2cos cos xxx x x =⋅⋅∴ 丙、设AB ,AC 为一个圆的两弦,D 为AB 的中点,E 为AC 的中点,作直线DE 交AB 于M ,交AC 于N ,求证:AM=AN证:联结AD 与AE (如图) ∵∠AMN=∠DAM+∠MDA , ∠ANM=∠EAN+∠NEA , 又∵AD=DB ,∠DAB=∠AED ,AE=EC ,∠ADE=∠EAC , ∴∠AMN=∠ANM , AM=AN.丁、求证正四面体ABCD 中相对的两棱(即异面的两棱)互相垂直证:因ABCD 是正四面体, 各个面都是等边三角形, 过A 作AE ⊥BC ,联结DE , 则DE ⊥BC , ∴BC 垂直平面AED , 而AD 在此平面内, ∴BC ⊥AD同理可证AB ⊥DC ,AC ⊥DB戊、求解.cos 3sin x x = 解:,cos 3sin x x =AD EM NBCDCA EB).(3,3为整数k k x tgx π+π==∴ 2.解方程组⎪⎪⎩⎪⎪⎨⎧=++=-+++)2(9122)1(4121 y y x y x y x v y x u yx y x y x =-+=+=-+++12,1,8)12()1()2(:设式变形为由解则原方程变形为⎩⎨⎧=+=+)4(8)3(422 v u v u 解方程组,可得.2,2==v u 将v u ,的值代回所设,可得⎪⎩⎪⎨⎧-==⎩⎨⎧====-==∴=--=--⎪⎩⎪⎨⎧=-+=+⎪⎩⎪⎨⎧=-+=+.21,6;1,3.6,3),5(.21,1,01,112)5()6()6(412)5(41,21221221121212y x y x x x y y y y y y y x y x y x y x 由检验可知代入即得得两边平方都是原方程组的解3.设有二同心圆,半径为R ,r(R>r ),今由圆心O 作半径交大圆于A ,交小圆于A ',由A 作直线AD 垂直大圆的直径BC ,并交BC 于D;由A '作直线A 'E 垂直AD ,并交AD 于E ,已知∠OAD= α,求OE 的长解:在直角△OAD 中, OD=Rsin α,AD=Rcos α 在直角△A 'AE 中, AE=(R-r )cos α ∴DE=AD-AE=Rcos α-(R-r )cos α=rcos α. OE=.cos sin 222222α+α=+r R DE OD4.已知三角形ABC ,求作圆经过A 及AB 中点M ,并与BC 直线相切已知:M 为△ABC 的AB 的中点.求作:一个经过A 、M 两点且与BC 直线相切的圆.AA ' EB O D C分析:设⊙O 即为合于要求的圆(如图)因⊙O 经过A 、M 两点且与直线BC 相切于点P ,这样,BP 为⊙O 的切线,BA 为⊙O 的割线,所以,应有 BP 2=BM ·BA而BM ,BA 均为已知,因此,BP 的长度可以作出,由此可得点P ,于是过A 、M 、P 三点就可确定所求之圆作法:1)作线段A 'B 'M ', 使A 'B '=AB ,B 'M '=BM2)以A 'M '为直径作半圆3)过B '作A 'M '的垂线B 'P '交半圆于点P ' 4)在△ABC 的边BC 上截取BP=B 'P ' 5)经过A 、M 、P 三点作⊙O 即为所求证明:由作图可知B 'P '2= A 'B '·B 'M ',A 'B '=AB ,B 'M '=BM ,所以BP 2=BM ·BA ,即BP 为⊙O 的切线,BMA 为其割线,且⊙O 经过A 、M 、P 三点,故⊙O 适合所要求的条件5.已知直角三角形的斜边为2,斜边上的高为23,求证此直角三角形的两个锐角是下列三角方程的根CPOA BMP 'A 'B ' M '043sin 231sin 2=++-x x 证:设AD=k (如图) ∵AB=2,∴DB=2-k. 由CD 2=AD ·DB ,.2123,0432),2()23(22或==+--=∴k k k k k在直角△ACD 中, 当23==k AD 时,,332323===AD CD tgA ∴A=300,B=600.当21==k AD 时,,32123===AD CD tgA ∴A=600,B=300. 总之,两锐角一为300,一为600. 当x=300时,代入原方程中得;04321231)21(4330sin 23130sin 22=+⋅+-=+︒+-︒ 当x=600时,代入原方程中得.04323231)23(4360sin 23160sin 22=+⋅+-=+︒+-︒ 故这个直角三角形的两个锐角是原三角方程的根CA D B1959年普通高等学校招生全国统一考试数学1.甲、已知lg2=0.3010,lg7=0.8451,求lg35解:原式=2lg 10lg 7lg 2107lg 270lg-+=⨯= =0.8451+1-0.3010=1.5441.乙、求ii +-1)1(3的值.解:.21)1(21221331133132-=++-=+--=++--=+-+-=ii i i i i i i i i i 原式 丙、解不等式.3522<-x x 解:原式移项得,03522<--x x ∴原不等式的解为.321<<-x 丁、求︒165cos 的值解:)3045cos(15cos )15180cos(165cos ︒-︒-=︒-=︒-︒=︒.426)21222322()30sin 45sin 30cos 45(cos +-=⋅+⋅-=︒︒+︒︒-=戊、不在同一平面的三条直线c b a ,,互相平行,A 、B 为b 上两定点,求证另两顶点分别在c a 及上的四面体体积为定值证:因为A 、B 为直线b 上两定点,而直线b ∥直线c ,所以,不论点C 在直线c 的什么位置上,△ABC 的面积均为一定值(同底等高的三角形等积)又因直线a 平行于直线 c b ,,所以,直线a ∥平面α(已知c b a ,,不在同一平面内),因此,不论点D 在直线a 的什么位置上,从点D 到平面α的距离h 为一定值,故四面体ABCD 的体积=定值高底面积=⋅⋅=⨯⨯∆h S ABC 3131己、圆台上底面积为225cm π,下底直径为cm 20,母线为cm 10,求圆台的侧面积解:设此圆台上底半径为r ,下底半径为R ,由已知条件,252π=πr 所以r=5(cm).又下底半径R=10cm ,母线,10cm l =圆台侧面积=πl (R+r)=π·10·(10+5)=150π(cm 2). 2.已知△ABC 中,∠B=600,AC=4,面积为3,求AB 和BC. 解:设AB=c ,BC=a ,则有⎪⎩⎪⎨⎧︒-+==︒),(60cos 24)(360sin 21222余弦定理两边夹角求面积公式ac c a ac D ahA B bOα cC.37,37.32,12)(,72,28)(,,1642222=±=∴±=-∴=-=+∴=+⎩⎨⎧=-+=c a c a c a c a c a ac c a ac 由由解之即故所求AB ,BC 之长为⎩⎨⎧+=-=⎩⎨⎧-=+=.37,37;37,37BC AB BC AB 3.已知三个数成等差数列,第一第二两数的和的3倍等于第三个数的2倍,如果第二个数减去2,则成等比数列,求这三个数解:设所求之三数为d a a d a +-,,则根据题意有⎩⎨⎧==⎪⎩⎪⎨⎧==⎩⎨⎧=-=⎩⎨⎧+-=-+=+-.45;1,45:4454).)(()2(),(2])[(3221122d a d a d a d a d a d a a d a a d a 解得化简后得 故所求三数为.9,5,149,45,41或4.已知圆O 的两弦AB 和CD 延长相交于E ,过E 点引EF ∥CB 交AD 的延长线于F ,过F 点作圆O 的切线FG ,求证:EF=FG. 证:∵FG 为⊙O 的切线,而FDA 为⊙O 的割线,∴FG 2=FD ·FA …………① 又∵EF ∥CB ,∴∠1=∠2.而∠2=∠3, ∴∠1=∠3,∠EFD=∠AFE 为公共角 ∴△EFD ∽△AFE ,,FAEF EF FD =即EF 2=FD ·FA …………②由①,②可得EF 2=FG 2 ∴EF=FG.5.已知A 、B 、C 为直线l 上三点,且AB=BC=a ;P 为l 外一点,且∠APB=900,∠BPC=450,求(1)∠PBA 的正弦、余弦、正切; (2)PB 的长; (3)P 点到l 的距离.解:过P 点作PD ⊥AB 交AB 于点D (如图) (1)过点B 作BE ∥AP 交PC 于点E 则∠PBE=900,∠PEB=450,PB=BE. ∵△CPA ∽△CEB ∴,22==a aBE PA 因PB=BE , ∴.2,2=∠=PBA tg PBPA C G2 FO D1A 3 EBP450 EA a DB a C又∵,sec 122PBA PBA tg ∠=∠+∠PBA 为锐角, ∴,51sec 2=∠+=∠PBA tg PBA.552cos sin ,5551cos =∠⋅∠=∠==∠PBA PBA tg PBA PBA(2).55cos a PBA AB PB =∠⋅= (3),552sin ,55=∠=PBA a PB ∴.52sin a PBA PB PD =∠⋅= 综上,所求为(1)∠PBA 的正弦、余弦、正切分别是2,551,552 (2)PB 的长为;551a (3)P 点到l 的距离为.52a1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg 证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点A 、D∵点A 是EF 的中点,ASPDRC BQM E aB Aα DC bN F β又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x 将x 值代入(5).6145173212±=+=x y abαEFAMNBD此即⎪⎪⎩⎪⎪⎨⎧-=--=⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457;614517,414572211y x y x 因为,0122<+x 所以(1)式无意义(负数无对数),故原方程组的解仅为⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457y x 3.设△ABC 的内切圆半径为r ,求证BC 边上的高.2sin2cos 2cos 2A CB r AD ⋅⋅=证:在直角△ABC 中,2cos2sin 2sin B B c Bc AD ⋅⋅=⋅=另外,EB AE c +=)22(Bctg A ctgr += 2sin2sin )22sin()2sin 2cos 2sin 2cos (B A B A r B B A A r ⋅+⋅=+=AEc r bOB Ca D.2sin2cos2cos 22cos 2sin2sin 2sin2cos22sin 2sin2cosA CB r B B BA Cr AD B A C r ⋅⋅=⋅⋅⋅⋅=∴⋅⋅= 4.设△ABC 为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE=AD ,并过E 作AB 的垂线与AC 边的延长线交于F ,求证: (1)AE:AB=AC:AF.(2)△ABC 的面积=△AEF 的面积.证(1):设AB 与⊙O 相交于点G ,联结EC ,CG ,BF.∵EF ⊥AB ,CG ⊥AB ,∴GC ∥EF ,AC:AF=AG:AE ………………① 又∵AD 是⊙O 的切线,∴AD 2=AG ·AB ,也即AG:AD=AD:AB但∵AD=AE ,∴AG:AE=AE:AB ……………② 由①、②可得AE:AB=AC:AF证(2):由(1)AE:AB=AC:AF ,则EC ∥BF ,△EBC 的面积=△EFC 的面积 ∴△ABC 的面积=△AEC 的面积+△EBC 的面积=△AEC 的面积+△EFC 的面积 =△AEF 的面积5.求证方程0)2()12(23=+-++-Q x Q x x 的一个根是1设这个方程的三个根是△ABC 的三个内角的正弦,sin ,sin ,sin C B A 求A 、B 、C 的度数以及Q 的值解:将x=1代入这个方程式, 则01)2(1)12(123=+⋅-+⋅+-Q Q , 故知1是原方程的一个根由于1是原方程的一个根,所以方程左边能被x-1整除AGE DB GOF用x-1除方程左边后得商式.022=--Q x x根据题设条件(即有一个根为1,不妨设1sin =C )及根与系数的关系可得⎪⎩⎪⎨⎧-=⋅=+=)3(sin sin )2(2sin sin )1(1sin Q B A B A C 由(1)可知C=900,于是A+B=900,B=900-A ,代入(2)得.212222sin sin )3(45459045,045,1)45cos(,1cos 45cos sin 45sin ,1cos 22sin 22,2cos sin ,2)90sin(sin -=⋅-=⋅-=︒=︒-︒=︒=∴=︒-∴=︒-=⋅︒+⋅︒=+∴=+=-︒+B A Q B A A A A A A A A A A A 式可得从即1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg 丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点ASPDRC BQM E aB Aα DC bN FβA 、D∵点A 是EF 的中点, 又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x abαEFAMNBD将x 值代入(5).6145173212±=+=x y 此即⎪⎪⎩⎪⎪⎨⎧-=--=⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457;614517,414572211y x y x 因为,0122<+x 所以(1)式无意义(负数无对数),故原方程组的解仅为⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457y x 3.设△ABC 的内切圆半径为r ,求证BC 边上的高.2sin2cos 2cos 2A CB r AD ⋅⋅=证:在直角△ABC 中,2cos2sin 2sin B B c Bc AD ⋅⋅=⋅=另外,EB AE c +=)22(Bctg A ctgr += 2sin2sin )22sin()2sin 2cos 2sin 2cos (B A B A r B B A A r ⋅+⋅=+=AEc r bOB Ca D.2sin2cos2cos 22cos 2sin2sin 2sin2cos22sin 2sin2cosA CB r B B BA Cr AD B A C r ⋅⋅=⋅⋅⋅⋅=∴⋅⋅= 4.设△ABC 为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE=AD ,并过E 作AB 的垂线与AC 边的延长线交于F ,求证: (1)AE:AB=AC:AF.(2)△ABC 的面积=△AEF 的面积.证(1):设AB 与⊙O 相交于点G ,联结EC ,CG ,BF.∵EF ⊥AB ,CG ⊥AB ,∴GC ∥EF ,AC:AF=AG:AE ………………① 又∵AD 是⊙O 的切线,∴AD 2=AG ·AB ,也即AG:AD=AD:AB但∵AD=AE ,∴AG:AE=AE:AB ……………② 由①、②可得AE:AB=AC:AF证(2):由(1)AE:AB=AC:AF ,则EC ∥BF ,△EBC 的面积=△EFC 的面积 ∴△ABC 的面积=△AEC 的面积+△EBC 的面积=△AEC 的面积+△EFC 的面积 =△AEF 的面积5.求证方程0)2()12(23=+-++-Q x Q x x 的一个根是1设这个方程的三个根是△ABC 的三个内角的正弦,sin ,sin ,sin C B A 求A 、B 、C 的度数以及Q 的值解:将x=1代入这个方程式, 则01)2(1)12(123=+⋅-+⋅+-Q Q , 故知1是原方程的一个根由于1是原方程的一个根,所以方程左边能被x-1整除AGE DB GOF用x-1除方程左边后得商式.022=--Q x x根据题设条件(即有一个根为1,不妨设1sin =C )及根与系数的关系可得⎪⎩⎪⎨⎧-=⋅=+=)3(sin sin )2(2sin sin )1(1sin Q B A B A C 由(1)可知C=900,于是A+B=900,B=900-A ,代入(2)得.212222sin sin )3(45459045,045,1)45cos(,1cos 45cos sin 45sin ,1cos 22sin 22,2cos sin ,2)90sin(sin -=⋅-=⋅-=︒=︒-︒=︒=∴=︒-∴=︒-=⋅︒+⋅︒=+∴=+=-︒+B A Q B A A A A A A A A A A A 式可得从即1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg 丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点ASPDRC BQM E aB Aα DC bN FβA 、D∵点A 是EF 的中点, 又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x abαEFAMNBD将x 值代入(5).6145173212±=+=x y 此即⎪⎪⎩⎪⎪⎨⎧-=--=⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457;614517,414572211y x y x 因为,0122<+x 所以(1)式无意义(负数无对数),故原方程组的解仅为⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457y x 3.设△ABC 的内切圆半径为r ,求证BC 边上的高.2sin2cos 2cos 2A CB r AD ⋅⋅=证:在直角△ABC 中,2cos2sin 2sin B B c Bc AD ⋅⋅=⋅=另外,EB AE c +=)22(Bctg A ctgr += 2sin2sin )22sin()2sin 2cos 2sin 2cos (B A B A r B B A A r ⋅+⋅=+=AEc r bOB Ca D.2sin2cos2cos 22cos 2sin2sin 2sin2cos22sin 2sin2cosA CB r B B BA Cr AD B A C r ⋅⋅=⋅⋅⋅⋅=∴⋅⋅= 4.设△ABC 为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE=AD ,并过E 作AB 的垂线与AC 边的延长线交于F ,求证: (1)AE:AB=AC:AF.(2)△ABC 的面积=△AEF 的面积.证(1):设AB 与⊙O 相交于点G ,联结EC ,CG ,BF.∵EF ⊥AB ,CG ⊥AB ,∴GC ∥EF ,AC:AF=AG:AE ………………① 又∵AD 是⊙O 的切线,∴AD 2=AG ·AB ,也即AG:AD=AD:AB但∵AD=AE ,∴AG:AE=AE:AB ……………② 由①、②可得AE:AB=AC:AF证(2):由(1)AE:AB=AC:AF ,则EC ∥BF ,△EBC 的面积=△EFC 的面积 ∴△ABC 的面积=△AEC 的面积+△EBC 的面积=△AEC 的面积+△EFC 的面积 =△AEF 的面积5.求证方程0)2()12(23=+-++-Q x Q x x 的一个根是1设这个方程的三个根是△ABC 的三个内角的正弦,sin ,sin ,sin C B A 求A 、B 、C 的度数以及Q 的值解:将x=1代入这个方程式, 则01)2(1)12(123=+⋅-+⋅+-Q Q , 故知1是原方程的一个根由于1是原方程的一个根,所以方程左边能被x-1整除AGE DB GOF用x-1除方程左边后得商式.022=--Q x x根据题设条件(即有一个根为1,不妨设1sin =C )及根与系数的关系可得⎪⎩⎪⎨⎧-=⋅=+=)3(sin sin )2(2sin sin )1(1sin Q B A B A C 由(1)可知C=900,于是A+B=900,B=900-A ,代入(2)得.212222sin sin )3(45459045,045,1)45cos(,1cos 45cos sin 45sin ,1cos 22sin 22,2cos sin ,2)90sin(sin -=⋅-=⋅-=︒=︒-︒=︒=∴=︒-∴=︒-=⋅︒+⋅︒=+∴=+=-︒+B A Q B A A A A A A A A A A A 式可得从即1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg 证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点A 、D∵点A 是EF 的中点,ASPDRC BQM E aB Aα DC bN F β又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x 将x 值代入(5).6145173212±=+=x y abαEFAMNBD此即⎪⎪⎩⎪⎪⎨⎧-=--=⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457;614517,414572211y x y x 因为,0122<+x 所以(1)式无意义(负数无对数),故原方程组的解仅为⎪⎪⎩⎪⎪⎨⎧+=+-=.614517,41457y x 3.设△ABC 的内切圆半径为r ,求证BC 边上的高.2sin2cos 2cos 2A CB r AD ⋅⋅=证:在直角△ABC 中,2cos2sin 2sin B B c Bc AD ⋅⋅=⋅=另外,EB AE c +=)22(Bctg A ctgr += 2sin2sin )22sin()2sin 2cos 2sin 2cos (B A B A r B B A A r ⋅+⋅=+=AEc r bOB Ca D.2sin2cos2cos 22cos 2sin2sin 2sin2cos22sin 2sin2cosA CB r B B BA Cr AD B A C r ⋅⋅=⋅⋅⋅⋅=∴⋅⋅= 4.设△ABC 为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE=AD ,并过E 作AB 的垂线与AC 边的延长线交于F ,求证: (1)AE:AB=AC:AF.(2)△ABC 的面积=△AEF 的面积.证(1):设AB 与⊙O 相交于点G ,联结EC ,CG ,BF.∵EF ⊥AB ,CG ⊥AB ,∴GC ∥EF ,AC:AF=AG:AE ………………① 又∵AD 是⊙O 的切线,∴AD 2=AG ·AB ,也即AG:AD=AD:AB但∵AD=AE ,∴AG:AE=AE:AB ……………② 由①、②可得AE:AB=AC:AF证(2):由(1)AE:AB=AC:AF ,则EC ∥BF ,△EBC 的面积=△EFC 的面积 ∴△ABC 的面积=△AEC 的面积+△EBC 的面积=△AEC 的面积+△EFC 的面积 =△AEF 的面积5.求证方程0)2()12(23=+-++-Q x Q x x 的一个根是1设这个方程的三个根是△ABC 的三个内角的正弦,sin ,sin ,sin C B A 求A 、B 、C 的度数以及Q 的值解:将x=1代入这个方程式, 则01)2(1)12(123=+⋅-+⋅+-Q Q , 故知1是原方程的一个根由于1是原方程的一个根,所以方程左边能被x-1整除AGE DB GOF用x-1除方程左边后得商式.022=--Q x x根据题设条件(即有一个根为1,不妨设1sin =C )及根与系数的关系可得⎪⎩⎪⎨⎧-=⋅=+=)3(sin sin )2(2sin sin )1(1sin Q B A B A C 由(1)可知C=900,于是A+B=900,B=900-A ,代入(2)得.212222sin sin )3(45459045,045,1)45cos(,1cos 45cos sin 45sin ,1cos 22sin 22,2cos sin ,2)90sin(sin -=⋅-=⋅-=︒=︒-︒=︒=∴=︒-∴=︒-=⋅︒+⋅︒=+∴=+=-︒+B A Q B A A A A A A A A A A A 式可得从即1957年普通高等学校招生全国统一考试数学1.甲、化简32221)27102(1.0)972(--++解:原式=.481110216910035)2764()101()925(32221=++=++--乙、求适合不等式22<+x x 的实数x 的范围解:原式为022<-+x x 解为:-2<x<1. 故x 的范围为-2<x<1. 丙、求证.210322+='︒ctg证:.2145sin 45cos 12450322+=︒︒+=︒='︒ctgctg 丁、在四面体ABCD 中,AC=BD ,P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,求证:PQRS 为一个菱形证:由于点P 、Q 、R 、S 依次为棱AB 、BC 、CD 、DA 的中点,根据三角形两边中点连线的性质可得.////,21////BD SP RQ AC RS PQ ====而由题设,AC=BD , ∴PQ=QR=RS=SP , 故 PQRS 为一个菱形 戊、设b a ,为异面直线,EF 为ba ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分 证:过直线b 作平面β//α(如图)过直线a 及公垂线EF 作一平面,在此平面内作MC ∥EF ,且与平面α,β分别交于B 、C 两点设EF 、MN 分别与平面α交于点ASPDRC BQM E aB Aα DC bN FβA 、D∵点A 是EF 的中点, 又ME ∥BA ∥CF , ∴点B 是MC 的中点又∵DB ∥NC , ∴D 是MN 的中点另法:如图,连接EN ,AB,BD 由AB b BD a b a //,////,//⇒αα由A 是EF 的中点得,D 为MN 的中点此即线段MN 被平面α二等分 2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x 解:由(1)可得,10)2)(12(=-+y x)3(01242 =-+-y x xy由(2)可得)4( y x xy +=将(4)代入(3)可得,012422=-+-+y x y x,01232=-+-y x)5(3212 xy +=再将(5)代入(4)可得,32123212xx x x ++=+⋅ 化简,得,012722=-+x x.41457±-=∴x abαEFAMNBD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年全国卷高考数学真题大全解析版LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】全国卷历年高考真题汇编 三角1(2017全国I 卷9题)已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C【答案】D【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x【解析】首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.【解析】πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,【解析】即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来 【解析】2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x . 【解析】注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 【解析】根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π122 (2017全国I 卷17题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin sin B C ;(2)若6cos cos 1B C =,3a =,求ABC △的周长.【解析】本题主要考查三角函数及其变换,正弦定理,余弦定理等基础知识的综合应用. 【解析】(1)∵ABC △面积23sin a S A=.且1sin 2S bc A =【解析】∴21sin 3sin 2a bc A A = 【解析】∴223sin 2a bc A =【解析】∵由正弦定理得223sin sin sin sin 2A B C A =,由sin 0A ≠得2sin sin 3B C =.(2)由(1)得2sin sin 3B C =,1cos cos 6B C =∵πA B C ++=∴()()1cos cos πcos sin sinC cos cos 2A B C B C B B C =--=-+=-=又∵()0πA ∈,∴60A =︒,sin A =1cos 2A =由余弦定理得2229a b c bc =+-= ①由正弦定理得sin sin a b B A =⋅,sin sin a c C A=⋅ ∴22sin sin 8sin a bc B C A=⋅= ②由①②得b c +=∴3a b c ++=+ABC △周长为3+3. (2017·新课标全国Ⅱ卷理17)17.(12分)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2B AC +=. (1)求cos B(2)若6a c += , ABC ∆面积为2,求.b【命题意图】本题考查三角恒等变形,解三角形.【试题分析】在第(Ⅰ)中,利用三角形内角和定理可知A C B π+=-,将2sin 8)sin(2B C A =+转化为角B 的方程,思维方向有两个:①利用降幂公式化简2sin 2B,结合22sin cos 1B B +=求出cos B ;②利用二倍角公式,化简2sin 8sin 2BB =,两边约去2sin B ,求得2tan B,进而求得B cos .在第(Ⅱ)中,利用(Ⅰ)中结论,利用勾股定理和面积公式求出a c ac +、,从而求出b . (Ⅰ) 【基本解法1】由题设及2sin 8sin ,2BB C B A ==++π,故 上式两边平方,整理得 217cos B-32cosB+15=0 解得 15cosB=cosB 171(舍去),= 【基本解法2】由题设及2sin 8sin ,2B BC B A ==++π,所以2sin 82cos 2sin 22B B B =,又02sin ≠B,所以412tan =B ,17152tan 12tan 1cos 22=+-=B BB (Ⅱ)由158cosB sin B 1717==得,故14a sin 217ABC S c B ac ∆==又17=22ABC S ac ∆=,则由余弦定理及a 6c +=得 所以b=2【知识拓展】解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者的关系,这样的题目小而活,备受老师和学生的欢迎.4 (2017全国卷3理)17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,已知sin 0A A =,a =,2b =. (1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-==. ∵AC AD ⊥,即ACD △为直角三角形, 则cos AC CD C =⋅,得CD =由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=,1πsin 26ABD S AD AB =⋅⋅=△5 (2017全国卷文1)14 已知π(0)2a ∈,,tan α=2,则πcos ()4α-=__________。

【答案】10(法一) 0,2πα⎛⎫∈ ⎪⎝⎭ ,sin tan 22sin 2cos cos ααααα=⇒=⇒=,又22sin cos 1αα+=,解得sin 5α=,cos 5α=,cos (cos sin )4210πααα⎛⎫∴-=+=⎪⎝⎭. (法二))sin cos (22)4cos(ααπα+=-21cos sin cos 42πααα⎛⎫∴-=+ ⎪⎝⎭.又 tan 2α=222sin cos tan 2sin cos sin cos tan 15αααααααα∴===++,29cos 410πα⎛⎫∴-= ⎪⎝⎭,由0,2πα⎛⎫∈ ⎪⎝⎭知444πππα-<-<,cos 04πα⎛⎫∴-> ⎪⎝⎭,故cos 4πα⎛⎫-= ⎪⎝⎭6.(2017全国卷2 文) 3.函数π()sin(2)3f x x =+的最小正周期为A.4πB.2πC. πD.π2【答案】C 【解析】由题意22T ππ==,故选C. 【考点】正弦函数周期【名师点睛】函数sin()(A 0,0)y A x B ωϕω=++>>的性质 (1)max min =+y A B y A B =-,. (2)周期2.T πω=(3)由 ππ()2x k k ωϕ+=+∈Z 求对称轴 (4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间;7(2017全国卷2文)13.函数()2cos sin f x x x =+的最大值为 . 【答案】8(2017全国卷2文)16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos bc B a C c A =+,则B =【答案】3π 9(2017全国卷3文) 4.已知4sin cos 3αα-=,则sin 2α=( )A .79-B .29-C .29D .79【答案】A10 (2017全国卷3文)6.函数f (x )=15sin(x +3π)+cos(x 6π)的最大值为( ) A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ ,则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,函数的最大值为65.本题选择A 选项.7.函数y =1+x +2sin xx的部分图像大致为( ) A BD .C D 【答案】D1、(2016全国I 卷12题)已知函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 (A )11? (B )9 (C )7? (D )5 【答案】B考点:三角函数的性质2、(2016全国I 卷17题)(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c = (I )求C ;(II )若7,c ABC △=33,求ABC △的周长. 【答案】(I )C 3π=(II )57【解析】试题解析:(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =,()2cosCsin sinC A+B =. 故2sinCcosC sinC =. 可得1cosC 2=,所以C 3π=. 考点:正弦定理、余弦定理及三角形面积公式3、(2015全国I 卷2题)sin20°cos10°-con160°sin10°= (A )32- (B )32 (C )12- (D )12【答案】D 【解析】试题分析:原式=sin20°cos10°+cos20°sin10°=sin30°=12,故选D. 考点:诱导公式;两角和与差的正余弦公式4、(2015全国I 卷8题) 函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为(A)(kπ−14,kπ+34,),k ∈z (b)(2kπ−14,2kπ+34),k ∈z (C)(k −14,k +34),k ∈z (D)(2k −14,2k +34),k ∈z 【答案】D 【解析】试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.考点:三角函数图像与性质5、(2015全国I 卷16题)在平面四边形ABCD 中,∠A=∠B=∠C=75°,BC=2,则AB 的取值范围是【答案】(【解析】试题分析:如图所示,延长BA ,CD 交于E ,平移AD ,当A 与D 重合与E 点时,AB 最长,在△BCE 中,∠B=∠C=75°,∠E=30°,BC=2,由正弦定理可得sin sin BC BEE C=∠∠,即o o2sin 30sin 75BE=,解得BE,平移AD ,当D 与C 重合时,AB 最短,此时与AB 交于F ,在△BCF 中,∠B=∠BFC=75°,∠FCB=30°,由正弦定理知,sin sin BF BC FCB BFC =∠∠,即o o2sin 30sin 75BF =,解得-AB 的取值范围为(.考点:正余弦定理;数形结合思想6. (2014全国I 卷8题)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=【答案】:B【解析】:∵sin 1sin tan cos cos αβααβ+==,∴sin cos cos cos sin αβααβ=+ ()sin cos sin 2παβαα⎛⎫-==- ⎪⎝⎭,,02222ππππαβα-<-<<-<∴2παβα-=-,即22παβ-=,选B7、(2014全国I 卷16题)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .【答案】:3【解析】:由2a =且 (2)(sin sin )()sin b A B c b C +-=-,即()(sin sin )()sin a b A B c b C +-=-,由及正弦定理得:()()()a b a b c b c +-=-∴222b c a bc +-=,故2221cos 22b c a A bc +-==,∴060A ∠=,∴224b c bc +-= 224b c bc bc =+-≥,∴1sin 32ABC S bc A ∆=≤,8、(2013全国I 卷15题)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______【命题意图】本题主要考查逆用两角和与差公式、诱导公式、及简单三角函数的最值问题,是难题.【解析】∵()f x =sin 2cos x x -=5255(sin cos )x x - 令cos ϕ=55,25sin 5ϕ=-,则()f x =5(sin cos sin cos )x x ϕϕ+=5sin()x ϕ+, 当x ϕ+=2,2k k z ππ+∈,即x =2,2k k z ππϕ+-∈时,()f x 取最大值,此时θ=2,2k k z ππϕ+-∈,∴cos θ=cos(2)2k ππϕ+-=sin ϕ=255-. 9、(2013全国I 卷17题)(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90°(1)若PB=12,求PA ;(2)若∠APB =150°,求tan ∠PBA【命题意图】本题主要考查利用正弦定理、余弦定理解三角形及两角和与差公式,是容易题.【解析】(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o ,在△PBA 中,由余弦定理得2PA =o 1132cos3042+-=74,∴; (Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA 中,由正弦定理得,o o sin sin150sin(30)αα=-4sin αα=,∴tan α=4,∴tan PBA ∠10、(2016全国II 卷7题)若将函数y =2sin 2x 的图像向左平移π12个单位长度,则平移后图象的对称轴为 (A )()ππ26k x k =-∈Z (B )()ππ26k x k =+∈Z (C )()ππ212Z k x k =-∈ (D )()ππ212Z k x k =+∈ 【解析】B平移后图像表达式为π2sin 212y x ⎛⎫=+ ⎪⎝⎭,令ππ2π+122x k ⎛⎫+= ⎪⎝⎭,得对称轴方程:()ππ26Z k x k =+∈, 故选B .11、(2016全国II 卷9题)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=(A )725 (B )15(C )15-(D )725-【解析】D∵3cos 45πα⎛⎫-= ⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D .12、(2016全国II 卷13题)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,1a =,则b = . 【解析】2113∵4cos 5A =,5cos 13C =,3sin 5A =,12sin 13C =, ()63sin sin sin cos cos sin 65B A C A C A C =+=+=, 由正弦定理得:sin sin b a B A =解得2113b =. 13、(2015全国II 卷17题)ABC 中,D 是BC 上的点,AD 平分∠BAC,ABD 是ADC 面积的2倍。

相关文档
最新文档