北师大版数学八年级上学期期末备考专项培优训练:二元一次方程组应用(含答案)
(经典)北师大版八年级上册二元一次方程组复习题(带答案)

北师大版八年级上册二元一次方程组复习题1、我们知道解二元一次方程组的基本思想方法是“消元”,那么解方程组宜用______法;解方程组宜用______法.2、若|x-2y+1|+|x+y-5|=0,则x=__________,y=__________.3、某年级有学生258人,其中男生比女生人数的2倍少3人,求男、女生各有多少人.设女生人数为x,男生人数为y,则可列出方程组为___________.4、在一段坡路,小明骑自行车上坡的速度为每小时千米,下坡时的速度为每小时千米,则他在这段路上、下坡的平均速度是每小时()A. 千米B. 千米C. 千米D.无法确定5、某校初一(一)班学生到操场观看“抗震救灾”义演,若每条长凳坐5人,则少10条长凳;若每条长凳坐6人,则又多余2条长凳。
如果设学生数为人,长凳数为条,由题意可列方程组()A.B.C.D.6、方程(k2-4)x2+(k+2)x+(k-6)y=k+8是关于x,y的方程,试问当k为何值时:(1)方程为一元一次方程?(2)方程为二元一次方程?7、已知是方程的根,求代数式的值.8、根据题意列出方程组:将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?9、若是二元一次方程组的解,求a+2b的值。
10、已知是方程组的解,求代数式4a(a-b)+b(4a-b)+5的值.12、为响应县政府“创建绿色县城”的号召,一小区计划购进A,B两种树苗共20棵,已知A种树苗每棵80元,B种树苗每棵50元。
(1)若购进A、B两种树苗刚好用去1240元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最少的方案,并求出该方案所需费用。
13、“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.14、王明决定暑假期间到工厂打工.一天他到某厂了解情况,下面是厂方有关人员的谈话:厂方说:我厂实行计件工资制,就是在发给每人相同生活费的基础上,每生产一件产品得一定的工资,超过500件,超过部分每件再增加0.5元;工人甲说:我上个月完成了450件产品,月收入是2850元;工人乙说:我上个月完成了300件产品,月收入是2100元.根据上述内容,完成下面问题:(1)设该厂工人每生产一件产品得元,每月生活费为元,求,的值;(2)厂长决定聘用王明.由于王明工作积极肯干,一个月收入达3166元,他该月的产量是多少?15、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元,若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案.16、某通信运营商的短信收费标准如下:发送网内短信0.1元/条,发送网际短信0.15元/条,该通信运营商的用户小王某月发送以上两种短信共计150条,依照该收费标准共支出短信费用19元,问小王该月发送网内、网际短信各多少条?17、计算:(1)(3)(4)18、已知是方程组的解,求和的值。
北师大版八年级数学上册 第5章 二元一次方程组 期末复习卷 (含答案)

北师版数学八年级上册第5章 二元一次方程组期末复习卷一.选择题(共10小题,3*10=30)1.下列方程组中是二元一次方程组的为( )A.⎩⎪⎨⎪⎧x 2+3y =43x -5y =1B.⎩⎪⎨⎪⎧xy =1x +2y =8 C. ⎩⎪⎨⎪⎧a -b =31a-3b =4 D.⎩⎪⎨⎪⎧a +3b =47a -9b =5 2.下列方程组中,是二元一次方程组的是( )A .⎩⎪⎨⎪⎧x +13=1,y =x 2B .⎩⎪⎨⎪⎧3x -y =5,2y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1,xy =1D .⎩⎪⎨⎪⎧x 2=3,y -2x =43.如图,这是在同一坐标系内作出的一次函数y 1,y 2的图象l 1,l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组⎩⎪⎨⎪⎧y 1=k 1x +b 1,y 2=k 2x +b 2的解是( ) A.⎩⎪⎨⎪⎧x =-2y =2 B.⎩⎪⎨⎪⎧x =-2y =3 C. ⎩⎪⎨⎪⎧x =-3y =3 D.⎩⎪⎨⎪⎧x =-3y =44.已知⎩⎪⎨⎪⎧x =2,y =1是方程组⎩⎪⎨⎪⎧ax +by =5,bx +ay =1的解,则a -b 的值是( ) A .-1B .2C .3D .4 5.用加减消元法解方程组⎩⎪⎨⎪⎧2x +3y =1,3x -2y =10时,有下列四种变形,其中正确的是( )A.⎩⎪⎨⎪⎧4x +6y =19x -6y =10B.⎩⎪⎨⎪⎧6x +3y =36x -2y =20 C. ⎩⎪⎨⎪⎧4x +6y =29x -6y =30 D.⎩⎪⎨⎪⎧6x +9y =36x -4y =10 6.在函数y =kx +b 中,当x =3时,y =-4;当x =4时,y =-3,则k ,b 的值分别为( )A .1,-7B .7,-1C .-1,7D .-7,17.若方程组⎩⎪⎨⎪⎧mx -ny =1,nx +my =8的解是⎩⎪⎨⎪⎧x =2,y =1,则m ,n 的值分别是( ) A .2,1 B .2,3C. 1,8 D .无法确定8.用图象法解方程组⎩⎪⎨⎪⎧x -2y =4,2x +y =4时,下列选项中的图象正确的是( )c9.小明在解关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =△,2x -3y =5时,解得⎩⎪⎨⎪⎧x =4,y =★,则△和★代表的数分别是( )A .1,5B .5,1C. -1,3 D .3,-110.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有m 张长方形纸板和n 张正方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则m +n 的值可能是( )A .2 015B .2 016C .2 017D .2 018二.填空题(共8小题,3*8=24)11.已知(n -1)x |n|-2y m -2 020=0是关于x ,y 的二元一次方程,则n m =________.12.方程组⎩⎪⎨⎪⎧x +y =2,2x -y =1的解是__________. 13.已知⎩⎪⎨⎪⎧x =1,y =2是二元一次方程组⎩⎪⎨⎪⎧ax -by =1,2by -3ax =3的解,则b -a =________. 14.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.15.一群学生结队去郊外春游,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,女生梅梅说:“我看到白色帽子是红色帽子的2倍.”男生亮亮说:“我看到白色帽子与红色帽子一样多.”这群学生共有________人.16.在平面直角坐标系中,两条直线l 1和l 2交于点A(-5,-3),若直线l 1和l 2对应的二元一次方程分别是3x =5y 和x -2y =m ,则m =________.17.如图①所示,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影部分沿虚线剪拼成一个长方形,如图②所示,这个拼成的长方形的长为30,宽为20,则图②中Ⅱ部分的面积是________.18.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6 km 的公路.如果平均每天的修建费y(万元)与修建天数x(天)在30≤x≤120内具有一次函数的关系,如下表所示.则y 关于x 的函数表达式为__________________________(写出自变量x 的取值范围).三.解答题(共9小题,66分)19. (6分).解方程组:⎩⎪⎨⎪⎧x +y -2z =5,①2x -y +z =4,②2x +y -3z =10.③20. (6分) 先阅读材料,然后解方程组:材料:解方程组⎩⎪⎨⎪⎧x +y =4,①3(x +y )+y =14.② 在本题中,先将x +y 看成一个整体,将①整体代入②,得3×4+y =14,解得y =2.把y =2代入①,得x =2,所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =2. 这种解法称为“整体代入法”.请用这种方法解方程组⎩⎪⎨⎪⎧x -y -1=0,①4(x -y )-y =5.②21. (6分)某市准备用灯笼美化红旗路,需用A ,B 两种不同类型的灯笼200个,且B 灯笼的个数是A 灯笼的23. (1)求A ,B 两种灯笼各需多少个;(2)已知A ,B 两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼的费用是多少?22. (6分) 已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +2by =4,x +y =1与⎩⎪⎨⎪⎧x -y =3,bx +(a -1)y =3的解相同,求a ,b 的值.23. (6分) 某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元.(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠.若购进x(x>0)件甲种玩具需要花费y 元,请你写出y 关于x 的函数表达式.24. (8分) 电脑中有一种游戏——蜘蛛纸牌,开始游戏前有500分的基本分,游戏规则如下:①操作一次减x 分;②每完成一列加y 分.有一次小明在玩这种“蜘蛛纸牌”游戏时,随手用表格记录了两个时段的电脑显示:(1)通过列方程组,求x ,y 的值;(2)如果小明最终完成此游戏(即完成10列),分数是1 182,问他一共操作了多少次?25. (8分) 解方程组⎩⎪⎨⎪⎧ax +5y =15,4x -by =-2时,由于粗心,甲看错了方程组中的a ,而得解为⎩⎪⎨⎪⎧x =-3,y =-1. 乙看错了方程组中的b ,而得解为⎩⎪⎨⎪⎧x =5,y =4. (1)甲把a 看成了什么,乙把b 看成了什么;(2)求出原方程组的正确解.参考答案1-5 DDBDC 6-10ABCBA11.-112.⎩⎪⎨⎪⎧x =1y =1 13.214.2;115.716.117.10018.y =-15x +50(30≤x≤120) 19. 解:①+②,得3x -z =9.④②+③,得4x -2z =14.⑤将④⑤联立组成方程组为⎩⎪⎨⎪⎧3x -z =9,4x -2z =14, 解得⎩⎪⎨⎪⎧x =2,z =-3. 将x =2,z =-3代入①,得2+y -2×(-3)=5,解得y =-3.所以原方程组的解为⎩⎪⎨⎪⎧x =2,y =-3,z =-3.20. 解:由①,得x -y =1,③把③代入②,得4-y =5,解得y =-1,把y =-1代入③,得x =0,所以原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1. 21.解:(1)设需A 种灯笼x 个,B 种灯笼y 个.根据题意,得⎩⎪⎨⎪⎧x +y =200,y =23x , 解得⎩⎪⎨⎪⎧x =120,y =80.答:A 种灯笼需120个,B 种灯笼需80个.(2)120×40+80×60=9 600(元).答:这次美化工程购置灯笼的费用是9 600元.22. 解:由题意可得⎩⎪⎨⎪⎧x +y =1,①x -y =3.② ①+②,得2x =4,解得x =2.把x =2代入①,得y =-1.当x =2,y =-1时,可得方程组⎩⎪⎨⎪⎧a -b =2,-a +2b =2, 解得a =6,b =4.23.解:(1)设每件甲种玩具的进价是m 元,每件乙种玩具的进价是n 元.由题意得⎩⎪⎨⎪⎧5m +3n =231,2m +3n =141,解得⎩⎪⎨⎪⎧m =30,n =27. 答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元.(2)当0<x≤20时,y =30x ;当x>20时,y =20×30+(x -20)×30×0.7=21x +180.24. 解:(1)依题意,得⎩⎪⎨⎪⎧2y -66x =634-500,5y -102x =898-500. 解得⎩⎪⎨⎪⎧x =1,y =100. (2)设他一共操作了a 次,则10×100-a×1=1 182-500,解得a =318.答:他一共操作了318次.25. 解:(1)将⎩⎪⎨⎪⎧x =-3,y =-1代入原方程组, 得⎩⎪⎨⎪⎧-3a -5=15,4×(-3)+b =-2,解得⎩⎪⎨⎪⎧a 错=-203,b =10.将⎩⎪⎨⎪⎧x =5,y =4代入原方程组, 得⎩⎪⎨⎪⎧5a +20=15,20-4b =-2,解得⎩⎪⎨⎪⎧a =-1,b 错=112. 所以甲把a 看成了-203,乙把b 看成了112. (2)由(1)可知,原方程组中a =-1,b =10, 所以原方程组为⎩⎪⎨⎪⎧-x +5y =15,4x -10y =-2,解得⎩⎪⎨⎪⎧x =14,y =295.。
北师大版数学八年级上学期期末备考专项培优训练:二元一次方程组应用(含答案)

期末备考专项培优训练:二元一次方程组应用1.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的收入结余12000元,今年菠萝的收入比去年增加了20%,支出减少10%,结余今年预计比去年多11400元.请计算:(1)今年结余23400元;(2)若设去年的收入为x元,支出为y元,则今年的收入为 1.2x元,支出为0.9y 元.(以上两空用含x、y的代数式表示)(3)列方程组计算小明家今年种植菠萝的收入和支出.解:(1)由题意可得,今年结余:12000+11400=23400(元),故答案为:23400;(2)由题意可得,今年的收入为:x(1+20%)=1.2x(元),支出为:y(1﹣10%)=0.9y(元),故答案为:1.2x,0.9y;(3)由题意可得,,解得,,则1.2x=1.2×42000=50400,0.9y=0.9×30000=27000,答:小明家今年种植菠萝的收入和支出分别为50400元、27000元.2.为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B 型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.解:(1)设每辆A型车有x个座位,每辆B型车有y个座位,依题意,得:,解得:.答:每辆A型车有45个座位,每辆B型车有60个座位.(2)设租m辆A型车,n辆B型车,依题意,得:45m+60n=480,解得:n=8﹣m.∵m,n为整数,∴(舍去),,,∴有两种租车方案,方案1:租4辆A型车、5辆B型车;方案2:租8辆A型车、2辆B型车.当租4辆A型车、5辆B型车时,所需费用为350×4+400×5=3400(元),当租8辆A型车、2辆B型车时,所需费用为350×8+400×2=3600(元).∵3400<3600,∴租4辆A型车、5辆B型车所需租金最少,最少租金为3400元.3.《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的,则有50钱;若乙得到甲所有钱的,则也有50钱,问甲、乙各持钱多少?请解答此问题.解:设甲、乙的持钱数分别为x,y,根据题意可得:,解得:,答:甲、乙的持钱数分别为37.5,25.4.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和20秒的两种广告.15秒广告每播1次收费0.6万元,20秒广告每播1次收费0.8万元.若要求每种广告播放都不少于1次,且2分钟广告时间恰好全部用完.问:两种广告的播放次数有几种安排方式?每种安排方式的收益分别为多少万元?解:设播放15秒的广告x次,播放20秒的广告y次,根据题意得:15x+20y=120,解得:y=6﹣,∵x,y均为不小于1的整数,∴x是4的整数倍,∴x=4,y=3,∴只有1种安排方式,即播放15秒的广告的次数是4次,播放20秒的广告的次数是3次;播当x=4,y=3时,0.6×4+0.8×3=4.8(万元),这种安排方式的收益为4.8万元.5.由甲、乙两运输队承包运输15000立方米沙石的任务,要求在10天之内(包含10天)完成.已知两队共有20辆汽车,甲队每辆车每天能够运输100立方米的沙石,乙队每辆车每天能够运输80立方米的沙石,前3天两队一共运输了5520立方米.(1)求甲乙两队各有多少辆汽车?(2)3天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?解:(1)设甲队有x辆汽车,乙队有y辆汽车,根据题意得:,解得:,答:甲队有12辆汽车,乙队有8辆汽车,(2)设甲队最多可以抽调m辆汽车走,根据题意得:7[100(12﹣m)+80×8]≥15000﹣5520,解得:m,m最大的整数是4,答:甲队最多可以抽调4辆汽车走.6.随着越来越多年轻家长对低幼阶段孩子英语口语的重视,某APP顺势推出了“北美外教在线授课”系列课程,提供“A课程”、“B课程”两种不同课程供家长选择.已知购买“A 课程”3课时与“B课程”5课时共需付款410元,购买“A课程”5课时与“B课程”3课时共需付款470元.(1)请问购买“A课程”1课时多少元?购买“B课程”1课时多少元?(2)根据市场调研,APP销售“A课程”1课时获利25元,销售“B课程”1课时获利20元,临近春节,小融计划用不低于3000元且不超过3600元的压岁钱购买两种课程共60课时,请问购买“A课程”多少课时才使得APP的获利最高?解:(1)设购买“A课程”1课时x元,购买“B课程”1课时y元.依题意,得:,解得:,答:购买“A课程”1课时70元,购买“B课程”1课时40元.(2)设购买“A课程”a课时,则购买“B课程”60﹣x课时.依题意,得:,解得:20≤a≤40,设利润为w,w=25a+20(60﹣a)=5a+1200,5>0,w随着a的增大而增大,故当a=40时,w最大.答:购买“A课程”40课时才使得APP的获利最高.7.某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位:如果租用A种车5辆,B种车3辆,则有15个人没座位(1)求该公司A,B两种车型各有多少个座位?(2)若A种车型的日租金为260元辆,B种车型的日租金为350元辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案)解:(1)设公司A、B两种车型各有x个座位和y个座位,根据题意得:解得答:公司A、B两种车型各有45个座位和60个座位,(2)设公司A、B两种车型各有a辆和b辆,租金为w元,根据题意得:∴w=﹣a+2450∵45a+60b=420∴a=∵a,b为正整数∴b=1,a=8,b=4,a=4∴当a=8时,w的值最小,即W=﹣20+2450=2430∴租该公司A、B两种车型各有8辆和1辆租金最少,最少租金为2430元.8.李阿姨要为家里添加餐具,分别买了型号不同的大小两种碗,共花了80元.已知小碗每只6元,大碗每只8元,问大小碗各买了几只?解:设小碗买了x只,大碗买了y只,6x+8y=80,∵x,y均为正整数,∴,,,答:小碗4只,大碗7只;或小碗8只,大碗4只;或小碗12只,大碗1只.9.甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.10.有黑白两种小球各若干个,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?解:设每只黑球和白球的质量分别是x、y克,依题意得,解得,答:每只黑球3克,白球1克.11.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?解:(1)设甲种笔记本销售x本,乙种笔记本销售y本,依题意得,解得,答:甲种笔记本销售65本,乙种笔记本销售35本;(2)所得销售款不可能是660元设甲种笔记本销售x本,乙种笔记本销售(100﹣x)本,则8x+(100﹣x)×5=660.解得该方程的解不是整数,故销售款不可能是660元.12.某旅行社组织280名游客外出旅游,计划租乘大巴车和小巴车赴旅游景点,其中大巴车每辆可乘80人,小巴车每辆可乘40人,要求租用的车子不留空位,同时也不能超载.(1)请你写出所有的租车方案;(2)若大巴车的租金是350元/天,小巴车的租金是200元/天,请你设计出费用最少的租车方案,并算出最少的费用是多少?.解:(1)设需要租x辆大巴车,y辆小巴车,根据题意得:80x+40y=280,∴y=7﹣2x.∵x、y均为整数,∴当x=0时,y=7;当x=1时,y=5;当x=2时,y=3;当x=3时,y=1.∴租车方案有:①租7辆小巴车;②租1辆大巴车,5辆小巴车;③租2辆大巴车,3辆小巴车;④租3辆大巴车,1辆小巴车.(2)方案①所需费用为200×7=1400(元);方案②所需费用为350+200×5=1350(元);方案③所需费用为350×2+200×3=1300(元);方案④所需费用为350×3+200=1250(元).∵1250<1300<1350<1400,∴费用最少的租车方案为:租3辆大巴车,1辆小巴车,最少的租车费用为1250元.13.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?解:设该兴趣小组男生有x人,女生有y人,依题意得:,解得:.答:该兴趣小组男生有12人,女生有21人.14.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?解:(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据题意得,解之得.答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m人,由题意得,12(4m+2n)=240,整理得,n=10﹣2m,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.15.【方法阅读】一般地,二元一次方程的解有无数个,但是有些二元一次方程的正整数解却只有有限个,如二元一次方程2x+3y=15的正整数解只有和两个.那么,我们如何寻找二元一次方程的正整数解呢?不妨以方程2x+3y=15为例,首先过程方程各项的特征,发现2x和15分别是偶数和奇数,可以确定3y必然是奇数,即y是奇数,再运用特值法代入尝试,即将y=1,3,5,…等奇数代入原方程一次求出相应的x的值,从而获得2x+3y=15的正整数解.同学们还可以尝试运用列表法来探索二元一次方程的正整数解.【理解运用】(1)盒子里有若干个大小相同的红球和白球,规定从中摸出一个红球的3分,摸到一个白球的4分,假设小华摸到x个红球和y个白球,共得34分,请你列出关于x、y的方程,并写出这个方程符合实际意义的所有的解.【灵活运用】(2)已知△ABC的三边m,n,p都是正整数,m,n,p,且△ABC的周长为15,则符合条件的三角形共有7个.解:(1)依题意得:3x+4y=34,有三个正整数解为,,;(2)设m≥n≥p,则由m+n+p=15,得m≥5.用试值法或者枚举法可得:,,,,,,.所以符合条件的三角形共有7个.故答案是:7.。
北师大版八年级上册 第五章二元一次方程组 二元一次方程组的解 培优专题( 解析版)

本题考查了解二元一次方程组,利用题干条件消去原方程组中的x是解题关键.
15.
【解析】
【分析】
根据题意将方程9x-6y+y=13变形为3(3x-2y)+y=13,再将 整体代入求解即可.
【详解】
解: ,
将方程②变形,得9x-6y+y=13,即3(3x-2y)+y=13③,
把方程①代入③,得12+y=13,解得y=1,
详解:方程组 的解与方程组 的解相同得 ① ②,
解①得 ,
把 代入②得 ,
解得 ,
当m=1,n=2时,方程组 与方程组 同解.
∴m=1,n=2.
点睛:本题考查了二元一次方程组的解,利用了方程组的解满足方程组.
17.(1)m=2;n=3;(2)方程组正确的解为
【解析】
【分析】
(1)将第一组解代入方程组的第一个方程求出m的值,将第二组解代入方程组的第二个方程求出n的值即可;
19.阅读理解:解方程组 时,如果设 =m, =n,则原方程组可变形为关于m,n的方程组 解这个方程组得到它的解为 由 , ,求得原方程组的解为 ,利用上述方法解方程组:
20.请你根据萌萌所给的如图所的内容,完成下列各小题.
(1)若m※n=1,m※2n=﹣2,分别求m和n的值;
(2)若m满足m※2≤0,且3m※(﹣8)>0,求m的取值范围.
23.已知方程组 中,x、y的系数部已经模糊不清,但知道其中□表示同一个数,△也表示同一个数, 是这个方程组的解,你能求出原方程组吗?
25.阅读探索
解方程组
解:设a1x,b2y,原方程组可变为
解方程组得 ,即 ,所以 .此种解方程组的方法叫换元法.
(1)拓展提高
运用上述方法解下列方程组:
《二元一次方程组》 培优训练(含答案)

期末复习:《二元一次方程组》培优训练一.选择题1.方程组的解是()A.B.C.D.2.若二元一次方程组的解为则a+b的值为()A.0 B.1 C.2 D.44.某宾馆有单人间、双人间和三人间三种客房供游客租住,某旅行团有18人准备同时租用这三种客房共9间,且每个房间都住满,则租房方案共有()种.A.3 B.4 C.5 D.65.我们知道方程组:的解是,则方程组的解是()A.B.C.D.6.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把7m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.1 B.2 C.3 D.47.如果关于x,y的二元一次方程组的解为,则方程组的解为()A.B.C.D.8.关于x,y的方程组的解满足x=y,则k的值是()A.﹣1 B.0 C.1 D.2二.填空题11.若a+2b=8,3a+4b=18,则a+b的值为.12.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了道题.13.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.14.若二元一次方程组的解为,则m+n=15.有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41吨.1辆大货车、1辆小货车的额定载重量分别为多少吨?设1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,依题意,可以列方程组为.三.解答题18.解方程(1)(2)19.对于实数a、b,定义关于“⊗”的一种运算:a⊗b=2a+b,例如3⊗4=2×3+4=10.(1)求4⊗(﹣3)的值;(2)若x⊗(﹣y)=2,(2y)⊗x=﹣1,求x+y的值.21.某厂准备生产甲、乙两种商品销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.求甲种商品与乙种商品的销售单价各是多少元?22.已知甲种物品毎个重4kg,乙种物品毎个重7kg,现有甲种物品x个,乙种物品y个,共重76kg.(1)列出关于x,y的二元一次方程;(2)若x=12,则y=.(3)若乙种物品有8个,则甲种物品有个.24.阅读理解:小聪在解方程组时,发现方程组中①和②之间存在一定的关系,他发现了一种“整体代换”法,具体解法如下:解:将方程②变形为:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入方程③得:2×3+y=5解得y=﹣1把y=﹣1代入方程①得x=4∴方程组的解是(1)模仿小聪的解法,解方程组(2)已知x,y满足方程组,解答:(ⅰ)求x2+4y2的值;(ⅱ)求3xy的值.参考答案一.选择题1.解:,①+②得,x=2,把x=2代入①得,6+2y=7,解得,故原方程组的解为:.故选:D.2.解:把代入方程组得:,解得:,则a+b=2,故选:C.3.解:设小长方形的长为x,宽为y,如图可知,.故选:A.4.解:设宾馆有客房:单人间x间、二人间y间、三人间z间,根据题意可得,,解得:y+2z=9,y=9﹣2z,∵x,y,z都是小于9的正整数,当z=1时,y=7,x=1;当z=2时,y=5,x=2;当z=3时,y=3,x=3当z=4时,y=1,x=4当z=5时,y=﹣1(不合题意,舍去)∴租房方案有4种.故选:B.5.解:∵方程组:的解是,∴由方程组可得,解得.故选:C.6.解:设截成2m的彩绳x根,截成1m的彩绳y根,依题意,得:2x+y=7,∴y=7﹣2x.又∵x,y均为非零整数,∴或或或,∴共有4种不同的截法.故选:D.7.解:由方程组得,根据题意知,即,故选:C.8.解:解方程组得:,∵x=y,∴=+1,解得:k=0.故选:B.9.解:设雉有x只,兔有y只,依题意,得:,解得:.故选:A.10.解:如图,图中的鞋子为x只,小猪玩具为y只,字母玩具为z只,依题意得:,解得,故x+yz=5+5×2=15.故选:B.二.填空题(共7小题)11.解:∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.故答案为:5.12.解:设他做对了x道题,则他做错了(25﹣x)道题,根据题意得:4x﹣(25﹣x)=70,解得:x=19.故答案为:19.13.解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.14.解:①+②得:5x+5y=10∴x+y=2方程组的解为,∴m+n=x+y=2.故答案为:2.15.解:由题意可得,,故答案为:.16.解:∵关于x、y的二元一次方程组的解是,∴关于a.b的二元一次方程组满足,解得.故关于a.b的二元一次方程组的解是.故答案为:.17.解:设笼中有x只雉,y只兔,根据题得,①,解得,不符合题;②,此方程组无整数解,不符合题意;③,解得,符合题意;④,解得,符合题意;故答案为:③④.三.解答题(共7小题)18.解:(1),把①代入②得:3x+10﹣4x=4,解得:x=6,把x=6代入①得:y=﹣7,则方程组的解为;(2)方程组整理得:,把②代入①得:3x+2x+6=11,解得:x=1,把x=1代入①得:y=2,则方程组的解为.19.解:(1)根据题中的新定义得:原式=8﹣3=5;(2)根据题中的新定义化简得:,①+②得:3x+3y=1,则x+y=.20.解:设合伙人为x人,羊价为y钱,依题意,得:,∴甲同学列的方程组正确,解该方程组,得:.答:合伙人为21人,羊价为150钱.21.解:设甲种商品的销售单价为x元/件,乙种商品的销售单价为y元/件,依题意,得:,解得:.答:甲种商品的销售单价为900元/件,乙种商品的销售单价为600元/件.22.解:(1)由题意知4x+7y=76;(2)当x=12时,48+7y=76,解得y=4,故答案为:4;(3)当y=8时,4x+56=76,解得:x=5,即甲种物品有5个,故答案为:5.23.解:(1)4+3=7(张),1+2=3(张).故答案为:7;3.(2)设可加工的竖式容器x个,横式容器y个,依题意,得:,解得:.答:可加工的竖式容器100个,横式容器539个.(3)设做长方形铁片的铁板为m块,做正方形铁片的铁板为n块,依题意,得:,解得:.∵在这35块铁板中,25块做长方形铁片可做25×3=75(张),9块做正方形铁片可做9×4=36(张),剩下1块可裁出1张长方形铁片和2张正方形铁片,∴共做长方形铁片75+1=76(张),正方形铁片36+2=38(张),∴可做铁盒76÷4=19(个).答:最多可以加工成19个铁盒24.解:(1)把方程②变形:3(3x﹣2y)+2y=19 ③把①代入③得:15﹣2y=19,得y=2把y=2代入①得x=3则方程组的解为(2)(ⅰ)由①得:3(x2+4y2)=47+2xy,即x2+4y2=③②式整理得2(x2+4y2)+xy=36 ④将③代入④得解得xy=2将xy=2代入③得x2+4y2=17(ⅱ)由(ⅰ)知xy=2,则3xy=6。
北师大版八年级上册数学《二元一次方程组应用题》测试试题以及答案

方程组应用题练习1、某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,该农场去年实际生产玉米、小麦各多少吨?2、某工厂生产甲、乙两种商品共8万件,已知2件甲种商品与3件乙种商品售价收入相同,3件甲种商品比2件乙种商品销售收入多1500元,问甲种商品和乙种商品的销售单价各是多少元?3、某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆。
(1)现在停车场共有50辆中、小型汽车,这些车共缴纳停车费480元,中、小型汽车各有多少辆?(2)经研究,停车场降低了收费标准,中型汽车的停车费改为10元/辆,小型汽车的停车费改为6元/辆,价格调价后停放这些汽车共需缴纳停车费多少元?4、某服装店用6000元购进A、B两种新式服装,按标价售出后可获得利润3800元(利润=售价-进价),这两种服装的进价、标价如下表所示:(1)求这两种服装各购进的件数;(2)如果A中服装按标价的8折出售,B中服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价售出少收入多少元?5、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样成订货的45不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?6、今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人,求该市今年外来和外出旅游的人数?7、某商场用36000元购进甲、乙两种商品,销售完后共获利6000元,其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元。
(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售,若两种商品销售完毕,要使第二次经营活动获利为8160元,乙种商品售价为每件多少元?8、某地方为了加快建设美丽乡村,对A、B两类村庄进行了全面改建,根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;建设2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)若改建3个A类美丽村庄和6个B类美丽村庄,问共需资金多少万元?9、购进甲、乙两种商品,其中甲商品的进件是120元/件,售价是130元/件,乙中商品的进件是100元/件,售价是150元/件。
2024八年级数学上册期末复习6二元一次方程组2常考题型专练习题课件新版北师大版
+ = ,
= ,
= .
所以租住了三人间8间,双人间13间.
解得ቊ
1
2
3
4
根据方程组中方程的特征巧解方程组的五种常用技巧
技巧1用整体代入法解方程组
+ = ,①
1. 解方程组:൝
− = .②
解:由②,得2 y =3 x -5.③
把③代入①,得4 x +4(3 x -5)=12,解得 x =2.
1
2
3
4
D. 16
4. [教材P119习题T2变式]已知某酒店的三人间和双人间
客房标价为:三人间为每人每天200元,双人间为每人
每天300元.为吸引客源,促进旅游,在“十·一”黄金
周期间酒店进行优惠大酬宾,凡团体入住一律五折优
惠.一个50人的旅游团在十月二号到该酒店住宿,租住
了一些三人间、双人间客房.如果租住的每间客房正好
1
2
3
4
5
6
7
①×3+②×2,得13 u =156,解得 u =12.
将 u =12代入②,解得 v =0.
= ,
+ = ,
所以ቊ
解得ቊ
= .
− = ,
= ,
所以原方程组的解为ቊ
= .
1
2
3
4
5
6
7
= ,
= ,
解得ቊ
所以原方程组的解为ቊ
= .
= .
1
2
3
4
5
6
7
技巧4用设辅助元法解方程组
5.
= ,①
解方程组:ቐ
北师大版-数学-八年级上册--培优练习-《求解二元一次方程组》(数学北师大八上)
求解二元一次方程组1.解方程组4 314 x yx y-=⎧⎨-=⎩2.已知关于x,y的方程组7234mx nymx ny+=⎧⎨-=⎩的解为12xy=⎧⎨=⎩,求m,n的值.3.解方程组326 2317 x yx y-=⎧⎨+=⎩4.已知方程组256217x y mx y+=+⎧⎨-=-⎩的解x、y都是正数,且x的值小于y的值,求m的取值范围.5.解方程组278ax bycx y+=⎧⎨-=⎩=时,本应解出32xy=⎧⎨=-⎩,但由于看错了系数c,而得到解为22xy=-⎧⎨=⎩,试求a+b+c的值.答案和解析【解析】1. 解:答案:51x y =⎧⎨=⎩解析:解答: 4 314 x y x y -=⎧⎨-=⎩①②由①,得x=4+y ③,将③代入②,得3(4+y )-y=14,解得y=1.将y=1代入③,得x=5.所以方程组的解为51x y =⎧⎨=⎩.分析:由①得:x=4+y ,然后将x=4+y 代入3x-y=14,求得y 的值,再将y 的值代入求得x 的值,最后写成方程组的解的形式.此题主要考查的是二元一次方程组的解法,掌握代入消元法解方程组的步骤和方法是解题的关键.2. 解:答案:5|1解析:解答:将12x y =⎧⎨=⎩代入方程组中,得27264m n m n +=⎧⎨-=⎩,解得:51m n =⎧⎨=⎩.所以m=5,n=1.分析:根据方程组的解的定义把x=1,y=2代入方程组中,得到关于m 与n 的方程组,求出此方程组的解得到m与n的值.此题考查了二元一次方程组的解与解方程组的方法.3.解:答案:43 xy=⎧⎨=⎩解析:解答:32 6 2317x yx y-=⎧⎨+=⎩①②①×2,得:6x-4y=12③,②×3,得:6x+9y=51④,④-③,得:13y=39,解得:y=3,将y=3代入①,得:3x-2×3=6,解得:x=4.故原方程组的解为43xy=⎧⎨=⎩.分析:此题运用加减消元法,先消去一个未知量,变成一元一次方程,求出一个未知数的值,再将它代入原方程组中的一个方程,求出另一个未知数的值,即可得到方程组的解.此题考查了二元一次方程组的解法,利用消元进行求解.先找出某个未知数系数的最小公倍数,然后用加减消元法求出方程组的解.解答此类题目的关键是理解解方程组的基本思想是消元,掌握方程组解法中的加减消元法和代入消元法.4. 解:答案:12<m<9解析:解答:解方程组,得218x my m=-⎧⎨=+⎩,根据题意,得21080mm->⎧⎨+>⎩且2m-1<m+8,解得:12<m<9.所以m的取值范围为12<m<9.分析:将m 看做已知数,表示出x 与y ,根据题意列出不等式,求出不等式的解集即可得到m 的取值范围.5. 解:答案:7解析:解答:把32x y =⎧⎨=-⎩代入cx-7y=8,得3c+14=8,解得c=-2.因为看错系数c ,即A.b 的值没有看错,所以把两个解32x y =⎧⎨=-⎩、22x y =-⎧⎨=⎩分别代入ax+by=2,得322222a b a b -=⎧⎨-+=⎩,解得45a b =⎧⎨=⎩.∴a+b+c=4+5-2=7.分析:根据方程组的解的定义,先把正确的解代入第二个方程求出c 的值,再根据题意把两个解代入第一个方程得关于A.b 的方程组,解方程组求出A.b 的值,最后求a+b+c 的值.此题考查解二元一次方程组的能力.此题要理解方程组的解的定义,以及看错系数c 的含义:即方程组中除了系数c 看错以外,其余的系数都是正确的.。
5.2 二元一次方程组的解法 北师大版数学八年级上册练习题(含解析)
第17课 二元一次方程组的解法课程标准1. 理解消元的思想;2. 会用代入法解二元一次方程组.3. 掌握加减消元法解二元一次方程组的方法;4. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;5.会对一些特殊的方程组进行特殊的求解.知识点01 消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做 思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点02 代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做 消元法,简称代入法.注意:(1)代入消元法的关键是先把系数较简单的方程变形为 的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.代入消元法的一般步骤:(1)转化:从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)代入:把(1)中所得的方程代入另一个方程,消去一个未知数.(3)求解:解所得到的一元一次方程,求得一个未知数的值.(4)回代、写解:把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(5)检验: 把方程组的解代回方程组检验,当满足每个方程时才是方程组的解。
知识点03 加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做 消元法,简称加减法.注意:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.知识点04 选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.考法01 用代入法解二元一次方程组【典例1】用代入法解方程组:【即学即练】m 取什么数值时,方程组的解(1)是正数;(2)当m 取什么整数时,方程组的解是正整数?并求它的所有正整数解.【典例2】对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:能力拓展解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【即学即练】解方程组(1)(2)考法02 方程组解的应用【典例3】如果方程组的解是方程3x+my=8的一个解,则m=( )A.1B.2C.3D.4【典例4】已知和方程组的解相同,求的值.【即学即练】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.考法03 加减法解二元一次方程组【典例5】用加减消元法解方程组【即学即练】方程组的解为:.【典例6】若关于x、y的二元一次方程组的解为,求关于x、y的方程组的解.【即学即练】三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是: .考法04 用适当方法解二元一次方程组【典例7】解方程组【即学即练】【典例8】试求方程组的解.【即学即练】若二元一次方程组和y=kx+9有相同解,求(k+1)2的值.题组A 基础过关练1.用加减法解方程组下列解法错误的是( )A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y 2.用加减消元法解二元一次方程组时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×33.解方程组,用加减法消去y ,需要( )A .①×2﹣②B .①×3﹣②×2C .①×2+②D .①×3+②×2分层提分4.用加减法将方程组中的未知数消去后,得到的方程是().A.B.C.D.5.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×26.用代入消元法解方程组使得代入后化简比较容易的变形是( )A.由①得B.由①得C.由②得D.由②得y=2x-57.已知a,b满足方程组则a+b的值为()A.﹣4B.4C.﹣2D.28.已知是二元一次方程组的解,则的算术平方根为()A.±2B.C.2D.49.若,则x,y的值为()A.B.C.D.10.以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限11.若方程组的解满足x+y=0,则a的值为( )A.﹣1B.1C.0D.无法确定12.在解方程组时,甲同学正确解得乙同学把看错了,而得到那么,,的值为( )A.,,B.,,C.,,D.不能确定题组B 能力提升练13.已知,用含的代数式表示=________.14.已知、满足方程组,则的值为___.15.如果方程组的解与方程组的解相同,则a+b的值为______.16.若方程组,则的值是_____.17.已知关于x、y的方程的解满足,则a的值为__________________.18.已知是二元一次方程组的解,则m+3n的立方根为 .19.若单项式﹣5x4y2m+n与2017x m﹣n y2是同类项,则m-7n的算术平方根是_________.20.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是_______.21.若方程组的解是则方程组的解为________题组C 培优拔尖练22.解下列方程组(1)(2)23.(1)用代入法解方程组:(2)用加减法解方程组:24.甲、乙两名同学在解方程组时,甲解题时看错了m,解得;乙解题时看错了n,解得.请你以上两种结果,求出原方程组的正确解.25.阅读探索解方程组解:设a&#ξΦ02∆;1&#ξΦ03∆;x,b&#ξΦ02B;2&#ξΦ03∆;y,原方程组可变为解方程组得,即,所以.此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(2)能力运用已知关于x,y的方程组的解为,直接写出关于m、n的方程组的解为_______.第17课二元一次方程组的解法课程标准1. 理解消元的思想;2. 会用代入法解二元一次方程组.3. 掌握加减消元法解二元一次方程组的方法;4. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;5.会对一些特殊的方程组进行特殊的求解.知识点01 消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点02 代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.注意:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.代入消元法的一般步骤:(1)转化:从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)代入:把(1)中所得的方程代入另一个方程,消去一个未知数.(3)求解:解所得到的一元一次方程,求得一个未知数的值.(4)回代、写解:把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(5)检验: 把方程组的解代回方程组检验,当满足每个方程时才是方程组的解。
2021-2022学年北师大版八年级数学上册《二元一次方程组的应用》期末复习训练(附答案)
2021-2022学年北师大版八年级数学上册《二元一次方程组的应用》期末复习训练(附答案)1.常德市出租车的收费规定如下:出租车起步价所包含的路程为0~2km,超过2km的部分按每千米另收费.甲乘坐这种出租车走了8千米,付了12元;乙乘坐这种出租车走了13千米,付了17元.设该出租车的起步价为x元,超过2km后,每千米的车费是y元,根据题意,所列方程组正确的是()A.B.C.D.2.用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x尺,绳子长y尺,那么可列方程组为()A.B.C.D.3.某校计划租用若干辆汽车运送学生秋游,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x辆车,共有y名学生,则根据题意列方程组为()A.B.C.D.4.《孙于算经》是中国古代重要的数学著作,其中一道题的原文是:“今三人共车,两车空;二人共车,九人步,问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为.5.如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,列出关于x、y的二元一次方程组.6.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满.设大房间有x个,小房间有y个,则列出方程组为.7.某纸厂要制作如图的甲、乙两种无盖的小长方体盒子.该厂利用边角材料裁出了长方形和正方形两种纸片,其中长方形纸片的宽和正方形纸片的边长相等.现用150张正方形纸片和300张长方形纸片制作这两种小盒,恰好用完.设可做成甲、乙两种盒子各x、y 个,根据题意,可列正确的方程组为.8.春节期间,某品牌服装店按标价打折销售,张某去该店买了两件衣服,第一件打6折,第二件打5折,共计230元,付款后,店主发现两件衣服的标价牌恰好挂反了,又找给了张某20元,设第一件衣服的原标价为x元,第二件衣服的原标价为y元,根据题意可列方程组为.9.乙组人数是甲组人数的一半,若将乙组人数的三分之一调入甲组,则甲组比乙组多15人,设甲组原有x人,乙组原有y人,则可得方程组为.10.图1中的小矩形长为x,宽为y,将四个同样的小矩形拼成如图2的正方形,则可列出关于x,y的方程组为.11.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y厘米,则列出的方程组为.12.某公司用30000元购进两种货物,货物卖出后,一种货物的利润是10%,另一种物的利润是11%,共获得利润3150元,该两种货物进货花费分别为x,y元,根据题意列方程组为.13.千佛山、趵突泉、大明湖并称济南三大风景名胜区.为了激发学生个人潜能和团队精神,历下区某学校组织学生去千佛山开展为期一天的素质拓展活动.已知千佛山景区成人票每张30元,学生票按成人票五折优惠.某班教师加学生一共去了50人,门票共需810元.(1)这个班参与活动的教师和学生各多少人?(应用二元一次方程组解决)(2)某旅行网上成人票价格为28元,学生票价格为14元,若该班级全部网上购票,能省多少钱?14.某酒店客房部有三人间普通客房和双人间普通客房,两种客房收费标准如下:三人间每天150元/间,双人间每天140元/间.为吸引游客,酒店实行团体入住五折优惠,某个46人的旅游团优惠期间到该酒店入住,租住了一些三人间普通客房和双人间普通客房,且每间客房正好住满,一天共花去住宿费1310元.两种客房各租住了多少间?15.学校计划向某花卉供应商家定制一批花卉来装扮校园(花盆全部为同一型号),该商家委托某货运公司负责这批花卉的运输工作.该货运公司有甲、乙两种专门运输花卉的货车,已知1辆甲型货车和3辆乙型货车满载一次可运输1700盆花卉;3辆甲型货车和1辆乙型货车满载一次可运输1900盆花卉.(1)求1辆甲型货车满载一次可运输多少盆花卉,1辆乙型货车满载一次可运输多少盆花卉?(2)学校计划定制6500盆花卉,该货运公司将同时派出甲型货车m辆、乙型货n辆来运输这批花卉,一次性运输完毕,并且每辆货车都满载,请问有哪几个运输方案?16.一方有难,八方支援.“新冠肺炎”疫情来袭,除了医务人员主动请缨走向抗疫前线,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如表:甲种货车(辆)乙种货车(辆)总量(吨)第一次2110第二次1211(1)甲、乙两种货车每辆分别能装货多少吨?(2)现有31吨物资需要再次运往武汉,准备同时租用这两种货车,每辆均全部装满货物,问有哪几种租车方案?(3)在(2)的条件下,若1辆甲种货车需租金100元/次,1辆乙种货车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.17.五一节前,某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台.已知购进3台A种品牌电风扇所需费用与购进2台B种品牌电风扇所需费用相同,购进1台A种品牌电风扇与2台B种品牌电风扇共需费用400元.(1)求A、B两种品牌电风扇每台的进价分别是多少元?(2)销售时,该商店将A种品牌电风扇定价为180元/台,B种品牌电风扇定价为250元/台,为能在销售完这两种电风扇后获得最大的利润,该商店应采用哪种进货方案?18.疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”用29000元购进甲、乙两种医用口罩共计900盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?19.六年级学生若干人报名参加课外活动小组,男女生人数之比为4:3,后来又报了15名女生,这时女生人数恰好是男生人数的2倍,求最初报名时男生与女生各有多少人?参考答案1.解:依题意,得:,即.故选:C.2.解:设木条长x尺,绳子长y尺,那么可列方程组为:.故选:A.3.解:设计划租用x辆车,共有y名学生,由题意得,.故选:B.4.解:设有x人,y辆车,根据题意可得:,故答案为:.5.解:设该店有客房x间,房客y人;根据题意得:,故答案为:.6.解:设大房间有x个,小房间有y个,由某旅店一共70个房间,可得x+y=70,由大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,可得8x+6y =480,故,故答案为:.7.解:设可做成甲种小盒x个,乙种小盒y个.根据题意,得,故答案为:.8.解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元,∴当店主发现两件衣服的标价牌恰好挂反了,又找给了张某20元时,可得:0.6x+0.5y=210;顾客按照标价牌挂反了时,购买第一件打6折,第二件打5折,共记230元,得方程0.6y+0.5x=230;由此可得方程组,故答案为:.9.解:根据乙组人数是甲组人数的一半,则y=x;根据乙组人数的三分之一调入甲组时甲组比乙组多15人,得方程x+y=y+15.可列方程组为.10.解:由图形可列出关于x,y的方程组为,故答案为:.11.解:根据图示可得,故答案是:.12.解:设两种货物进货花费分别为x,y元,依题意得:.故答案是:.13.解:(1)设参与活动的教师有x人,学生有y人,由题意得:,解得:,答:参与活动的教师有4人,学生有46人;(2)(30﹣28)×2+(15﹣14)×46=54(元),答:能省54元.14.解:设租住三人间普通客房x间,租住双人间普通客房y间,由题意可得:,解得:,答:租住三人间普通客房10间,租住双人间普通客房8间.15.解:(1)设1辆甲型货车满载一次可运输x盆花卉,1辆乙型货车满载一次可运输y盆花卉,依题意得:,解得:.答:1辆甲型货车满载一次可运输500盆花卉,1辆乙型货车满载一次可运输400盆花卉.(2)依题意得:500m+400n=6500,∴m=13﹣n.又∵m,n均为正整数,∴或或,∴共有3种运输方案,方案1:该货运公司派出甲型货车9辆,乙型货车5辆;方案2:该货运公司派出甲型货车5辆,乙型货车10辆;方案3:该货运公司派出甲型货车1辆,乙型货车15辆.16.解:(1)设甲种货车每辆能装货x吨,乙种货车每辆能装货y吨,依题意得:,解得:,答:甲种货车每辆能装货3吨,乙种货车每辆能装货4吨;(2)设租用甲种货车a辆,乙种货车b辆,依题意得:3a+4b=31,又∵a,b均为非负整数,∴或或,∴共有3种租车方案,方案1:租用9辆甲种货车,1辆乙种货车;方案2:租用5辆甲种货车,4辆乙种货车;方案3:租用1辆甲种货车,7辆乙种货车.(3)方案1所需租车费为:100×9+120×1=1020(元),方案2所需租车费为:100×5+120×4=980(元),方案3所需租车费为:100×1+120×7=940(元),∵1020>980>940,∴费用最少的租车方案为:租用1辆甲种货车,7辆乙种货车,最少租车费为940元,答:费用最少的租车方案为:租用1辆甲种货车,7辆乙种货车,最少租车费为940元.17.解:(1)设A、B两种品牌电风扇每台的进价分别是x元、y元,,解得,答:A、B两种品牌电风扇每台的进价分别是100元、150元;(2)设购进A种品牌的电风扇a台,购进B种品牌的电风扇b台,利润为w元,w=(180﹣100)a+(250﹣150)b=80a+100b,∵某商店拟用1000元的总价购进A、B两种品牌的电风扇进行销售,为更好的销售,每种品牌电风扇都至少购进1台,∴100a+150b=1000且a≥1,b≥1,∴2a+3b=20(a≥1,b≥1),∴或或,∴当a=1,b=6时,w=80×1+100×6=680,当a=4,b=4时,w=80×4+100×4=720,当a=7,b=2时,w=80×7+100×2=760,由上可得,当a=7,b=2时,w取得最大值,答:为能在销售完这两种电风扇后获得最大的利润,该商店应采用购进A种品牌的电风扇7台,购进B种品牌的电风2台.18.解:(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:,解得:.答:甲种口罩购进了500盒,乙种口罩购进了400盒.(2)20×500+25×400=10000+10000=20000(个),2×900×10=18000(个).∵20000>18000,∴购买的口罩数量能满足市教育局的要求.19.解:设最初报名时女生有x人,男生有y人,依题意,得:,解得:,答:最初报名时男生有12人,女生有9人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末备考专项培优训练:二元一次方程组应用1.在当地农业技术部门指导下,小明家种植的菠萝喜获丰收.去年菠萝的收入结余12000元,今年菠萝的收入比去年增加了20%,支出减少10%,结余今年预计比去年多11400元.请计算:(1)今年结余23400元;(2)若设去年的收入为x元,支出为y元,则今年的收入为 1.2x元,支出为0.9y 元.(以上两空用含x、y的代数式表示)(3)列方程组计算小明家今年种植菠萝的收入和支出.解:(1)由题意可得,今年结余:12000+11400=23400(元),故答案为:23400;(2)由题意可得,今年的收入为:x(1+20%)=1.2x(元),支出为:y(1﹣10%)=0.9y(元),故答案为: 1.2x,0.9y;(3)由题意可得,,解得,,则1.2x=1.2×42000=50400,0.9y=0.9×30000=27000,答:小明家今年种植菠萝的收入和支出分别为50400元、27000元.2.为了让学生能更加了解温州历史,某校组织七年级师生共480人参观温州博物馆.学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车3辆,B型车6辆,则空余15个座位;若租用A型车5辆,B型车4辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)若A型车日租金为350元,B型车日租金为400元,且租车公司最多能提供7辆B 型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金.解:(1)设每辆A型车有x个座位,每辆B型车有y个座位,依题意,得:,解得:.答:每辆A型车有45个座位,每辆B型车有60个座位.(2)设租m辆A型车,n辆B型车,依题意,得:45m+60n=480,解得:n=8﹣m.∵m,n为整数,∴(舍去),,,∴有两种租车方案,方案1:租4辆A型车、5辆B型车;方案2:租8辆A型车、2辆B型车.当租4辆A型车、5辆B型车时,所需费用为350×4+400×5=3400(元),当租8辆A型车、2辆B型车时,所需费用为350×8+400×2=3600(元).∵3400<3600,∴租4辆A型车、5辆B型车所需租金最少,最少租金为3400元.3.《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的,则有50钱;若乙得到甲所有钱的,则也有50钱,问甲、乙各持钱多少?请解答此问题.解:设甲、乙的持钱数分别为x,y,根据题意可得:,解得:,答:甲、乙的持钱数分别为37.5,25.4.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和20秒的两种广告.15秒广告每播1次收费0.6万元,20秒广告每播1次收费0.8万元.若要求每种广告播放都不少于1次,且2分钟广告时间恰好全部用完.问:两种广告的播放次数有几种安排方式?每种安排方式的收益分别为多少万元?解:设播放15秒的广告x次,播放20秒的广告y次,根据题意得:15x+20y=120,解得:y=6﹣,∵x,y均为不小于1的整数,∴x是4的整数倍,∴x=4,y=3,∴只有1种安排方式,即播放15秒的广告的次数是4次,播放20秒的广告的次数是3次;播当x=4,y=3时,0.6×4+0.8×3=4.8(万元),这种安排方式的收益为 4.8万元.5.由甲、乙两运输队承包运输15000立方米沙石的任务,要求在10天之内(包含10天)完成.已知两队共有20辆汽车,甲队每辆车每天能够运输100立方米的沙石,乙队每辆车每天能够运输80立方米的沙石,前3天两队一共运输了5520立方米.(1)求甲乙两队各有多少辆汽车?(2)3天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?解:(1)设甲队有x辆汽车,乙队有y辆汽车,根据题意得:,解得:,答:甲队有12辆汽车,乙队有8辆汽车,(2)设甲队最多可以抽调m辆汽车走,根据题意得:7[100(12﹣m)+80×8]≥15000﹣5520,解得:m,m最大的整数是4,答:甲队最多可以抽调4辆汽车走.6.随着越来越多年轻家长对低幼阶段孩子英语口语的重视,某APP顺势推出了“北美外教在线授课”系列课程,提供“A课程”、“B课程”两种不同课程供家长选择.已知购买“A 课程”3课时与“B课程”5课时共需付款410元,购买“A课程”5课时与“B课程”3课时共需付款470元.(1)请问购买“A课程”1课时多少元?购买“B课程”1课时多少元?(2)根据市场调研,APP销售“A课程”1课时获利25元,销售“B课程”1课时获利20元,临近春节,小融计划用不低于3000元且不超过3600元的压岁钱购买两种课程共60课时,请问购买“A课程”多少课时才使得APP的获利最高?解:(1)设购买“A课程”1课时x元,购买“B课程”1课时y元.依题意,得:,解得:,答:购买“A课程”1课时70元,购买“B课程”1课时40元.(2)设购买“A课程”a课时,则购买“B课程”60﹣x课时.依题意,得:,解得:20≤a≤40,设利润为w,w=25a+20(60﹣a)=5a+1200,5>0,w随着a的增大而增大,故当a=40时,w最大.答:购买“A课程”40课时才使得APP的获利最高.7.某校组织八年级师生共420人参观纪念馆,学校联系租车公司提供车辆,该公司现有A,B两种座位数不同的车型,如果租用A种车3辆,B种车5辆,则空余15个座位:如果租用A种车5辆,B种车3辆,则有15个人没座位(1)求该公司A,B两种车型各有多少个座位?(2)若A种车型的日租金为260元辆,B种车型的日租金为350元辆,怎样租车能使得座位恰好坐满且租金最少?最少租金是多少?(请直接写出答案)解:(1)设公司A、B两种车型各有x个座位和y个座位,根据题意得:解得答:公司A、B两种车型各有45个座位和60个座位,(2)设公司A、B两种车型各有a辆和b辆,租金为w元,根据题意得:∴w=﹣a+2450∵45a+60b=420∴a=∵a,b为正整数∴b=1,a=8,b=4,a=4∴当a=8时,w的值最小,即W=﹣20+2450=2430∴租该公司A、B两种车型各有8辆和1辆租金最少,最少租金为2430元.8.李阿姨要为家里添加餐具,分别买了型号不同的大小两种碗,共花了80元.已知小碗每只6元,大碗每只8元,问大小碗各买了几只?解:设小碗买了x只,大碗买了y只,6x+8y=80,∵x,y均为正整数,∴,,,答:小碗4只,大碗7只;或小碗8只,大碗4只;或小碗12只,大碗1只.9.甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.10.有黑白两种小球各若干个,且同色小球质量均相等,在如图所示的两次称量的天平恰好平衡,如果每只砝码质量均为5克,每只黑球和白球的质量各是多少克?解:设每只黑球和白球的质量分别是x、y克,依题意得,解得,答:每只黑球3克,白球1克.11.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?解:(1)设甲种笔记本销售x本,乙种笔记本销售y本,依题意得,解得,答:甲种笔记本销售65本,乙种笔记本销售35本;(2)所得销售款不可能是660元设甲种笔记本销售x本,乙种笔记本销售(100﹣x)本,则8x+(100﹣x)×5=660.解得该方程的解不是整数,故销售款不可能是660元.12.某旅行社组织280名游客外出旅游,计划租乘大巴车和小巴车赴旅游景点,其中大巴车每辆可乘80人,小巴车每辆可乘40人,要求租用的车子不留空位,同时也不能超载.(1)请你写出所有的租车方案;(2)若大巴车的租金是350元/天,小巴车的租金是200元/天,请你设计出费用最少的租车方案,并算出最少的费用是多少?.解:(1)设需要租x辆大巴车,y辆小巴车,根据题意得:80x+40y=280,∴y=7﹣2x.∵x、y均为整数,∴当x=0时,y=7;当x=1时,y=5;当x=2时,y=3;当x=3时,y=1.∴租车方案有:①租7辆小巴车;②租1辆大巴车,5辆小巴车;③租2辆大巴车,3辆小巴车;④租3辆大巴车,1辆小巴车.(2)方案①所需费用为200×7=1400(元);方案②所需费用为350+200×5=1350(元);方案③所需费用为350×2+200×3=1300(元);方案④所需费用为350×3+200=1250(元).∵1250<1300<1350<1400,∴费用最少的租车方案为:租3辆大巴车,1辆小巴车,最少的租车费用为1250元.13.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的.问该兴趣小组男生、女生各有多少人?解:设该兴趣小组男生有x人,女生有y人,依题意得:,解得:.答:该兴趣小组男生有12人,女生有21人.14.某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?解:(1)设每名熟练工每月可以安装x辆电动车,新工人每月分别安装y辆电动汽车,根据题意得,解之得.答:每名熟练工每月可以安装4辆电动车,新工人每月分别安装2辆电动汽车;(2)设调熟练工m人,由题意得,12(4m+2n)=240,整理得,n=10﹣2m,∵0<n<10,∴当m=1,2,3,4时,n=8,6,4,2,即:①调熟练工1人,新工人8人;②调熟练工2人,新工人6人;③调熟练工3人,新工人4人;④调熟练工4人,新工人2人.15.【方法阅读】一般地,二元一次方程的解有无数个,但是有些二元一次方程的正整数解却只有有限个,如二元一次方程2x+3y=15的正整数解只有和两个.那么,我们如何寻找二元一次方程的正整数解呢?不妨以方程2x+3y=15为例,首先过程方程各项的特征,发现2x和15分别是偶数和奇数,可以确定3y必然是奇数,即y是奇数,再运用特值法代入尝试,即将y=1,3,5,…等奇数代入原方程一次求出相应的x的值,从而获得2x+3y=15的正整数解.同学们还可以尝试运用列表法来探索二元一次方程的正整数解.【理解运用】(1)盒子里有若干个大小相同的红球和白球,规定从中摸出一个红球的3分,摸到一个白球的4分,假设小华摸到x个红球和y个白球,共得34分,请你列出关于x、y的方程,并写出这个方程符合实际意义的所有的解.【灵活运用】(2)已知△ABC的三边m,n,p都是正整数,m,n,p,且△ABC的周长为15,则符合条件的三角形共有7个.解:(1)依题意得:3x+4y=34,有三个正整数解为,,;(2)设m≥n≥p,则由m+n+p=15,得m≥5.用试值法或者枚举法可得:,,,,,,.所以符合条件的三角形共有7个.故答案是:7.。