圆锥曲线方程知识点总结
圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结圆锥曲线是平面上的一类曲线,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
其中A、B、C、D、E、F、G、H、I、J是常数,且A、B、C不全为0。
圆锥曲线包括椭圆、双曲线和抛物线等。
1. 椭圆:椭圆是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC < 0,则为椭圆。
椭圆是一个封闭的曲线,其特点是到两个焦点的距离和固定。
椭圆在几何中有重要的应用,如椭圆的焦点在天文学中用于描述行星和卫星的轨道。
2. 双曲线:双曲线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC > 0,则为双曲线。
双曲线有两个分支,其特点是到两个焦点的距离差固定。
双曲线在几何中也有广泛的应用,如描述光线在反射和折射中的路径。
3. 抛物线:抛物线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC = 0,则为抛物线。
抛物线是一个开口向上或向下的曲线,与焦点的距离等于到准线的距离。
抛物线在物理学、工程学和建筑学等领域中有重要的应用,如描述抛物面的形状。
4. 圆锥曲线的性质:(i) 对称性:圆锥曲线可以关于x轴、y轴、z轴和原点对称。
(ii) 焦点:圆锥曲线有1个或2个焦点,焦点是与曲线特定性质相关的重要点。
(iii) 准线:圆锥曲线有1条或2条准线,准线是与曲线特定性质相关的重要线。
(iv) 渐近线:双曲线有两条渐近线,抛物线有一条渐近线。
(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程 知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=+,则点P 的轨迹是 2若P 是椭圆:12222=+by a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为3、点与椭圆、直线与椭圆的位置关系(1)点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:①点P 在椭圆上⇔ ;②点P 在椭圆内部⇔ ; ③点P 在椭圆外部⇔ .(2)直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:先联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消y 得一个一元二次方程是:(3)弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(4)直线l :y =kx +m 与椭圆:()012222>>=+b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 二、双曲线方程. 1、双曲线的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==-,则点P 的轨迹是 2(1)等轴双曲线:双曲线a y x ±=-称为等轴双曲线,其渐近线方程为 ,离心率(2)共渐近线的双曲线系方程:)0(2222≠=-λλby a x 的渐近线方程为如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为 .(3)从双曲线一个焦点到一条渐近线的距离等于 . 3、直线与双曲线的位置关系(1)一般地,设直线l :y =kx +m ……① 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0) ……②把①代入②得关于x 的一元二次方程为 . ①当b 2-a 2k 2=0时,直线l 与双曲线的渐近线 ,直线与双曲线C . ②当b 2-a 2k 2≠0时,Δ>0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ=0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ<0⇒直线与双曲线 公共点,此时称直线与双曲线 . 注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.(2)直线l :y =kx +m 与双曲线:()0,012222>>=-b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 三、抛物线方程. 1、抛物线的定义平面内与一个定点F 和一条定直线l (不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 .思考1:平面内与一个定点F 和一条定直线l (l 经过点F ),点的轨迹是 2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2), AB 的中点M (x 0,y 0),相应的准线为l .(1)以AB 为直径的圆必与准线l 的位置关系是 ; (2)|AB |= (焦点弦长用中点M 的坐标表示); (3)若直线AB 的倾斜角为α,则|AB |= (焦点弦长用倾斜角为α表示);如当α=90°时,AB 叫抛物线的通径,是焦点弦中最短的;抛物线的通径等于 . (4)求证A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2= ,y 1·y 2= . 4、直线与抛物线的位置关系1.设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成 关于x 的一元二次方程为 ,(1)若k =0,直线与抛物线有 个公共点,此时直线 于抛物线的对称轴或与对称轴 . 因此直线与抛物线有一个公共点是直线与抛物线相切的 条件. (2)若k ≠0, 当Δ>0时,直线与抛物线 ,有两个公共点;当Δ=0时,直线与抛物线 ,有一个公共点; 当Δ<0时,直线与抛物线 ,无公共点.2.直线l :y =kx +m 与抛物线:y 2=2px (p >0)的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用p 和x 0,y 0表示)3.抛物线:y 2=2px (p >0,y >0)在点A (x 0,02px )处的切线方程为 ,4.抛物线:x 2=2py (p >0)在点A (x 0,px 220)处的切线方程为 ,。
最全圆锥曲线知识点总结

最全圆锥曲线知识点总结的定义是指平面内一个动点P到两个定点F1,F2的距离之和等于常数(PF1+PF2=2a>F1F2),那么这个动点P的轨迹就是椭圆。
这两个定点被称为椭圆的焦点,两焦点的距离被称为椭圆的焦距。
注意:如果PF1+PF2=F1F2,则动点P的轨迹是线段F1F2;如果PF1+PF2<F1F2,则动点P的轨迹无图形。
2)对于椭圆,如果焦点在x轴上,那么它的参数方程是x=acosθ,y=bsinθ(其中θ为参数),如果焦点在y轴上,那么它的参数方程是y=acosθ,x=bsinθ。
如果椭圆的标准方程是x2/a2+y2/b2=1(a>b>0),那么它的范围是−a≤x≤a,−b≤y≤b,焦点是两个点(±c,0),对称中心是(0,0),顶点是(±a,0)和(0,±b),长轴长为2a,短轴长为2b,离心率为e=c/a,椭圆即为0<e<1的情况。
3)关于直线与椭圆的位置关系,如果点P(x,y)在椭圆外,那么a2+b2>1;如果点P(x,y)在椭圆上,那么a2+b2=1;如果点P(x,y)在椭圆内,那么a2+b2<1.4)焦点三角形是指椭圆上的一点与两个焦点构成的三角形。
5)弦长公式是指如果直线y=kx+b与圆锥曲线相交于两点A、B,且x1、x2分别为A、B的横坐标,那么AB=√[1+k2(x1−x2)2]。
如果y1、y2分别为A、B的纵坐标,则AB=√[1+k2(y1−y2)2]。
如果弦AB所在直线方程设为x=ky+b,则AB=√[1+k2(y1−y2)2]。
6)圆锥曲线的中点弦问题可以用“韦达定理”或“点差法”求解。
在椭圆中,以P(x,b2x,y)为中点的弦所在直线的斜率k=−a2y。
1.已知椭圆 $m x^2 + n y^2 = 1$ 与直线 $x+y=1$ 相交于$A,B$ 两点,点 $C$ 是 $AB$ 的中点,且 $AB=2\sqrt{2}$,求椭圆的方程,若 $OC$ 的斜率为 $\frac{1}{2}$,求 $m,n$ 的值。
圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。
数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。
圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。
高中数学圆锥曲线方程知识点总结.

中心原点 O(0,0)(a,0, (─a,0, (0,b , (0,─b x 轴,y 轴;长轴长 2a,短轴长 2b 原点 O(0,0)顶点(a,0, (─a,0 (0,0 对称轴 x 轴,y 轴; 实轴长 2a, 虚轴长 2b. x轴
焦点F1(c,0, F2(─c,0 F1(c,0, F2(─c,0 p F ( ,0 2 p 2 x=± 准线 a2 c x=± a2 c x=- 准线垂直于长轴,且在椭圆外. 焦距 2c () 2 2 准线垂直于实轴,且在两顶点
的内侧. 2c () 2 2 准线与焦点位于顶点两侧,且到顶点的距离相等. 离心率【备注 1】双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率 e (2)共渐近线的双曲线系方程:为的渐近线方程为如果双曲线的渐近线 x2 y2 时,它的双曲线方程可设为【备注 2】抛物线:(1)设抛物线的标准方程为 y =2px(p>0,则抛物线的焦点到其顶点的距离为离 p ,焦点到准线的距离为 p.
2 2 p ,顶点到准线的距 2 (2)已知过抛物线 y =2px(p>0焦点的直线交抛物线于
A、B 两点,则线段 AB 称为焦点弦,设 A(x1,y1,B(x2,y2,则弦长
+p 或为直线 AB 的倾斜角, y,
叫做焦半径
弦长公式:。
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。
一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。
(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。
点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。
(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。
(完整版)圆锥曲线知识点归纳总结
完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
圆锥曲线方程知识点总结
圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
圆锥曲线知识点全归纳(完整精华版)
圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。
下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。
一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。
根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。
(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。
椭圆有两个焦点,与这两个焦点的距离之和是常数。
椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。
(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。
抛物线是一条对称曲线,其开口方向由切割平面的位置决定。
抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。
(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。
双曲线有两个焦点,与这两个焦点的距离之差是常数。
双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。
二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。
(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。
三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。
2. 椭圆的长轴和短轴分别与x轴和y轴平行。
3. 椭圆有两个焦点,对称于椭圆的长轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎛ 1⎞ ⎝ 8⎠
(1)椭圆:由 x 2 , y 2 分母的大小决定,焦点在分母大的坐标轴上。如已知方程 点在 y 轴上的椭圆,则 m 的取值范围是__(答: ( −∞, −1) ∪ (1, ) ) (2)双曲线:由 x , y 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为 1 时,则椭圆长轴的最小值为__(答: 2 2 ) (2)双曲线(以
x2 y 2 − = 1( a > 0, b > 0 )为例):①范围: x ≤ −a 或 x ≥ a , y ∈ R ; a2 b2
-1-
的方程为_______(答: x2 − y2 = 6 ) (3) 抛物线: 开口向右时 y 2 = 2 px( p > 0) , 开口向左时 y 2 = −2 px ( p > 0) , 开口向上时 x 2 = 2 py( p > 0) , 开口向下时 x 2 = −2 py ( p > 0) 。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断)如: y = 2 x 2 焦点 ⎜ 0, ⎟
{
点在 y 轴上时
y2 x2 + =1( a > b > 0 )。方程 Ax2 + By2 = 1 表示椭圆的充要条件是什么?(A,B,同正,A a 2 b2
1 1 x2 y2 (2) + = 1 表示椭圆,则 k 的取值范围为____(答: ( −3, − ) ∪ (− , 2) ); 3+k 2−k 2 2
≠B)。如(1)已知方程
若 x, y ∈ R ,且 3 x2 + 2 y 2 = 6 ,则 x + y 的最大值是____, x 2 + y 2 的最小值是___(答: 5, 2 ) (2) 双曲线: 焦点在 x 轴上:
x2 y 2 y 2 x2 焦点在 y 轴上: 2 − 2 =1 ( a > 0, b > 0 ) 。 方程 Ax2 + By2 = 1 − 2 =1, 2 a b a b
2 2 2 2 2 2
x2 y2 + =1 (a > b > 0) 为例) : ①范围: − a ≤ x ≤ a, −b ≤ y ≤ b ; ②焦点: 两个焦点 ( ±c, 0) ; a2 b 2
③对称性:两条对称轴 x = 0, y = 0 ,一个对称中心(0,0),四个顶点 ( ±a, 0), (0, ±b) ,其中长轴长为
x2 y2 5 ,且与椭圆 + = 1 有公共 2 9 4
表示双曲线的充要条件是什么?(A ,B 异号)。如(1)双曲线的离心率等于
焦点,则该双曲线的方程_______(答:
x2 2 − y = 1 ); 4
2 的双曲线 C 过点 P(4,− 10) ,则 C
(2)设中心在坐标原点 O ,焦点 F1 、 F2 在坐标轴上,离心率 e =
2
+ PF 2
2
= 12 (答:C);
(2)方程 (x − 6)2 + y 2 − (x + 6)2 + y 2 = 8 表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离 心率 e 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用 第二定义对它们进行相互转化。如 (08 宣武一模 ) 已知 P 为抛物线 y =
2 a ,短轴长为 2 b ;④准线:两条准线 x = ±
a2 c ; ⑤离心率: e = ,椭圆 ⇔ 0 < e < 1 , e 越小,椭圆越圆; c a
e 越大,椭圆越扁。如(1)若椭圆
x2 y 2 10 ,则 的值是__(答:3 或 25 ); m + = 1 的离心率 e = 3 5 m 5
PA + PM 的最小值是 _____
1 2 17 x 上的动点,点 P 在 x 轴上的射影为 M ,点 A 的坐标是 ( 6, ) ,则 2 2 19 (答: ) 2
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在 x 轴上时
x2 y 2 = a cos ϕ + = 1( a > b > 0 ) ⇔ x 焦 y = b sin ϕ (参数方程,其中 ϕ 为参数), a2 b2
2011 年圆锥曲线方程知识点总结
1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点 F 1 , F 2 的距离的和等于常数 2 a , 且 此常数 2 a 一定要大于 F1 F2 ,当常数等于 F1 F2 时,轨迹是线段 F 1 F 2 ,当常数小于 F1 F2 时,无轨迹;双曲线 中,与两定点 F 1 ,F 2 的距离的差的绝对值等于常数 2 a ,且此常数 2 a 一定要小于|F 1 F 2 | ,定义中的“绝对值” 与 2 a <|F 1 F 2 |不可忽视。若 2 a =|F 1 F 2 | ,则轨迹是以 F 1 ,F 2 为端点的两条射线,若 2 a ﹥|F 1 F 2 | ,则轨迹不 存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如 (1) 已知定点 F1 (−3,0), F2 (3, 0) , 在满足下列条件的平面上动点 P 的轨迹中是椭圆的是 A. PF 1 + PF 2 = 4 B. PF 1 + PF 2 = 6 C. PF1 + PF 2 = 10 D. PF 1
2 2
x2 y2 + = 1表示焦 m −1 2 − m
3 2
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点 F 1 ,F 2 的位置,是椭圆、双曲 线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数 a, b ,确定椭圆、双曲线的形状和大 小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向; (2)在椭圆中, a 最大, a = b + c ,在双曲线中, c 最大, c = a + b 。 (3)不要思维定势认为圆锥曲线方程都是标准方程 4.圆锥曲线的几何性质: (1) 椭圆 (以