第五章连锁遗传分析

合集下载

遗传学--第5章l连锁分析和基因作图

遗传学--第5章l连锁分析和基因作图

连锁与交换的遗传机理
P F1
(复制) 同源染色体联会(偶线期) 非姊妹染色单体交换(偶线期到双线期)
终变期
四分体
五、重组型配子的比例
1. 尽管在发生交换的孢(性)母细胞所产生的配子中,亲 本型和重组型配子各占一半,但是双杂合体所产生的 四种配子的比例并不相等,因为并不是所有的孢母细 胞都发生两对基因间的交换。 2. 重组型配子比例是发生交换的孢母细胞比例的一半, 并且两种重组型配子的比例相等,两种亲本型配子的 比例相等。
香豌豆P-L基因间交换值测定(3)
而F2中双隐性个体(ppll)的实际数目是可出直接观测得 到的(本例中为1338),其比例也可出直接计算得到 (1338/6952),因此有: 1338 2 d = × 100% = 19.2% 6952
⇒ pl配子的比例:d = 0.192 = 0.44 ⇒ 两种亲本型配子的比例:a = d = 0.44 1 − (a + d ) ⇒ 两种重组型配子的比例:b = c = = 0.06 2 ⇒ P − L间交换值 = b + c = 0.06 + 0.06 = 0.12 = 12%
(一)、每对相对性状是否符合分离规律?
性状 花色 相引相 花粉粒 形状 花色 相斥相 花粉粒 形状 F2表现型 紫花(显) 红花(隐) 长花粉粒(显) 圆花粉粒(隐) 紫花(显) 红花(隐) 长花粉粒(显) 圆花粉粒(隐) F2个体数 4831+390=5221 1338+393=1731 4831+393=5224 1338+390=1728 226+95=321 97+1=98 226+97=323 95+1=96 F2分离比例 3:1 3:1 3:1 3:1

遗传学 第五章 连锁遗传

遗传学 第五章 连锁遗传
2.交换的随机性,不可能所有的性母细胞都在同一染色体 的同一位点上发生交换
3.距离较远的两个基因间的双交换 4.邻近的两个交换位置具有干涉。
生命科学学院
怎样判断两个基因之间是连锁遗传还是独立遗传?
在F1的测交后代中,亲本性状组合大于50%,重新组 合型小于50%的为连锁遗传。
若亲本性状组合与重新组合型等于50%,测交后代 呈1:1:1:1的比例,则为独立遗传。
生命科学学院
连锁类型
一.完全连锁
同一连锁群上的基因在配子形成过程中作为一个整体, 随 染色体传递下去,而不发生染色体片段的交换的遗传现象。
果蝇:灰身B,黑身b,长翅V,残翅v
P ♀灰身残翅×♂黑身长翅
BBvv ↓ bbVV
F1
♂灰身长翅×♀黑身残翅
BbVv ↓ bbvv
灰身残翅 黑身长翅
Bbvv bbVv
卡平方X2检测
①明确理论假说 ②求卡方值
χ2=
(O
E E
)
2
(O是实际数,E是理论数)
③求自由度 总项数-1=(n-1) ④据卡方和自由度查卡方表得P值 ⑤确定理论与实验的相符程度(P值标准)
P≥0.05 成立-----实际结果符合理论 P<0.05 理论不能解释实际实验的结果 ⑥结论
生命科学学院
生命科学学院
2.断裂融合学说:
1937年,英国细胞学家C.Darlinton提出。
联会时同源染色体相互缠绕,染色体内的扭力和 染色体间的扭力平衡。
当同源染色体分开时,染色单体受应力的作用而 断裂。
断头松开螺旋后,断头不与原来的染色单体相接,
而与其同源非姊妹染色单体的断面相接,造成了
染色体片段的交换。

【遗传学】第五章 染色体和连锁群

【遗传学】第五章 染色体和连锁群

第五章染色体和连锁群本章重点一、连锁遗传:二对性状杂交有四种表现型,亲型多、重组型少;杂种产生配子数不等,亲型相等、重组型相等。

二、连锁和交换机理:粗线期交换、双线期交叉,非姐妹染色体交换。

三、交换值及其测定:重组配子数/总配子数;测交法测定,也可用F2 材料进行估计。

四、基因定位和连锁遗传图:确定位置、距离,基因位于染色体上;二点测验、三点测验;连锁群、连锁遗传图。

学时:91900年孟德尔遗传规律重新发现以后,生物界广泛重视,进行了大量试验。

其中有些属于两对性状的遗传结果不符合独立分配规律→摩尔根以果蝇为材料进行深入细致研究→提出连锁遗传规律→创立基因论→认为基因成直线排列在染色体上,进一步发展为细胞遗传学。

第一节连锁和交换一、连锁(一)连锁现象的发现1906年,贝特生(Bateson W.)和贝拉特(Punnett R. C.)在香豌豆的二对性状杂交试验中→首先发现性状连锁遗传现象。

第一个试验:P 紫花、长花粉粒(PPLL)×红花、圆花粉粒(ppll)↓F1紫、长PpLl↓⊗F2紫、长紫、圆红、长红、圆P_L_P_ll ppL_ppll总数实际个体数4831390393 13386952按9:3:3:1推算3910.51303.5 1303.5434.56952上述结果进行X2检验时,X2=3371.58,说明实计数与预计数差异极其显著,不可能由随机误差造成,应作重复实验。

以上结果表明F2 :①. 同样出现四种表现型;②. 不符合9:3:3:1;③. 亲本组合数偏多,重新组合数偏少(与理论数相比)。

第二个试验:P紫花、圆花粉粒(PPll)×红花、长花粉粒(ppLL)↓F1 紫、长PpLl↓⊗F2 紫、长紫、圆红、长红、圆P_L_P_ll ppL_ppll总数实际个体数22695971419按9:3:3:1推算235.878.578.526.2419结果与第一个试验情况相同。

【学习】第五章连锁遗传分析

【学习】第五章连锁遗传分析
5 连锁遗传分析与染色体作图
学习要点:
1.性别决定的类型,掌握伴性遗传的概念、特点
及相互关系。
2.连锁与交换的原理,重组值、交换值、染色体
干涉和并发率的概念及计算方法,特别是通过三点
测交绘制连锁图的方法。
3.人类基因的连锁分析的特点、人类基因定位的
原理。
整理课件
5.1 性染色体与性别决定
5.1.1 性别与染色体 性比:雌性:雄性=1:1。
3 假设的验证 实验 1 P 红眼♀
X+Xw
× 白眼♂ XwY
F1 红♀ 红♂ 白♀ 白♂ X+Xw X+Y XwXw XwY 129 :132 : 88 :86 1 :1 : 1 :1
结论: 1 红眼雌蝇是杂合体。 2 白眼雄蝇带隐性基因,位于X 染色体上;
整理课件
实验2
P 白♀ × 红♂ XWXW ↓ X+Y
体(A)倍数之比,即性指数(X/A)。 X/A=0.5→雄性。如2A+X(不育),
2A+X+Y(可育)。 X/A=1→雌性。如2A+2X,2A+2X+Y。 X/A>1→变态雌性,也称超雌。2A+3X(死亡) X/A<0.5→变态雄性,也称超雄。2A+Y(死亡) X/A介于0.5~1→雌雄间性(不育)
比总是1:1,所以最大交换整值理课也件是50%。
1
2
3
4
1
2
3 4
整理课件
5.5 染色体作图
5.5.1 相关概念
基因定位:确定基因在染色体上的排列顺序和相对
距离的过程.
染色体图:基因连锁图、遗传图
图距:两个基因在染色体图上距离的数量单位。

遗传学第三版课件(T)第五章 连锁遗传和性连锁t

遗传学第三版课件(T)第五章  连锁遗传和性连锁t

占总配子数的百分率进行估算。
交换值 (
%)
重组型配子数 总配子数
100
应用这个公式估算交换值,首先要知道重组型配子数。 测定重组型配子数的简易方法有测交法和自交法两种。
二、交换值的测定
(一)测交法
以玉米籽粒颜色和形状这两对连锁基因为例,来说明估算交换值的方法。 玉米籽粒的有色(C)对无色(c)为显性,饱满(Sh)对凹陷(sh)为显性。
连锁遗传:原来亲本所具有的两个性状,在F2连系在一起 遗传的现象。
相引相(组):甲乙两个显性性状,连系在一起遗传、而甲 乙两个隐性性状连系在一起的杂交组合。
如:PL/pl
相斥相(组):甲显性性状和乙隐性性状连系在一起遗传, 而乙显性性状和甲隐性性状连系在一起的杂交 组合。
如:Pl/pL。
(二) 连锁遗传的解释 试验结果是否受分离规律支配?
第五章 连锁遗传和性连锁
1900年孟德尔遗传规律重新发现以后,生物界广泛重 视,进行了大量试验。
其中有些属于两对性状的遗传结果不符合独立分配规律, 因此不少学者对于孟德尔的遗传规律曾一度发生怀疑。
摩尔根以果蝇为试验材料进行深入细致的研究 提出连锁遗传规律(遗传学第三规律) 创立基因论 认为基因成直线排列在染色体上,进一步发展为细 胞遗传学。
完全连锁:
灰身长翅
黑身残翅
由于F1杂合雄蝇(BbVv)只产生两种类型的配子,数目 相等,所以用双隐性雌蝇测交的后代,只能有两种表现 型,比例为1:1
不完全连锁:
灰身长翅
黑身残翅
灰身长翅 灰身残翅 黑身长翅 黑身残翅
当两对非等位基因为不完全连锁时,F1不仅产生亲本型 配子也产生重组型配子。
非等位基因完全连锁的情形较少,一般是不完全连锁。

第五章-连锁遗传分析

第五章-连锁遗传分析

3
ec + cv 273 (单交换I)
4 + ct + 265
5
ec + + 217 (单交换II
6 + ct cv 223
7 ++ +
5 (双交换)
8 ec ct cv
3
合计
5318
第三十页,编辑于星期日:二十点 四十七分。
1 中间位点法作图(适用于测交子代有8种类型)
A 分成4组
B 确定正确的基因顺序
2 雌果蝇的不完全连锁
P 灰身长翅 X 黑身残翅
BV/BV ↓ bv/bv
F1灰、长♀ X 黑、残♂
BV/bv
bv/bv

灰长 灰残 黑长 黑残
42% 8% 8% 42%
特点: 测交子代有重组合类型,交换值少于50%
第二十四页,编辑于星期日:二十点 四十七分。
三 交换值的概念及其测定
交换值 = 交换型配子数 X100% 总配子数
AD:♂株
基因型 性别表现
a+:♀♂同株 ADa+ ♂ 株
ad:♀株
ADad ♂ 株
a+a+ ♀♂同株
a+ad ♀♂同株
adad ♀ 株
第四页,编辑于星期日:二十点 四十七分。
第二节 性连锁遗传(伴性遗传)
一 果蝇的伴性遗传
1 果蝇的伴X隐性遗传现象
P 红眼♀ X 白眼♂
2 Morgan假设
1)测定基因所属连锁群 2)确定基因在染色体上的顺序
第三十五页,编辑于星期日:二十点 四十七分。
例2:表3-6果蝇的一些性连锁基因的重组频率
0 1.0

遗传学-第5章-连锁遗传分析

遗传学-第5章-连锁遗传分析
(3) 白眼(♀) × 红眼(♂) ↓
雌蝇全部为红眼 雄蝇全部为白眼
试验结果表明白眼雄蝇是纯合体,且只有一个白眼基因。
假设:果蝇的白眼基因w在X性染色体上,而Y 染色 体上不含有其等位基因 可合理解释上述遗传现象。
雌蝇♀:2 A + X X 雄蝇♂: 2 A + X Y
(1) 白眼(♂) × 红眼 (♀)
红绿色盲(color blindness):不能分辨红色和绿色。控制 红色和绿色色盲的两个基因均为隐性,位于X染色体上且紧 密连锁,所以就把它们合在一起,用符合b表示。
P: 正常母亲 色盲父亲 P X+Xb × X+Y
X+X+ × XbY
携带女性 正常男性


X+Xb
X+Y
F1 X+X+ X+Y
X+Xb
雄性性腺分化而不向卵巢分化,其他所有的分化都是由其 激素作用和性腺作用产生的次级效应。
人群中,不正常的个体----性反转(sex reveral) 少数46XX男性
46XY女性 如何说明他们的性别表现?
寻找TDF基因
分子观察:
在XX男性中,其中一条X染色体顶部含有Y染色体靠近短臂 顶部的一个小片段。
X染色体上70%的基因与疾病有关,在医学遗传学中具 有重要地位。
电子显微镜下的人类X染色体和Y染色体
性别决定(Sex Determination)
不同的生物性别决定的机制不同,可分为四类: (1)性染色体; (2)环境因子; (3)性指数(性染色体(X)和常染色体组数A的比 ); (4)基因型。
摩尔根在纯种红眼果蝇群体中发现个别白眼个体(突变产生)。 (1) 白眼(♂) × 红眼 (♀) ↓ F1全部为红眼 ↓ 近亲繁殖 F2 红:白 = 3:1

遗传学第5章 连锁遗传分析

遗传学第5章 连锁遗传分析
42
基因间距离与交换值、遗传距离、连锁强度
43
基因定位
基因定位:
确定基因在染色体上的位置 与其它基因间的排列顺序与距离
广义的基因定位有 3个层次
染色体定位( 单体、缺体、三体定位)
染色体臂定位( 端体分析法) 连锁分析
44
1、两点测交:
二、
基因定位的方法
先用三次杂交、再用三次测交(隐性纯合亲本)分别测定两
交叉遗传
ZbW ZBZb
正常(母鸡) 芦花(公鸡)
近亲繁殖
ZBZb ZbZb
芦花(公鸡) 正常(公鸡)
ZBW
ZbW
芦花(母鸡) 正常(母鸡)
母鸡 : 公鸡 芦花 : 正常 = 1 : 1
26
生产实践上: ZBW 芦花(母鸡) × ZbZb
正常(公鸡)
ZBZb 芦花(公鸡)
ZbW 正常(母鸡)
全部饲养母鸡 多生蛋
第5章 连锁遗传分析
1
第一节 性染色体与性别决定
2
一、性别与性染色体
两性生物中的性别比是恒定的。1:1
性别作为一种性状是按孟德尔方式遗传的。
玉米
3
二、人类的性染色体
X染色体:1 098个基因;Y染色体:78个基因。二者有58个
同源基因,大部分(29个)位于XY染色体末端。
人类的性染色体
4
三、性染色体决定性别的几种类型
40
第六节 染色体作图
41
一、基因直线排列原理及其相关概念
基因定位:确定基因在染色体上的相对位置和排列顺序的 过程。
染色体图:也称连锁图、遗传图。依据测交实验结果,测
得某特定基因间的重组率,或采用其他方法确定连锁基因 在染色体上的相对位置而绘制的一种简单线性示意图。 图距:两个连锁基因在染色体上相对距离的数量单位称为 图距。 1%的重组率为一个图距单位,即1cM。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.2.3 人类的性连锁遗传分析
伴X显性遗传(sex-linked dominant inheritance,XD):如抗维生素D佝偻病、先天性 多毛症等。 伴X隐性遗传(sex-linked recessive inheritance,XR) :如红绿色盲、血友病、鱼鳞病 等。 Y连锁遗传(Y-linked recessive inheritance)
F2:红♀ 红♂ 白♀ 白♂ X+Xw X+Y XwXw XwY 1 :1 :1 :1
结论:1 进一步地证明白眼基因位于X染色体上; 2 交叉遗传现象。
4 伴性遗传(X连锁遗传)
概念:由性染色体所携带的基因在遗传时与性别 相联系的遗传方式。
特点: 1 当同配性别传递纯合显性基因时,F1均为显
性性状,F2性状呈3:1,性别的分离为1:1; 其中隐性个体的性别与祖代隐性体一样,即外祖 父的性状传给外孙。
X连锁隐性遗传病特点:
①人群中男性患者远较女性患者多,系谱中往 往只有男性患者; ②双亲无病时,儿子可能发病,女儿则不会发 病;儿子如果发病,母亲肯定是一个携带者, 女儿也有1/2的可能性为携带者; ③男性患者的兄弟、外祖父、舅父、姨表兄弟、 外甥、外孙等也有可能是患者; ④如果女性是一患者,其父亲一定也是患者, 母亲一定是携带者。
5.3.2 剂量补偿效应与Lyon假说
① 剂量补偿效应:XY性别决定机制的生物中, 性连锁基因在两种性别中相等或近乎相等的有 效剂量的遗传效应。 ⑴ ♀性两条X失活一条,雄性单条X染色体保 持活性;(哺乳类) ⑵ ♀性两条X染色体均有活性,雄性中唯一的 X染色体超活性;(果蝇) ⑶ ♀性两条X染色体低活性。(线虫)
(4%)
推测:减数分裂形成配子时,母本两条X染 色体不分离.
② 例外遗传现象的解释 ——减数分裂中:X染色体不分开
③ 从果蝇眼色例外遗传现象得出的结论
由于不分离的X染色体上的突变基因的 作用,导致果蝇颜色遗传的例外现象,即雌 蝇偏母,雄蝇偏父。这就证明了基因位于染 色体上,染色体是基因的载体。
5.1.6 果蝇性别决定的染色体机制
性指数 果蝇的性别决定取决于X染色体数目和常染色
体(A)倍数之比,即性指数(X/A)。 X/A=0.5→雄性。如2A+X(不育),
2A+X+Y(可育)。 X/A=1→雌性。如2A+2X,2A+2X+Y。 X/A>1→变态雌性,也称超雌。2A+3X(死亡) X/A<0.5→变态雄性,也称超雄。2A+Y(死亡) X/A介于0.5~1→雌雄间性(不育)
阔叶♂XBY 细叶XbY♂
阔叶♀ × 阔叶♂ XBXb XBY
阔叶♀ 阔叶♂ 细叶♂ XBXB XBY XbY XBXb
5.3 剂量补偿效应及其分子机制 5.3.1 性染色质体
1949年,由Barr 发现,又称为Barr小体.存在 于间期核中的惰性的异染色质化的小体,位于细 胞核膜的内侧边缘或靠近核膜,其数目为X-1.
② Lyon假说(哺乳动物) 1 两条X染色体中一条失活,使雌性和雄性具 有相同的基因产物。 2 失活是随机的,可以是来自母源的X染色体 失活,也可以是来自父源的X染色体失活。 3 失活发生在胚胎发育的早期。 4 杂合体雌性在伴性基因的作用上是嵌合体。
Lyon假说的证据 (1)玳瑁猫毛色遗传
先天性多毛症的遗传
X连锁显性遗传病特点:
①人群中女性患者比男性患者约多一倍,前者 病情常较轻; ②患者的双亲中必有一名是该病患者; ③男性患者的女儿全部都为患者,儿子全部正 常 ④女性患者(杂合子)的子女中各有50%的 可能性是该病的患者; ⑤系谱中常可看到连续传递现象,这点与常染 色体显性遗传一致。
实验 1 P 红眼♀ × 白眼♂
X+Xw
XwY
F1 红♀ 红♂ 白♀ 白♂ X+Xw X+Y XwXw XwY 129 :132 : 88 :86 1 :1 : 1 :1
结论: 1 红眼雌蝇是杂合体。 2 白眼雄蝇带隐性基因,位于X 染色体上;
实验2
P 白♀ × 红♂ XWXW ↓ X+Y
F1 红眼♀ 白眼♂ X+Xw × XwY ↓
5.2 性连锁遗传分析
5.2.1 黑腹果蝇的伴性遗传分析
1 果蝇的伴X隐性遗传现象 P 红眼 × 白眼 ↓ F1 红眼(♀×♂) ↓
F2 红♀ 红♂ 白♂ 2459 1011 782
2 摩尔根的假设 (1)白眼基因为隐 性基因,位于X染 色体上; (2)Y染色体上无对 应的显性等位基因。
3 假设的验证
雌性杂合体玳瑁猫的毛色具黑色与黄色 斑块。
XO:黄色 ; Xo:黑色 XO失活 黑色斑块
Xo失活 黄色斑快 结果:同一个体出现黄、黑斑块
(2)6-PGD杂合体细胞电泳实验
5.3.3 X染色体随机失活的分子机制
1 大多数X连锁基因在胚胎发育早期失活,但并 非整条X染色体上的基因均失活。 2 在失活的X染色体上,表达的基因与失活基因 是穿插排列的。 3 在X染色体上存在失活中心。
2 当同配性别传递纯合隐性基因时,F1表 现交叉遗传,即儿子象母亲,女儿象父亲。
5.2.2 遗传的染色体学说的直接证明
① 果蝇眼色遗传的例外现象
白♀ × 红♂
XwXw ↓ X+Y
正常 → 红♀ 白♂(不育)
初级例外 → 红♂ 白♀(可育) × 红♂
(1\2000)

正常 红♀ 白♂
次级例外 → 红♂(可育 ) 白♀
① 鸡羽斑纹的遗传 ZB —芦花, Zb —非芦花
P 非芦花♂ × 芦花♀
ห้องสมุดไป่ตู้
ZbZb
ZBW

F1 芦花♂ × 非芦花♀ F1识别雌雄
ZBZb
ZbW

F2 芦花♂ 芦花♀
ZBZb
ZBW
非芦花♂ 非芦花♀ ZbZb ZbW
② 女娄菜宽叶基因B的伴性遗传
阔叶♀× 细叶♂ XBXB XbY
阔叶♂(XBY)
阔叶♀× 细叶♂ XBXb XbY
一例红绿色盲系谱 :
Y连锁遗传(Y-linked recessive inheritance
存在于Y染色体差别区段上的基因所决定的 性状,将随Y染色体的行为而传递。它们仅仅 由父亲传给儿子,不传给女儿,表现为所谓 限雄遗传(holandric inheritance)现象。
5.2.4 其他伴性基因的遗传分析
相关文档
最新文档