数学人教版八年级下册图形折叠问题的作业

合集下载

数学人教版八年级下册图形的折叠问题

数学人教版八年级下册图形的折叠问题

T D
B
BT BC TC
2 2
2
(10 x) 2 102 (10 x) 2 E 即, 解得 ,
x 2 .5
即. AT 2.5 --------14分
O
图③
C x
∴Rt△ATE≌Rt△DTE(HL) ∴AT=DT. ----------------12分
九年级 数学 课堂小结
同一个直角三角形
相似 面积
图形的折叠 一题多法 方法二:等面积法
九年级 数学
1 3-x

4

1
①x
④ ③
4
5

3-x

x
5
3
3
x
5
SAECD S1 S2 S4
1 3 x 5 (3 x 3) 5 6 x S矩形ABCD S1 S2 S3 S4 2 2 2
解: 2)证明:(如图②)
由题意可知∠1=∠2. ∵EG∥x轴, ∴∠1=∠3. ∴∠2=∠3. ∴EH=CH. ---------------6分
y A
B D
(m,n) H 10-m 3
A’ F
E O
m
m n 2
1 P
G n C x
3)
m
1 2 n 5. 20
D 3 -----------9 分 2 A
4 ,AF= 1
1 3-x x 3 x
5
4
5 3
5
勾股 相似 面积
九年级 数学
图形的折叠
一题多法
方法一:勾股定理
A
1 x
F
1 3-x x 5
4 5 3

【暑假分层作业】第04练 几何最短路径问题或折叠中的应用-2022年八年级数学(人教版)

【暑假分层作业】第04练 几何最短路径问题或折叠中的应用-2022年八年级数学(人教版)

第04练几何最短路径问题或折叠中的应用一、单选题1.如图,一只蜘蛛在一块长方体木块的一个顶点A处,一只苍蝇在这个长方体的对角顶点G处,若AB=3cm,BC=5cm,BF=6cm,则最短的爬行距离是()A.10 B.14 C.106D.130【答案】A【解析】【分析】把长方体展开,根据两点之间线段最短得出最短路线AG,根据勾股定理,即可求出AG长度;【详解】把长方体展开有三种情况:当蜘蛛从A出发到EF上再到G时,如下图所示=,5BC cm∴==,FG BC cm5∴=+=,BG cm5611()在Rt ABG中,22+=;311130()AG cm当蜘蛛从A出发到BF上再到G时,如下图所示3AB cm =,5BC cm =,358()AG cm ∴=+=,6BF cm =,6CG BF cm ∴==,在Rt ABG 中,228610()AG cm =+=,当蜘蛛从A 出发到EH 上再到G 时,如下图所示6=AE cm ,=3EF cm 5=FG cm ,∴AF=9cm ,在Rt AFG 中,2295106()=+=AG cm ,13010610>>.故选:A .【点睛】本题考查勾股定理的应用,掌握两点之间线段最短是解题的关键.2.如图,圆柱的高为4cm ,底面半径为3πcm ,在圆柱下底面的A 点处有一只蚂蚁,它想吃到上底面B 处的食物,已知四边形ADBC 的边AD 、BC 恰好是上、下底面的直径、问:蚂蚁食到食物爬行的最短距离是( )cm .A .5B .5πC .3+4πD .3+8π【解析】【分析】如图,先把圆柱体沿着直线AC 剪开,得到矩形如图示:可得线段AB 的长度为所求的最短距离,再利用勾股定理可得答案.【详解】解:把圆柱体沿着直线AC 剪开,得到矩形如下:则线段AB 的长度为所求的最短距离.由题意得圆柱的高为:4,cm 底面半径为3cm π,1134,=2=3,22AC BC C ππ∴==⨯⨯底面圆 2222345,AB AC BC ∴=+=+=所以蚂蚁至少要爬行5cm 路程才能吃到食物.故选:A【点睛】本题考查平面展开最短路径问题,弄懂圆柱展开图是长方形,根据两点之间线段最短是解题的关键.3.如图是一个三级台阶,它的每一级的长,宽,高分别是20dm,3dm,2dm ,A 和B 是这个台阶相对的端点,点A 处有一只蚂蚁,想到B 处去吃食物,则这只蚂蚁爬行的最短距离为( )A .25dmB .26dmC .24dmD .27dm【答案】A【解析】【分析】 先将图形平面展开,再由勾股定理根据两点之间线段最短进行解答.解:三级台阶平面展开图为长方形,长为20dm ,宽为(2+3)×3dm ,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B 点最短路程为x dm ,由勾股定理得:x 2=202+[(2+3)×3]2=252, 解得x =25.故选:A .【点睛】本题的是平面展开-最短路径问题,解答此类问题时要先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题4.如图所示折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知CD =1,∠B =30︒,则AC 的长是( )A .1B .2C 3D .3【答案】C【解析】【分析】 由三角形的内角和可得60BAC ∠=︒,由折叠可得,30B BAD ∠=∠=︒,继而求出30CAD ∠=︒,再根据含30度角的直角三角形的性质可得22AD CD ==,再利用勾股定理求解即可.【详解】90,30C B ∠=︒∠=︒,60BAC ∴∠=︒,由折叠可得,30B BAD ∠=∠=︒,30CAD ∴∠=︒,在Rt ACD △中,1CD =,22AD CD ∴==, 由勾股定理得223AC AD CD =-=,故选:C .【点睛】本题考查了三角形的内角和定理,折叠的性质,含30度角的直角三角形的性质,勾股定理,熟练掌握知识点是解题的关键.5.如图,在Rt △ABC 中,∠ACB =90°, AB =5,AC =3,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当∠DEB 是直角时,DF 的长为( ).A .5B .3C .32D .34【答案】C【解析】【分析】 如图,由题意知90AED C ∠=∠=︒,3AE AC ==,DE CD =,90AED DEB ∠=∠=︒,可知A EB 、、三点共线,E 与F 重合,在Rt ABC 中,由勾股定理得22BC AB AC =-,求BC 的值,设DF DE CD x ===,4BD x =-,在Rt BDE 中,由勾股定理得222BE BD DE =-,计算求解即可.【详解】解:如图,∵DEB ∠是直角∴90DEB ∠=︒由题意知90AED C ∠=∠=︒,3AE AC ==,DE CD =∴90AED DEB ∠=∠=︒∴A E B 、、三点共线∴E 与F 重合在Rt ABC 中,由勾股定理得224BC AB AC =-=设DF DE CD x ===,4BD x =-在Rt BDE 中,由勾股定理得222BE BD DE =-即()22224x x =--解得32x = ∴DF 的长为32故选C .【点睛】本题考查了折叠的性质,勾股定理等知识.解题的关键在于明确A E B 、、三点共线,E 与F 重合.6.如图,Rt ABC 中,90,4,6B AB BC ∠=︒==,将ABC 折叠,使点C 与AB 的中点D 重合,折痕交AC 于点M ,交BC 于点N ,则线段CN 的长为( ).A .73B .83C .3D .103【答案】D【解析】【分析】由折叠的性质可得DN =CN ,根据勾股定理可求DN 的长,即可得出结果.【详解】解:∵D 是AB 中点,AB =4,∴AD =BD =2,∵将△ABC 折叠,使点C 与AB 的中点D 重合,∴DN=CN,∴BN=BC-CN=6-DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(6-DN)2+4,∴DN=103,∴CN=DN=103,故选:D.【点睛】本题考查了翻折变换、折叠的性质、勾股定理,熟练运用折叠的性质是本题的关键.二、填空题7.长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是_________.【答案】25cm【解析】【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:只要将长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10,高为20,点B与点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:AB22221520BD AD+=+;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:AB=22222510529BD AD+=+=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:AB=2222305537AC BC+=+=;∵25529537<<∴蚂蚁爬行的最短距离是25cm,故答案为:25cm.【点睛】此题考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可,正确掌握勾股定理及长方体的不同展开方式是解题的关键.8.如图,这是一个供滑板爱好者使用的U型池的示意图,该U型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为32πm的半圆,其边缘AB=CD=15m,点E在CD上,CE=3m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为_____m.(边缘部分的厚度忽略不计)【答案】20【解析】【分析】要求滑行的最短距离,需将该U 型池的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:如图是其侧面展开图:AD =1322ππ=16(m ), AB =CD =15m .DE =CD -CE =15-3=12(m ),在Rt △ADE 中,AE =2222161220AD DE +=+=(m ).故他滑行的最短距离约为20m .故答案为:20.【点睛】本题考查了平面展开-最短路径问题,本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.9.如图,海上救援船要从A 处到海岸l 上的M 处携带救援设备,再回到海上C 处对故障船实施救援,使得行驶的总路程AM CM +为最小.已知救援船和故障船到海岸l 的最短路径分别为AB 和CD ,20BD =海里,60AMB ∠=°,救援船的平均速度是25节(1节=1海里/小时),则这艘救援船从A 处最快到达故障船所在C 处的时间为 ________小时.【答案】1.6【解析】【分析】作A 关于BD 的对称点Q ,连接CQ 即可,求出AM +CM =QC ,根据勾股定理求出CQ 即可.【详解】解:作A 关于BD 的对称点Q ,连接CQ ,交BD 于M ,则此时点M 为所求;∴AM +CM =QM +CM =CQ ,过Q 作QR ⊥CD ,交CD 的延长线于R ,则四边形BQRD 是矩形,所以BD =QR ,BQ =DR ,∵A 、Q 关于BD 对称,∴AB =BQ =DR ,∵∠AMB =60°,30A ∴∠=︒ ∴223AB AM BM BM -∴BM 3,AM =2BM ,CM =2MD ∴AM +CM =2BD =2×20=40(海里),即CQ =40(海里),∵救援船的速度是25节(1节=1海里/小时),∴这艘救援船最快4025=1.6(小时)到达故障船. 故答案为:1.6.【点睛】本题考查了轴对称−最短路线问题,能找出点M 的位置是解此题的关键. 10.如图,在Rt ABC 中,90,3,4B AB BC ∠=︒==.将ABC 折叠,使点B 恰好落在边AC 上,与点B '重合,AE 为折痕,则EB C '的周长为__________.【答案】6【解析】【分析】首先利用勾股定理求出AC=5,根据折叠得到B’C=2,求出三角形的周长.【详解】解:R t△ABC中,∠B=90°,∴AC=2222+=+=,AB BC345由折叠知AB’=AB=3,∴B’C=AC-AB’=5-3=2,∴△B’EC的周长为B’C+EC+B’E=B’C+EC+BE=B’C+CB=2+4=6,故答案为6.【点睛】本题考查折叠的性质以及勾股定理,解决问题的关键是分清折叠前后的对应的关系.11.如图,小明将一张正方形纸片对折,使得AB与CD重合,折痕为EF,展开后再沿BH 折叠,使得点C刚好落在折痕EF上的C′处,若CH=1cm,则BC= _____cm.3【解析】【分析】连接CC′,证明△BCC′是等边三角形,再由折叠的性质得到∠HBC=∠HBC′=30°,利用含30度角的直角三角形的性质求解即可解决问题.【详解】解:如图,连接CC ′,由折叠的性质知,折痕为EF 是BC 的垂直平分线,∴BC ′=CC ′,又由折叠的性质知,BC = BC ′,∠HBC =∠HBC ′,∴BC ′=CC ′=BC ,∴△BCC ′是等边三角形,∴∠C ′BC =60°,∴∠HBC =∠HBC ′=30°,在Rt △HBC 中,∠HBC =30°,CH =1cm ,∴HB =2cm ,∴BC =2222213BH CH -=-=(cm ),故答案为:3.【点睛】本题考查了翻折变换的性质,等边三角形的判定和性质,勾股定理,解决本题的关键是掌握翻折的性质.12.如图,CD 是△ABC 的中线,将△ACD 沿CD 折叠至A CD '△,连接AA '交CD 于点E ,交CB 于点F ,点F 是A E '的中点.若EDA '△的面积为12,8A B '=,则点F 到AC 的距离为______.【答案】365【解析】【分析】过点F 作FH ⊥AC 于点H ,由翻折的性质可知S △AA 'D =24,由D 为AB 的中点,则S△AA'B=2S△AA'D=48,得AA'=12,再通过AAS证明△A'BF≌△ECF,得CE=A'B=8,在Rt△CAE 中,由勾股定理求出AC的长,最后通过面积法即可求出FH的长.【详解】解:如图,过点F作FH⊥AC于点H,根据翻折的性质得:AD=A'D,AA'⊥CD,AE=A'E,∵CD是△ABC的中线,∴CD=BD,∴AD=BD=A'D,∴∠AA'B=90°,又∵S△A'DE=12,∴S△ADE=12,∴S△ADA'=24,又∵D为AB的中点,∴S△AA'B=2S△AA'D=48,即12×AA′×A′B=48,∴AA'=12,又∵F为A'E的中点,∴A'F=EF,在△A'BF与△ECF中,A F EFCFE BFACEF BA F'=⎧⎪∠='⎨⎪∠=∠'⎩,∴△A'BF≌△ECF(AAS),∴CE=A'B=8,∵AA'=2A'E,A'E=2EF=6,∴EF=3,AF=9,在Rt△CAE中,由勾股定理得:CA=22AE CE+=10,在△CAF中,CA•HF=AF•CE,∴HF=9810⨯=365,即点F到AC的距离为365,故答案为:365.【点睛】本题主要考查了翻折的性质,全等三角形的判定与性质,勾股定理等知识,运用等积法求垂线段的长是解题的关键.三、解答题13.如图,是用棱长为1cm的两个正方体拼成的新几何体,求一只蚂蚁从顶点A出发沿着新几何体的表面爬行到顶点B的最短路程是多少cm?【答案】22cm【解析】【分析】根据两点之间线段最短,将组合体图形转化为平面图形,进而勾股定理求解即可【详解】解:如图,将组合体的上底面展开,点B到了点B'的位置,蚂蚁沿A D B→→所在的直线运动到B'路程最短,∴22222222AB AC B C'=++若按以下方式展开,则2AB'=+=1310>1022即蚂蚁从顶点A出发到顶点B的最短路程是22cm.【点睛】本题考查了勾股定理的应用,将立体图形转化为平面图形是解题的关键.14.吴老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路径长.(1)如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿正方体表面爬到点C1处;(2)如图2,长方体底面是边长为5cm的正方形,高为6cm,一只蚂蚁欲从长方体底面上的点A沿长方体表而爬到点C1处;(3)如图3,是一个底面周长为10cm,高为5cm的圆柱体,一只蚂蚁欲从圆柱体底面上的点A沿圆柱体侧面爬到点C处.【答案】(1)蚂蚁需要爬行的最短路径长为55;(2)蚂蚁需要爬行的最短路径长为234;(3)蚂蚁需要爬行的最短路径长为52.【解析】【分析】(1)根据正方体的侧面展开图,利用勾股定理求出AC1的长即可得答案;(2)分横向展开和竖向展开两种情况,分别利用勾股定理求出AC1的长,比较即可得答案;(3)画出圆柱侧面展开图,利用勾股定理求出AC的长即可得答案.【详解】(1)正方体的侧面展开图如图所示:AC 1为蚂蚁需要爬行的最短路径长,∵正方体的棱长为5cm ,∴AC =10,CC 1=5,∴AC 1=22221105AC CC +=+=55cm .∴蚂蚁需要爬行的最短路径长为55cm .(2)分两种情况:①如图,当横向展开时:AC =10,CC 1=6,∴AC1=22221106AC CC +=+=234cm ,②如图,当竖向展开时:AD =11,DC 1=5,∴AC1=22221115AD DC +=+=146cm ,∵234<146,∴蚂蚁需要爬行的最短路径长为234cm .(3)圆柱侧面展开图如图所示:∵圆柱底面周长为10cm ,高为5cm ,∴BC =5,AB =5,∴AC =222255AB BC +=+=52cm ,∴蚂蚁需要爬行的最短路径长为52cm .【点睛】本题考查立体图形的侧面展开图及勾股定理,熟记各立体图形的侧面展开图是解题关键. 15.如图直角三角形纸片中,∠C =90°,AB =10,BC =8,AC =6,沿点B 的直线折叠这个三角形,使点C 在AB 边上的点E 处,折痕为BD .(1)求△ADE 的周长;(2)求DE 的长.【答案】(1)8;(2)83【解析】【分析】(1)根据折叠的性质可得BE =BC =8,DE =CD ,则AE =AB -BE =2,即可得到△ADE 的周长=AD +AE +DE =AD +DE +AE =AC +AE =8;(2)设CD =DE =x ,则AD =AC -CD =6-x ,由折叠的性质可知∠DEB =∠C =90°,则∠DEA =90°,即可得到222AD AE DE =+,则()22262x x -=+,由此求解即可.【详解】解:(1)由折叠的性质可知,BE =BC =8,DE =CD ,∴AE =AB -BE =2,∴△ADE 的周长=AD +AE +DE =AD +DE +AE =AC +AE =8;(2)设CD =DE =x ,则AD =AC -CD =6-x ,由折叠的性质可知∠DEB =∠C =90°,∴∠DEA =90°,∴222AD AE DE =+,∴()22262x x -=+, 解得83x =, ∴83DE =. 【点睛】本题主要考查了折叠的性质,勾股定理,解题的关键在于能够熟练掌握折叠的性质. 16.矩形ABCD 在平面直角坐标系的位置如图所示,F 为AB 上一点,将BCF △沿CF 折叠,使点B 恰好落在AD 与y 轴的交点E 处.连接CE ,若,AE AB 的长满足24(8)0AE AB -+-=.(1)求点A ,B 的坐标;(2)求点D 的坐标;(3)在平面内是否存在点P ,使以E ,F ,C ,P 为顶点的四边形为平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)A (-4,8)B (-4,0)(2)D (6,8)(3)P 1(2,-3)、P 2(10,3)、P 3(-10,13)【解析】【分析】(1)通过算术平方根、平方数的非负性求出AE 、AB 的值;(2)设未知边,通过勾股定理构建等式,再求出未知边,从而求出坐标;(3)分三种情况讨论:CF 作对角线;CE 作对角线;EF 作对角线.(1)24(8)0AE AB --=得:AE -4=0且AB -8=0∴AE =4AB =8∴A (-4,8)B (-4,0)(2)解:设AE 为x ,根据勾股定理有:()22284x x --=解得:x =3设ED 为y ,根据勾股定理有:()22284y y +=+ 解得:y =6∴D (6,8)(3)∵点E 到点F :(0-4,8-3)=F (-4,5)∴P 1=(6-4,0-3)=(2,-3)∵点F 到点E :(—4+4,5+3)=E (0,8)∴P 2=(6+4,0+3)=(10,3)∵点C 到点E :(6-6,0+8)=E (0,8)∴P 3=(-4-6,5+8)=(-10,13)【点睛】本题考查直角坐标系和勾股定理、动点问题,掌握相应知识和技能是本题关键. 17.如图是三个全等的直角三角形纸片,且::3:4:5AC BC AB =,按如图的三种方法分别将其折叠,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在角的两边重合,记折叠后不重叠部分面积分别为123,,S S S .(1)若3AC =,求1S 的值.(2)若1213S S +=,求①单个直角三角形纸片的面积是多少?②此时3S 的值是多少?【答案】(1)32(2)①36;②367【解析】【分析】 (1)设DE =CE =x ,则BE =4-x ,依据S △ABE =12AB ×DE =12BE ×AC ,即可得到x 的值,进而得出S 1的值.(2)①如图1,依据S△ABE=12AB×DE=12BE×AC,即可得到DE=32x,进而得出S1=32x2;如图2,依据S△ABN=12AB×HN=12AN×BC,即可得到EN=43x,进而得出S2=x2,再根据S1+S2=13,即可得到x2=6,进而得出单个直角三角形纸片的面积.②如图3,由折叠可得,AC=CF=3x,所以BF=BC-CF=4x-3x=x,则S3=13S△CMF=13S△ACM,所以S3=17ABCS,即可求解.(1)解:∵AC∶BC∶AB=3∶4∶5,AC=3,∴BC=4,AB=5,由折叠可得,DE=CE,∠ADE=∠C=90°,AD=AC=3,设DE=CE=x,则BE=4﹣x,∵S△ABE=12AB×DE=12BE×AC,∴AB×DE=BE×AC,即5x=3(4﹣x),解得x=32,∴S1=12BD×DE=13222⨯⨯=32.(2)解:由AC:BC:AB=3:4:5,可设AC=3x,BC=4x,AB=5x,①如图1,由折叠可得,AD=AC=3x,BD=5x-3x=2x,DE=CE,∠ADE=∠C=90°,∵S△ABE=12AB×DE=12BE×AC,∴AB×DE=BE×AC,即5x×DE=(4x-DE)×3x,解得DE=32 x,∴S1=12BD×DE=12×2x×32x=32x2;如图2,由折叠可得,BC=BH=4x,HN=CN,∴AH=x,AN=3x-HN,∵S△ABN=12AB×HN=12AN×BC,∴AB×HN=AN×BC,即5x×HN=(3x-HN)×4x,解得HN=43 x,∴S 2=12AH ×HN =12×x ×43x =23x 2, ∵S 1+S 2=13,∴32x 2+23x 2=13, 解得x 2=6,∴S △ABC =12×3x ×4x =6x 2=36.答:单个直角三角形纸片的面积是36;②如图3,由折叠可得,AC =CF =3x ,∴BF =BC -CF =4x -3x =x ,∴S 3=13S △CMF =13S △ACM , ∴S 3=17ABC S =367, 答:此时S 3的值为367. 【点睛】本题主要考查了翻折变换(折叠问题),折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是利用面积法求得某些线段的长度.18.如图,M ,N 分别为锐角AOB ∠边OA ,OB 上的点,把AOB ∠沿MN 折叠,点O 落在AOB ∠所在平面内的点C 处.(1)如图1,点C 在AOB ∠的内部,若20CMA ∠=︒,50CNB ∠=︒,求AOB ∠的度数.(2)如图2,若45AOB ∠=︒,2ON =C 在直线OB 上方,CM 与OB 交于点E ,且MN ME =,求折痕MN 的长.(3)如图3,若折叠后,直线MC OB ⊥,垂足为点E ,且5OM =,3ME =,求此时ON 的长.【答案】(1)35O ∠=︒(2)2MN =(3)52ON =或10 【解析】【分析】(1)根据折叠知,()1180802OMN CMN CMA ∠=∠=︒-∠=︒,65ONM ∠=︒根据三角形内角和定理即可求得答案;(2)根据MN ME =,由等边对等角可得ENM MEN ∠=∠,设OMN CMN x ∠=∠=度,根据三角形内角和为180°,建立一元一次方程解方程求解即可求得30OMN ∠=︒,过N 作NH OM ⊥于H ,根据勾股定理求得1NH =,根据含30度角的直角三角形的性质即可求得MN 的长;(3)①当点C 在OB 上方时,②当点C 在OA 下方时,设ON x =,则4NE OE ON x =-=-,勾股定理求解即可;(1)由折叠知,()1180802OMN CMN CMA ∠=∠=︒-∠=︒, 同理得65ONM ∠=︒,∴18035OMN ONM AOB =︒-∠-∠=∠︒.(2)如图,∵MN ME =,∴ENM MEN ∠=∠,设OMN CMN x ∠=∠=度,∵45AOB ∠=︒,∴(45)ENM MEN x ∠=∠=+度,∴()245180x x ++=,解得30x =,即30OMN ∠=︒,过N 作NH OM ⊥于H ,∵2ON =∴1NH =,∴2MN =.(3)当点C 在OB 上方时,如图3-1∵5OM =,3ME =,直线MC OB ⊥,∴4OE =,设ON x =,则4NE OE ON x =-=-,又由折叠知:5CM OM ==,CN ON x ==,∴532CE CM ME =-=-=,在Rt CNE 中,根据勾股定理,得()22242x x -+= 解得52x =,即52ON =;当点C 在OA 下方时,如图3-2由折叠知:CM OM =,CN ON =,∴538CE CM ME =+=+=,设ON x =,则4NE ON OE x =-=-,在Rt CNE 中,根据勾股定理,得()22248x x -+=,解得10x =,即10ON =.【点睛】本题考查了折叠的性质,三角形内角和定理,等边对等角求角度,勾股定理,分类讨论是解题的关键.1.如图,在纸片ABC ∆中,1230AB AC B ︒==∠=,,折叠纸片,使点B 落在AC 的中点D处,折痕为EF ,则DEF ∆的面积为( )A 493B .3C .3D 563 【答案】A【解析】【分析】过点D 作AB 的垂线,垂足为G ,过D 作CF 的垂线,垂足为H ,过A 作BC 的垂线,垂足为N , 分别求出△DEA 和△DFC 的面积,利用S △DEF =12×(S △ABC -S △DEA -S △DFC )可得结果.【详解】解:过点D 作AB 的垂线,垂足为G ,∵∠BAC =120°,∴∠GAC =60°,∠GDA =30°,∴AG =11324AD AC ==,DG 2233AD AG -= 设AE =x , 则BE =12-x =DE ,在Rt △DGE 中,222DE GE GD =+,即()()2212327x x -=++,解得:x =185, ∴S △ADE =12DG ×AE =1183325⨯⨯2735过D 作CF 的垂线,垂足为H ,过A 作BC 的垂线,垂足为N ,∵30B ,∴AN =12AB =6,BN 2212663 ,∴BC =123设DF =y ,则CF =123y ,DH =132CD =,CH 2233CD DH -= 则有222DH FH DF +=,即(222312333y y +-=, 解得:143y 则S △DFC =111433311322DH CF ⎛⋅=⨯⨯= ⎝⎭ ∴S △DEF =12 ×(S △ABC -S △DEA -S △DFC )=1122DEA DFC BC AN S S ⎛⎫⨯⋅⋅-- ⎪⎝⎭△△=112712363113225⎛⎫⨯⨯⨯-- ⎪⎝⎭ = 4935故选A .【点睛】此题主要考查了翻折变换以及勾股定理、等腰三角形的性质等知识,正确得出AE 、BF 的长是解题关键.2.如图,把等边ABC ∆沿着DE 折叠,使点B 恰好落在AC 边上的点B '处,且DB AC '⊥,若6cm B C '=,则AE =_____cm .【答案】333【解析】【分析】先根据30°直角三角形的特点求出CD 、B D ',再根据折叠求出BC 的长,最后证明90B EA '∠=︒即可利用30°直角三角形的特点求出AE .【详解】∵等边三角形ABC ∆∴60∠=∠=∠=︒A B C ,AC BC =∵DB AC '⊥,6cm B C '=∴30B DC '∠=︒∴212CD B C '==∴2263DB CD B C ''+∵折叠∴60B EB D ,63DB BD '==∴30AB E '∠=︒,1263AC BC DC BD ==+=+∴18090B EA A AB E ''∠=-∠-∠=︒,663AB AC B C ''=-=+∴13332AE AB '==+ 故答案为:333+【点睛】本题考查折叠的性质、勾股定理、30°的直角三角形的性质、等边三角形的性质,证明90B EA '∠=︒是解题的关键.3.如图,一透明圆柱形无盖容器高12cm ,底面周长24cm ,在杯口点B 处有一滴蜂蜜,此时一只蚂蚁在杯外壁底部与蜂蜜相对的A 处.(1)若蜂蜜固定不动,求蚂蚁吃到蜂蜜所爬行的最短路线长;(2)若该蚂蚁刚出发时发现B 处的蜂蜜正以0.5cm /s 的速度沿杯内壁下滑,它便沿最短路径在8秒钟时吃到了蜂蜜,求此蚂蚁爬行的平均速度.【答案】(1)122cm ;(2)2.5cm /s【解析】【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【详解】(1)如图所示.∵圆柱形玻璃容器,高12cm ,底面周长为24cm ,∴AD =12cm ,∴AB 22221212AD BD =+=+=122(cm ).答:蚂蚁要吃到食物所走的最短路线长度是122cm ;(2)∵AD =12cm ,∴蚂蚁所走的路程2212(124)=++=20,∴蚂蚁的平均速度=20÷8=2.5(c m/s ).【点睛】本题考查了平面展开﹣最短路径问题,将图形展开,利用勾股定理进行计算是解题的关键.4.定义:若a ,b ,c 是△ABC 的三边,且2222a b c +=,则称△ABC 为“方倍三角形”.(1)对于①等边三角形②直角三角形,下列说法一定正确的是___.A. ①一定是“方倍三角形”B. ②一定是“方倍三角形”C. ①②都一定是“方倍三角形”D. ①②都一定不是“方倍三角形”(2)若Rt△ABC是“方倍三角形”,且斜边3AB=,则该三角形的面积为___;(3)如图,△ABC中,120ABC∠=,45ACB∠=,P为AC边上一点,将△ABP沿直线BP 进行折叠,点A落在点D处,连结CD,AD,若△ABD为“方倍三角形”,且AP=2,求BC的长.【答案】(1)A(2)2231【解析】【分析】(1)直接利用“方倍三角形”的定义对等边三角形和直角三角形分别判断即可;(2)根据勾股定理和“方倍三角形”的定义求得直角三角形的三边长,即可求得直角三角形的面积;(3)根据题意可得△ABP≌△DBP,根据“方倍三角形”定义可得△ABD为等边三角形,从而证明△APD为等腰直角三角形,可得AP=DP2,延长BP交AD于点E,根据勾股定理求出BE的长,根据△PBC为等腰直角三角形,即可求得结论.(1)对于①等边三角形,三边相等,设边长为a,则2222a a a+=,根据“方倍三角形”定义可知:等边三角形一定是“方倍三角形”;对于②直角三角形,三边满足关系式:222+=a b c,根据“方倍三角形”定义可知:直角三角形不一定是“方倍三角形”;故选:A故答案为:A ;(2)设Rt △ABC 其余两条边为a ,b , 则满足223a b +=,根据“方倍三角形”定义,还满足:2232a b +=, 联立解得1a b =⎧⎪⎨=⎪⎩则Rt △ABC ;(3) 由题意可知:ABP DBP ≅, ∴,BA BD ABP DBP =∠=∠, 根据“方倍三角形”定义可知: 222222BA BD AD BA +==, ∴AD AB BD ==,∴△ABD 为等边三角形,60BAD ∠=, ∴30ABP DBP ∠=∠=, ∴90PBC ∠=,∵45CPB ∠=,∴18045135APB ∠=-=, ∴90DPC ∠=,∵2,1045ABC ACB ∠=∠=, ∴15BAC ∠=,∴45CAD ∠=,∴△APD 为等腰直角三角形,∴AP DP ==∴2AD =.延长BP 交AD 于点E ,如图,∵ABP PBD∠=∠,∴BE AD⊥,112PE AD AE===,∴22413BE AB AE=-=-=∴31PB BE PE=-=,∵45CPB PCB∠=∠=,∴△PBC为等腰直角三角形,∴31PC BC=.【点睛】本题考查了翻折变换、等边三角形的性质,解决本题的关键是掌握等边三角形的性质.。

人教版八年级下册第16章数学活动:折叠(37页)

人教版八年级下册第16章数学活动:折叠(37页)


A.65 B.
7 6
C.
D.74
8 5
C
6
8
C E
B
A
B
D
A
8.如图,在长方形ABCD中,点E、F分别在边AB、CD
上,将长方形ABCD沿EF折叠,使点A、D分别落在长方
形ABCD外部的点A1、D1处.若AB=10,BC=4,
则整个阴影部分图形的周长为( C )
D
FC
A.14 C.28
B.24 D.56
,则边BC的长为( B )
A
E
D
A.2 3 C.2 2
B.3 D.3 23
A'
B
C
4.如图,把矩形纸片ABCD进行折叠,已知该纸片的长BC 为10 cm,宽AB为6 cm,若折叠后C点落在边AD上的N点处 ,折痕为BM(M为折痕与CD边的交点),则CM的长为
( D)
A.3
8
C.3
A
B.5
3
D.130
ND M
B
C
5.如图是一张矩形纸片ABCD,若将纸片沿DE折叠,使点C 落在AD上,点C的对应点为点F,若AB=3 cm,BC=8 cm,则 BE的长是( C )
A.3 cm
B.4 cm
A
C.5 cm
D.6 cm
B
F
D
E
C
6.如图,在三角形纸片ABC中,∠A=90°,AB=12, AC=5折叠三角形纸片,使点A在BC边上的点E处,则AD 是( C )
长度为4 5.
A
D
M
F
N
B
E
C
矩形的折叠
例4、矩形ABCD中,AB=3,BC=5.E为CD边上一点,将矩形沿直 线BE折叠.使点C落在AD边上,求DE的长.

2021年人教版数学八年级下册期末《折叠问题》复习卷(含答案)

2021年人教版数学八年级下册期末《折叠问题》复习卷(含答案)

2021年人教版数学八年级下册期末《折叠问题》复习卷一、选择题1.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12 3D.16 32.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B.6 C.4 D.53.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66° B.104° C.114° D.124°4.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,将△BCD沿CD折叠,点B恰好落在AB中点E处,则∠A=()A.75° B.60° C.45° D.30°5.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为( )A.78°B.75°C.60°D.45°6.如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)7.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是( )A. B.﹣1 C. D.二、填空题8.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______9.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.10.如图,已知在矩形ABCD中,AB=4,AD=8,将△ABC沿对角线AC翻折,点B落在点E处,联结DE,则DE的长为______________.11.如图,在▱ABCD中,AB=13,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为 .12.如图,在□ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′的长为 .13.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C1处,BC1交AD于点E,则线段DE的长为 .14.如图,ABCD是一张边长为4cm的正方形纸片,E,F分别为AB,CD的中点,沿过点D的折痕将A 角翻折,使得点A落在EF上的点A′处,折痕交AE于点G,则EG=______cm.15.如图,在矩形ABCD中,E是BC边上的点,连接AE、DE,将△DEC沿线段DE翻折,点C恰好落在线段AE上的点F处.若AB=6,BE:EC=4:1,则线段DE的长为.16.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.17.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF的面积为__________.18.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为.三、解答题19.如图,在直角坐标系中放入一个矩形纸片ABCO,将纸片翻折后,点B恰好落在x轴上,记为B',折痕为CE.直线CE的关系式是y=﹣0.5x+8,与x轴相交于点F,且AE=3.(1)求OC 长度;(2)求点B'的坐标;(3)求矩形ABCO 的面积.20.已知函数y=x 34,完成下列问题: (1)画出此函数图象;(2)若B 点(6,a )在图象上,求a 的值;(3)过B 点作BA ⊥x 轴于A 点,BC ⊥y 轴于C 点,求OB 的长;(4)将边OA 沿OE 翻折,使点A 落在OB 上的D 点处,求折痕OE 直线解析式.21.如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E.(1)求证:△AFE ≌△CDE ;(2)若AB=4,BC=8,求图中阴影部分的面积.22.准备一张矩形纸片,按如图操作:将△ABE 沿BE 翻折,使点A 落在对角线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上的N 点.(1)求证:四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 的面积.23.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.24.如图,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t <6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD的长;(2)如图①,在D、E运动的过程中,四边形AEFD是平行四边形,请说明理由;(3)连接DE,当t为何值时,△DEF为直角三角形?(4)如图②,将△ADE沿DE翻折得到△A′DE,试问当t为何值时,四边形 AEA′D为菱形?25.如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形.(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.参考答案1.答案为:D;2.B3.C4.D5.B6.B.7.答案为:A.8.答案为:51.9.答案为:2.10.答案为: .11.答案为:3.12.答案为: 2.13.答案为:3.7514.答案为:4﹣6.15.答案是:2.16.解:在Rt△ABC中,由勾股定理可知:AC=4,由轴对称的性质可知:BC=CB′=3,∵CB′长度固定不变,∴当AB′+CB′有最小值时,AB′的长度有最小值.根据两点之间线段最短可知:A、B′、C三点在一条直线上时,AB′有最小值,∴AB′=AC﹣B′C=4﹣3=1.故答案为:1.17.答案为:2;18.答案为:(-2014,+1).19.解:(1)∵直线y=﹣0.5x+8与y轴交于点为C,∴令x=0,则y=8,∴点C坐标为(0,8),∴OC=8;(2)在矩形OABC中,AB=OC=8,∠A=90°,∵AE=3,∴BE=AB﹣BE=8﹣3=5,∵是△CBE沿CE翻折得到的,∴EB ′=BE=5,在Rt △AB ′E 中,AB ′===4,由点E 在直线y=﹣0.5x+8上,设E (a ,3),则有3=﹣0.5a+8,解得a=10,∴OA=10,∴OB ′=OA ﹣AB ′=10﹣4=6,∴点B ′的坐标为(0,6);(3)由(1),(2)知OC=8,OA=10,∴矩形ABCO 的面积为OC ×OA=8×10=80.20.(1)画图略;(2)a=8;(3)OB=10;(4)y=0.5x.21.解:(1)证明:由翻折的性质可得AF=AB ,∠F=∠B=90°.∵四边形ABCD 为矩形,∴AB=CD ,∠B=∠D=90°.∴AF=CD ,∠F=∠D.又∵∠AEF=∠CED ,∴△AFE ≌△CDE(AAS).(2)∵△AFE ≌△CDE ,∴AE=CE.根据翻折的性质可知FC=BC=8.在Rt △AFE 中,AE 2=AF 2+EF 2,即(8-EF)2=42+EF 2,解得EF=3.∴AE=5.∴S 阴影=12EC ·AF=12×5×4=10. 22.(1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∴∠EBD=∠FDB ,∴EB ∥DF ,∵ED ∥BF ,∴四边形BFDE 为平行四边形.(2)∵四边形BFDE 为菱形,∴BE=ED ,∠EBD=∠FBD=∠ABE ,∵四边形ABCD 是矩形,∴AD=BC ,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,∴菱形BFDE 的面积为:×2=23. (1)证明:根据翻折的方法可得EF=EC ,∠FEG=∠CEG.又∵GE=GE ,∴△EFG ≌△ECG.∴FG=GC.∵线段FG 是由EF 绕F 旋转得到的,∴EF=FG.∴EF=EC=FG=GC.∴四边形FGCE 是菱形.(2)连接FC交GE于O点.根据折叠可得BF=BC=10.∵AB=8∴在Rt△ABF中,根据勾股定理得AF=6.∴FD=AD-AF=10-6=4.设EC=x,则DE=8-x,EF=x,在Rt△FDE中,FD2+DE2=EF2,即42+(8-x)2=x2.解得x=5.即CE=5.S菱形CEFG=CE·FD=5×4=20.(3)当=时,BG=CG,理由:由折叠可得BF=BC,∠FBE=∠CBE,∵在Rt△ABF中,=,∴BF=2AF.∴∠ABF=30°.又∵∠ABC=90°,∴∠FBE=∠CBE=30°,EC=0.5BE.∵∠BCE=90°,∴∠BEC=60°.又∵GC=CE,∴△GCE为等边三角形.∴GE=CG=CE=0.5BE.∴G为BE的中点.∴CG=BG=0.5BE.24.解:(1)如图①∵DF⊥BC,∠C=30°,∴DF=0.5CD=0.5×2t=t.∵AE=t,∴DF=AE.∵∠ABC=90°,DF⊥BC,∴DF∥AE∴四边形AEFD是平行四边形;(2)①显然∠DFE<90°;②如图①′,当∠EDF=90°时,四边形EBFD为矩形,此时AE=0.5AD,∴t=0.5(12−2t),∴t=3;③如图①″,当∠DEF=90°时,此时∠ADE=90°∴∠AED=90°-∠A=30°∴AD=0.5AE,∴12−2t=0.5t,∴t=4.8.综上:当t=3秒或t=4.8秒时,△DEF为直角三角形;(3)如图②,若四边形AEA′D为菱形,则AE=AD,∴t=12-2t,∴t=4.∴当t=4时,四边形AEA′D为菱形.25.(1)∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=EF,∴BP=BF=EF=EP,∴四边形BFEP为菱形;(2)①∵四边形ABCD是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°.∵点B与点E关于PQ对称,∴CE=BC=5cm.在Rt△CDE中,DE=4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm.在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=5/3cm,∴菱形BFEP的边长为5/3cm.②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.。

八年级数学翻折变换(折叠问题)参考答案与试题解析

八年级数学翻折变换(折叠问题)参考答案与试题解析

八年级数学翻折变换(折叠问题)参考答案与试题解析work Information Technology Company.2020YEAR八年级数学翻折变换(折叠问题)参考答案与试题解析一.选择题(共12小题)1.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【解答】解:由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点评】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.2.如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将△ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则点F到BC边的距离是()A.8B.12C.D.【分析】作EM⊥AB于M,由等边三角形的性质和直角三角形的性质求出BM=BE=8,ME=BM=8,由折叠的性质得出FE=CE,设FE=CE=x,则AB=BC=16+x,得出BF=(16+x),求出FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得出方程,解方程求出BF=21.作FN⊥BC于N,则∠BFN=30°,由直角三角形的性质得出BN=BF=,得出FN=BN=即可.【解答】解:作EM⊥AB于M,如图所示:∵△ABC是等边三角形,∴BC=AB,∠B=60°,∵EM⊥AB,∴∠BEM=30°,∴BM=BE=8,ME=BM=8,由折叠的性质得:FE=CE,设FE=CE=x,则AB=BC=16+x,∵AF:BF=2:3,∴BF=(16+x),∴FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得:(8)2+(+x)2=x2,解得:x=19,或x=﹣16(舍去),∴BF=(16+19)=21,作FN⊥BC于N,则∠BFN=30°,∴BN=BF=,∴FN=BN=,即点F到BC边的距离是,故选:D.【点评】本题考查了翻折变换的性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握翻折变换和等边三角形的性质,由勾股定理得出方程是解题的关键.3.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB 边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,得到AH=B′H=AB′,求得AH=B′H=1,根据勾股定理得到BB′===,由折叠的性质得到BF=BB′=,DE ⊥BB′,根据相似三角形即可得到结论.【解答】解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.【点评】本题考查了翻折变换(折叠问题),等腰直角三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,在△ABC中,AB=AC=2,∠BAC=30°,将△ABC沿AC翻折得到△ACD,延长AD交BC的延长线于点E,则△ABE的面积为()A.B.C.3D.【分析】由折叠的性质可知∠CAD=30°=∠CAB,AD=AB=2.由等腰三角形的性质得出∠BCA=∠ACD=∠ADC=75°.求出∠ECD=30°.由三角形的外角性质得出∠E=75°﹣30°=45°,过点C作CH⊥AE于H,过B作BM⊥AE于M,由直角三角形的性质得出CH=AC=1,AH=CH=.得出HD=AD﹣AH=2﹣.求出EH =CH=1.得出DE=EH﹣HD=﹣1,AE=AD+DE=1+,由直角三角形的性质得出AM=AB=1,BM=AM=.由三角形面积公式即可得出答案.【解答】解:由折叠的性质可知:∠CAD=30°=∠CAB,AD=AB=2.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H,过B作BM⊥AE于M,如图所示:在Rt△ACH中,CH=AC=1,AH=CH=.∴HD=AD﹣AH=2﹣.在Rt△CHE中,∵∠E=45°,∴△CEH是等腰直角三角形,∴EH=CH=1.∴DE=EH﹣HD=1﹣(2﹣)=﹣1,∴AE=AD+DE=1+,∵BM⊥AE,∠BAE=∠BAC+∠CAD=60°,∴∠ABM=30°,∴AM=AB=1,BM=AM=.∴△ABE的面积=AE×BM=×(1+)×=;故选:B.【点评】本题考查了翻折变换的性质、等腰三角形的性质、含30°角的直角三角形的性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握翻折变换和等腰三角形的性质是解题的关键.5.如图,点F是长方形ABCD中BC边上一点将△ABF沿AF折叠为△AEF,点E落在边CD上,若AB=5,BC=4,则BF的长为()A.B.C.D.【分析】根据矩形的性质得到CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,根据折叠的性质得到AE=AB=5,EF=BF,根据勾股定理得到DE===3,求得CE=2,设BF=EF=x,则CF=4﹣x,根据勾股定理列方程即可得到结论.【解答】解:∵四边形ABCD是矩形,∴CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,∵将△ABF沿AF折叠为△AEF,∴AE=AB=5,EF=BF,∴DE===3,∴CE=2,设BF=EF=x,则CF=4﹣x,∵EF2=CF2+CE2,∴x2=(4﹣x)2+22,解得:x=,故选:B.【点评】本题考查了翻折变换(折叠问题),矩形的矩形,勾股定理,熟练掌握折叠的性质是解题的关键.6.如图,在矩形纸片ABCD中,CB=12,CD=5,折叠纸片使AD与对角线BD重合,与点A重合的点为N,折痕为DM,则△MNB的面积为()A.B.C.D.26【分析】由勾股定理得出BD==13,由折叠的性质可得ND=AD=12,∠MND=∠A=90°,NM=AM,得出∠EA′B=90°,BN=BD﹣ND=1,设AM=NM =x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,由勾股定理得出方程,解方程得出NM =AM=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=12,AB=CD=5,∴BD===13,由折叠的性质可得:ND=AD=12,∠MND=∠A=90°,NM=AM,∴∠EA′B=90°,BN=BD﹣ND=13﹣12=1,设AM=NM=x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,NM2+BN2=BM2,∴x2+12=(5﹣x)2,解得:x=,∴NM=AM=,∴△MNB的面积=BN×NM=×1×=;故选:A.【点评】此题考查了折叠的性质、勾股定理以及矩形的性质.熟练掌握折叠的性质和矩形的性质,由勾股定理得出方程是解题的关键.7.如图,在△ABC中∠ACB=90°、∠CAB=30°,△ABD是等边三角形、将四边形ACBD折叠,使点D与点C重合,HK为折痕,则sin∠ACH的是()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,则AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:C.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,熟练掌握折叠的性质和解直角三角形是解题的关键.8.如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.【分析】由折叠的性质可得AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,由中点性质可得B'E=2C'E,可得BC=AD=3EC,由勾股定理可求可求CE的长,由“AAS”可证△AB'F≌△DC'F,可得C'F=B'F=,即可求解.【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴1+4CE2+1+CE2=9CE2,解得:CE=,∴B'E=BE=,BC=AD=,C'E=,∴B'C'=,在△AB'F和△DC'F中,∴△AB'F≌△DC'F(AAS),∴C'F=B'F=,∴EF=C'E+C'F=,故选:D.【点评】本题考查了翻折变换,矩形的性质,全等三角形的性质,勾股定理,求出CE 的长是本题的关键.9.如图,▱ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A.2B.3C.D.【分析】过B′作B′H⊥AD于H,根据等腰直角三角形的性质得到AH=B′H=AB′,根据折叠的性质得到AB′=AB=6,∠AB′E=∠B=75°,求得∠AEB′=60°,解直角三角形得到HE=B′H=,B′E=2,根据平行线的性质得到∠DAC=∠ACB,推出AE=CE,根据全等三角形的性质得到DE=B′E=2,求得AD=AE+DE=3+3,过A作AG⊥BC于G,根据直角三角形的性质即可得到结论.【解答】解:过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H=AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H=×6=3,∴HE=B′H=,B′E=2,∵▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵∠ACB=∠ACB′,∴∠EAC=∠ACE,∴AE=CE,∵∠AB′E=∠B=∠D,∠AEB′=∠CED,∴△AB′E≌△CDE(AAS),∴DE=B′E=2,∴AD=AE+DE=3+3,∵∠AEB′=∠EAC+∠ACE=60°,∴∠ACE=∠CAE=30°,∴∠BAC=75°,∴AC=AD=BC,∠ACB=30°,过A作AG⊥BC于G,∴AG=AC=,故选:C.【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB 的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,∴AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:B.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,注意:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+2【分析】先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.二.填空题(共7小题)13.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为(6+4)厘米.【分析】根据折叠的性质和含30°的直角三角形的性质解答即可.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴AG=6厘米,∴BE=AE=2厘米,GC=AG=6厘米,∴BC=BE+EG+GC=(6+4)厘米,故答案为:(6+4),【点评】此题考查翻折问题,关键是根据折叠的性质和含30°的直角三角形的性质解答.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.已知Rt△ABC中,∠ACB=90°,AC=8,BC=4,D为斜边AB上的中点,E是直角边AC上的一点,连接DE,将△ADE沿DE折叠至△A′DE,A′E交BD于点F,若△DEF的面积是△ADE面积的一半,则CE=2.【分析】根据等高的两个三角形的面积比等于边长比可得AD=2DF,A'F=EF,通过勾股定理可得AB的长度,可可求AD,DF,BF的长度,可得BF=DF,可证BEDA'是平行四边形,可得BE=A'D=2,根据勾股定理可得CE的长度【解答】解:如图连接BE∵∠ACB=90°,AC=8,BC=4∴AB=4∵D是AB中点∴BD=AD=2∵折叠∴AD=A'D=2,S△ADE=S△A'DE∵S△DEF=S△ADE∴AD=2DF,S△DEF=S△A'DE∴DF=,A'F=EF∴BF=DF=,且A'F=EF∴四边形BEDA'是平行四边形∴A'D=BE=∴根据勾股定理得:CE=2故答案为2【点评】本题考查了折叠问题,直角三角形斜边上的中线等于斜边的一半,关键是用面积法解决问题.16.如图,在△ABC中,AB=AC=5,tan A=,BC=,点D是AB边上一点,连接CD,将△BCD沿着CD翻折得△B1CD,DB1⊥AC且交于点E,则DE=.【分析】作BF⊥AC于F,证明△B1EC≌△CFB(AAS),得出B1E=CF=1,设DE=3a,则AD=5a,得出BD=B1D=3a+1,得出方程,解方程即可.【解答】解:作BF⊥AC于F,如图所示:则∠AFB=∠CFB=90°,在Rt△ABF中,tan A==,AB=5,∴AF=4,BF=3,sin A==,∴CF=AC﹣AF=1,由折叠的性质得:B1C=BC=,∠CB1E=∠ABC,B1D=BD,∵AB=AC,∴∠ABC=∠BCF,∴∠CB1E=∠BCF,∵DB1⊥AC,∴∠B1EC=90°=∠CFB,在△B1EC和△CBF中,,∴△B1EC≌△CFB(AAS),∴B1E=CF=1,设DE=3a,则AD=5a,∴BD=B1D=3a+1,∵AD+BD=AB,∴3a+1+5a=5,∴a=,∴DE=;故答案为:【点评】本题考查了翻折的性质、等腰三角形的性质、全等三角形的判定与性质、解直角三角形以及方程的解题思想,熟练掌握翻折变换的性质,证明三角形全等是解题的关键.17.如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE 折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.【分析】设HC=HA=x,在Rt△CA′H中,可得x2=32+(4﹣x)2,解得x=,由△CA′H∽△AGE,可得=,由此即可解决问题.【解答】解:由题意四边形ABCA′是矩形,BD=CD=2,AG=GA′=2,∵BC∥AA′,∴∠BCA=∠CAA′,∵∠ACB=∠ACB′,∴∠HCA=∠HAC,∴HC=HA,设HC=HA=x,在Rt△CA′H中,x2=32+(4﹣x)2,∴x=,∴A′H=4﹣=,由△CA′H∽△AGE,可得:=,∴=,∴EG=.【点评】本题考查翻折变换,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3,则B′D的长度为6.【分析】作CM⊥AB于M,由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,由平行四边形的性质得出AD=CB,AB=CD,∠ADC=∠B=30°,求出AD=AC,AM=BM=AB=,∠BAC=∠B=30°,由等腰三角形的性质得出∠ACD=∠ADC=30°,由直角三角形的性质得出CM=,证出AD=BC=2CM=3,再由勾股定理即可得出结果.【解答】解:作CM⊥AB于M,如图所示:由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,∠ADC=∠B=30°,∠BAD=∠BCD=180°﹣∠B=150°,∴∠B'AD=150°﹣30°﹣30°=90°,∵BC=AC,∴AM=BM=AB=,∠BAC=∠B=30°,∴CM=,∴AD=BC=2CM=3,在Rt△AB'D中,由勾股定理得:B'D===6;故答案为:6.【点评】本题考查了翻折变换的性质、平行四边形的性质、等腰三角形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和平行四边形的性质,求出∠B'AD=90°是解题关键.19.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC 边上的F点处.已知折痕AE=10,且CE:CF=4:3,那么该矩形的周长为96.【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴∴∴BF=12k∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或﹣2(舍弃),∴矩形的周长=48k=96,故答案为:96【点评】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.。

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)类型一 利用勾股定理解决三角形的折叠问题1.如图 △ABC 中 ∠ACB =90° AC =8 BC =6 将△ADE 沿DE 翻折使点A 与点B 重合 则CE 的长为 .思路引领:设CE =x 则AE =BE =8﹣x 在Rt △BCE 中 由勾股定理可得62+x 2=(8﹣x )2 即可解得答案.解:设CE =x 则AE =BE =8﹣x在Rt △BCE 中 BC 2+CE 2=BE 2∴62+x 2=(8﹣x )2解得x =74故答案为:74. 总结提升:本题考查直角三角形中的折叠问题 解题的关键是掌握折叠的性质 熟练应用勾股定理列方程解决问题.2.(2021秋•介休市期中)如图所示 有一块直角三角形纸片 ∠C =90° AC =8cm BC =6cm 将斜边AB 翻折 使点B 落在直角边AC 的延长线上的点E 处 折痕为AD 则CE 的长为 cm .思路引领:根据勾股定理可将斜边AB 的长求出 根据折叠的性质知 AE =AB 已知AC 的长 可将CE 的长求出.解:在Rt △ABC 中∵∠C=90°AC=8cm BC=6cm∴AB=√AC2+BC2=10cm根据折叠的性质可知:AE=AB=10cm∵AC=8cm∴CE=AE﹣AC=2cm即CE的长为2cm故答案为:2.总结提升:此题考查翻折问题将图形进行折叠后两个图形全等是解决折叠问题的突破口.3.(2020秋•金台区校级期末)如图在△ABC中∠ACB=90°点E F在边AB上将边AC沿CE翻折使点A落在AB上的点D处再将边BC沿CF翻折使点B落在CD的延长线上的点B′处(1)求∠ECF的度数;(2)若CE=4 B′F=1 求线段BC的长和△ABC的面积.思路引领:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB' 再根据∠ACB=90°即可得出∠ECF=45°;(2)在Rt△BCE中根据勾股定理可得BC=√41设AE=x则AB=x+5 根据勾股定理可得AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41 求得x=165得出AE的长和AB的长再由三角形面积公式即可得出S△ABC.解:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB'又∵∠ACB=90°∴∠ACD+∠BCB'=90°∴∠ECD+∠FCD=12×90°=45°即∠ECF=45°;(2)由折叠可得:∠DEC=∠AEC=90°BF=B'F=1 ∴∠EFC=45°=∠ECF∴CE=EF=4∴BE=4+1=5在Rt△BCE中由勾股定理得:BC=√BE2+CE2=√52+42=√41设AE=x则AB=x+5∵Rt△ACE中AC2=AE2+CE2Rt△ABC中AC2=AB2﹣BC2∴AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41解得:x=16 5∴AE=165AB=AE+BE=165+5=415∴S△ABC=12AB×CE=12×415×4=825.总结提升:本题主要考查了折叠变换的性质、勾股定理、三角形面积等知识;熟练掌握折叠变换的性质由勾股定理得出方程是解题的关键.4.(2022秋•安岳县期末)如图在△ABC中∠C=90°把△ABC沿直线DE折叠使△ADE与△BDE 重合.(1)若∠A=34°则∠CBD的度数为;(2)当AB=m(m>0)△ABC的面积为2m+4时△BCD的周长为(用含m的代数式表示);(3)若AC=8 BC=6 求AD的长.思路引领:(1)根据折叠可得∠1=∠A=34°根据三角形内角和定理可以计算出∠ABC=56°进而得到∠CBD=22°;(2)根据三角形ACB的面积可得12AC•BC=2m+4 进而得到AC•BC=4m+8 再在Rt△CAB中CA2+CB2=BA2再把左边配成完全平方可得CA+CB的长进而得到△BCD的周长;(3)根据折叠可得AD=DB设CD=x则AD=BD=8﹣x再在Rt△CDB中利用勾股定理可得x2+62=(8﹣x)2再解方程可得x的值进而得到AD的长.解:(1)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴∠ABD =∠A =34°∵∠C =90°∴∠ABC =180°﹣90°﹣34°=56°∴∠CBD =56°﹣34°=22°故答案为:22°;(2)∵△ABC 的面积为2m +4∴12AC •BC =2m +4 ∴AC •BC =4m +8∵在Rt △CAB 中 CA 2+CB 2=BA 2 AB =m∴CA 2+CB 2+2AC •BC =BA 2+2AC •BC∴(CA +BC )2=m 2+8m +16=(m +4)2∴CA +CB =m +4∵AD =DB∴CD +DB +BC =m +4.即△BCD 的周长为m +4故答案为:m +4;(3)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴AD =DB设CD =x 则AD =BD =8﹣x在Rt △CDB 中 CD 2+CB 2=BD 2x 2+62=(8﹣x )2解得:x =74AD =8−74=254.总结提升:此题主要考查了图形的翻折变换 以及勾股定理 完全平方公式 关键是掌握勾股定理 以及折叠后哪些是对应角和对应线段.5.(2021秋•章丘区期中)(1)如图① Rt △ABC 的斜边AC 比直角边AB 长2cm 另一直角边BC 长为6cm 求AC 的长.(2)拓展:如图②在图①的△ABC的边AB上取一点D连接CD将△ABC沿CD翻折使点B的对称点E落在边AC上.①AE的长.②求DE的长.思路引领:(1)在Rt△ABC中由勾股定理可求AB的长即可求解;(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm于是得到答案;②在Rt△ADE中由勾股定理可求DE的长.解:(1)设AB=xcm则AC=(x+2)cm∵AC2=AB2+BC2∴(x+2)2=x2+62解得x=8∴AB=8cm∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm∴∠AED=90°AE=AC﹣EC=4(cm);②设DE=DB=ycm则AD=AB﹣BD=(8﹣y)cm在Rt△ADE中AD2=AE2+DE2∴(8﹣y)2=42+y2解得:y=3∴DE=3(cm).总结提升:本题考查了翻折变换折叠的性质勾股定理利用勾股定理列出方程是本题的关键.类型二利用勾股定理解决长方形的折叠问题6.(2022•纳溪区模拟)如图在矩形ABCD中AB=5 AD=3 点E为BC上一点把△CDE沿DE翻折 点C 恰好落在AB 边上的F 处 则CE 的长为 .思路引领:利用勾股定理得出AF 的长度 再利用折叠的性质 在△BEF 中求解BE 的长 即可得出CE 的长度.解:在矩形ABCD 中 AB =5 AD =3 由折叠的性质可得:DF =DC =AB =5∴AF =√DF 2−AD 2=√52−32=4∴BF =AB ﹣AF =5﹣4=1设CE =x 则:EF =CE =x BE =BC ﹣CE =3﹣x在Rt △BEF 中 由勾股定理可得:12+(3﹣x )2=x 2解得:x =53∴CE =53故答案为:53. 总结提升:本题考查了折叠的性质、矩形的性质和勾股定理等知识点 解题的关键是利用AF 求出BF 的长度.7.(2021•郯城县校级模拟)如图 在长方形ABCD 中 AB =3cm AD =9cm 将此长方形折叠 使点D 与点B 重合 折痕为EF 则△ABE 的面积为( )cm 2.A .12B .10C .6D .15思路引领:由长方形的性质得BAE =90° 再由折叠的性质得BE =ED 然后在Rt △ABE 中 由勾股定理得32+AE2=(9﹣AE)2解得AE=4(cm)即可求解.解:∵四边形ABCD是长方形∴∠BAE=90°∵将此长方形折叠使点B与点D重合∴BE=ED∵AD=9=AE+DE=AE+BE∴BE=9﹣AE在Rt△ABE中由勾股定理得:AB2+AE2=BE2∴32+AE2=(9﹣AE)2解得:AE=4(cm)∴S△ABE=12AB•AE=12×3×4=6(cm2)故选:C.总结提升:本题考查了翻折变换的性质、矩形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.8.(2020春•余干县校级期末)如图把长方形纸片ABCD沿EF折叠使点B落在边AD上的点B'处点A落在点A'处.(1)试说明B'E=BF;(2)设AE=a AB=b BF=c试猜想a b c之间的关系并说明理由.思路引领:(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形△A'B'E中由勾股定理可得a b c之间的关系.(1)证明:由折叠的性质得:B'F=BF∠B'FE=∠BFE在长方形纸片ABCD中AD∥BC∴∠B'EF=∠BFE∴∠B'FE=∠B'EF∴B'F=B'E∴B'E=BF.(2)解:a b c之间的关系是a2+b2=c2.理由如下:由(1)知B'E=BF=c由折叠的性质得:∠A'=∠A=90°A'E=AE=a A'B'=AB=b.在△A'B'E中∵∠A'=90°∴A'E2+A'B'2=B'E2∴a2+b2=c2.总结提升:本题考查了翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;灵活利用折叠的性质进行线段间的转化是解题的关键.9.(2020秋•罗湖区校级期末)如图把一张长方形纸片ABCD折叠起来使其对角顶点A与C重合D 与G重合若长方形的长BC为8 宽AB为4 求:(1)DE的长;(2)求阴影部分△GED的面积.思路引领:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中根据AG2+EG2=AE2构建方程即可解决问题;(2)过G点作GM⊥AD于M根据三角形面积不变性AG×GE=AE×GM求出GM的长根据三角形面积公式计算即可.解:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中AG2+EG2=AE2∴16+x2=(8﹣x)2解得x=3∴DE=3.(2)过G 点作GM ⊥AD 于M则12•AG ×GE =12•AE ×GM AG =AB =4 AE =CF =5 GE =DE =3 ∴GM =125∴S △GED =12GM ×DE =185.总结提升:本题主要考查了折叠的性质、勾股定理以及三角形面积不变性 灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.类型三 利用勾股定理解决正方形的折叠问题10.(2019•黔东南州一模)如图 将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处 点C 落在点Q 处 折痕为FH 则线段AF 的长为( )A .32B .3C .94D .154思路引领:由正方形的性质和折叠的性质可得EF =DE AB =AD =6cm ∠A =90° 由勾股定理可求AF 的长.解:∵将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处∴EF =DE AB =AD =6cm ∠A =90°∵点E 是AB 的中点∴AE =BE =3cm在Rt △AEF 中 EF 2=AF 2+AE 2∴(6﹣AF )2=AF 2+9∴AF=9 4故选:C.总结提升:本题考查了翻折变换正方形的性质勾股定理利用勾股定理求线段的长度是本题的关键.11.如图将边长为8cm的正方形纸片ABCD折叠使点D落在BC边的中点E处点A落在点F处折痕为MN则线段CN的长是()A.3cm B.4cm C.5cm D.6cm思路引领:由折叠的性质可得DN=NE由中点的性质可得EC=4cm结合正方形的性质可得∠BCD=90°;设CN的长度为xcm则EN=DN=(8﹣x)cm接下来在直角△CEN中运用勾股定理就可以求出CN的长度.解:∵四边形MNEF是由四边形ADMN折叠而成的∴DN=NE.∵E是BC的中点且BC=8cm∴EC=4cm.∵四边形ABCD是正方形∴∠BCD=90°.设CN的长度为xcm则EN=DN=(8﹣x)cm由勾股定理NC2+EC2=NE2得x2+42=(8﹣x)2解得x=3.故选:A.总结提升:本题考查翻折变换的问题折叠问题其实质是轴对称对应线段相等对应角相等找到相应的直角三角形利用勾股定理求解是解决本题的关键.第二部分专题提优训练1.(2022秋•慈溪市校级期中)在Rt△ABC中∠B=90°AB=4 BC=8 D、E分别是边AC、BC上的点将△ABC沿着DE进行翻折点A和点C重合则EC=.思路引领:设EC =x 在Rt △ABE 中 由勾股定理得42+(8﹣x )2=x 2 即可解得答案.解:设EC =x 则BE =8﹣x∵将△ABC 沿着DE 进行翻折 点A 和点C 重合∴AE =EC =x在Rt △ABE 中 AB 2+BE 2=AE 242+(8﹣x )2=x 2解得x =5∴EC =5故答案为:5.总结提升:本题考查直角三角形中的翻折问题 解题的关键是掌握翻折的性质 能应用勾股定理列方程解决问题.2.(2021秋•靖江市期中)如图 在Rt △ABC 中 ∠C =90° D 是AB 的中点 AD =5 BC =8 E 是直线BC 上一动点 把△BDE 沿直线ED 翻折后 点B 落在点F 处 当FD ⊥BC 时 线段BE 的长为 .思路引领:分点F 在BC 下方 点F 在BC 上方两种情况讨论 由勾股定理可BC =4 由平行线分线段成比例可得BD AD =BP BC =DP AC =12 求出FP 由勾股定理可求BE 的长. 解:若点F 在BC 下方时 DF 与BC 交于点P 如图1所示:∵D 是AB 的中点∴BD =AD =5∴AB =2AD =10∵∠C =90° BC =8∴AC =√AB 2−BC 2=√102−82=6∵点D 是AB 的中点∵FD ⊥BC ∠C =90°∴FD ∥AC∴BD AD =BP BC =DP AC =12 ∴BP =PC =12BC =4 DP =12AC =3∵△BDE 沿直线ED 翻折∴FD =BD =5 FE =BE∴FP =FD ﹣DP =5﹣3=2在Rt △FPE 中 EF 2=FP 2+PE 2∴BE 2=22+(4﹣BE )2解得:BE =52;若点F 在BC 上方时 FD 的延长线交BC 于点P 如图2所示:FP =DP +FD =3+5=8在Rt △EFP 中 EF 2=FP 2+EP 2∴BE 2=64+(BE ﹣4)2解得:BE =10故答案为:52或10.总结提升:此题考查了折叠的性质、平行线的性质、直角三角形的性质以及勾股定理等知识 熟练掌握翻折变换的性质是解题的关键.3.如图 在Rt △ABC 中 AC =6 BC =8 D 为BC 上一点 将Rt △ABC 沿AD 折磨 点C 恰好落在AB 边上的E 点 求BD 的长.思路引领:由勾股定理求出AB=10 由折叠的性质得出CD=DE∠C=∠AED=90°AE=AC=6 得出BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得出方程解方程即可.解:∵Rt△ABC中AC=6 BC=8∴AB=√62+82=10由折叠的性质得:CD=DE∠C=∠AED=90°AE=AC=6∴BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得:x2+42=(8﹣x)2解得:x=3∴BD=8﹣3=5.总结提升:本题考查了翻折变换的性质、勾股定理等知识;熟练掌握翻折变换的性质由勾股定理得出方程是解题的关键.4.(2018秋•襄汾县校级月考)如图在Rt△ABC中∠C=90°AC=8 BC=6 按图中所示方法将△BCD沿BD折叠使点C落在边AB上的点C'处求AD的长及四边形BCDC′的面积.思路引领:利用勾股定理列式求出AB根据翻折变换的性质可得BC′=BC C′D=CD然后求出AC′设AD=x表示出C′D、AC′然后利用勾股定理列方程求解即可求出AD;然后根据三角形的面积公式计算即可求出四边形BCDC′的面积.解:∵∠C=90°AC=8 BC=6∴AB=√AC2+BC2=10由翻折变换的性质得BC′=BC=6 C′D=CD∴AC′=AB﹣BC′=10﹣6=4设CD=x则C′D=x AD=8﹣x在Rt△AC′D中由勾股定理得AC′2+C′D2=AD2即42+x2=(8﹣x)2解得x=3即CD=3∴AD=8﹣x=5;由折叠可知:S△BCD=S△BC′D∴四边形BCDC′的面积=2S△BCD=2×12×CD•BC=3×6=18.总结提升:本题考查了翻折变换的性质勾股定理此类题目熟记性质并利用勾股定理列出方程是解题的关键.5.(2021春•厦门期中)在矩形ABCD中AB=3 BC=4 E是AB上一个定点点F是BC上一个动点把矩形ABCD沿直线EF折叠点B的对应点B′落在矩形内部.若DB′的最小值为3 则AE=53.思路引领:连接DE则DB′+EB′≥DE由EB′=EB为定值故当D E B′三点共线时DB′最小利用勾股定理建立方程即可求解.解:如图1 连接DE由折叠性质可得:EB′=EB∵DB′+EB′≥DE∴DB′≥DE﹣EB′=DE﹣EB∵点E为定点∴EB为定值∴当D E B′三点共线时DB′最小且最小值为3∴DB′=3如图2∵四边形ABCD 为矩形∴∠A =90° AD =BC =4设AE =x 则:EB ′=EB =AB ﹣AE =3﹣x∴ED =EB ′+DB ′=3﹣x +3=6﹣x在Rt △AED 中 由勾股定理可得:x 2+42=(6﹣x )2解得:x =53∴AE =53故答案为:53. 总结提升:本题考查折叠的性质、矩形的性质、勾股定理等知识点 解题的关键是运用方程思想.6.(2021秋•城阳区校级月考)把一张矩形纸片(矩形ABCD )按如图方式折叠 使顶点B 和点D 重合 折痕为EF .若AB =3cm BC =5cm 则重叠部分△DEF 的面积是( )cm 2.A .2B .3.4C .4D .5.1思路引领:由矩形的性质得AD =BC =5cm CD =AB =3cm ∠A =90° 再由折叠的性质得A 'D =AB =3cm ∠A '=∠A =90° AE '=AE 设AE =xcm 则A ′E =xcm DE =(5﹣x )cm 然后在Rt △A 'DE 中 由勾股定理得出方程 解方程 进而得出DE 的长 即可解决问题.解:∵四边形ABCD 是矩形 AB =3cm BC =5cm∴AD=BC=5cm CD=AB=3cm∠A=90°由折叠的性质得:A'D=AB=3cm∠A'=∠A=90°AE'=AE 设AE=xcm则A′E=xcm DE=(5﹣x)cm在Rt△A'DE中由勾股定理得:A′E2+A′D2=ED2即x2+32=(5﹣x)2解得:x=1.6∴DE=5﹣1.6=3.4(cm)∴△DEF的面积=12DE•CD=12×3.4×3=5.1(cm2)故选:D.总结提升:此题考查了翻折变换的性质、矩形的性质、勾股定理以及三角形面积等知识熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.7.(2017秋•金牛区校级月考)如图在矩形ABCD中E是AD的中点将△ABE沿BE折叠后得到△GBE 延长BG交CD于点F结果发现F点恰好是DC的中点若BC=2√6则AB的长为?思路引领:连接EF由折叠性质得AE=EG∠A=∠EGB=90°BG=AB则∠EGF=90°易证EG=DE由矩形的性质得AB=CD∠C=∠D=90°推出∠EGF=∠D=90°由HL证得Rt△EGF≌Rt△EDF得出FG=FD求得CF=DF=FG=12CD=12AB BF=BG+FG=32AB由勾股定理得出BC2+CF2=BF2即可得出结果.解:连接EF如图所示:由折叠性质得:AE=EG∠A=∠EGB=90°BG=AB ∴∠EGF=90°∵点E是AD的中点∴AE=DE∴EG=DE∵四边形ABCD是矩形∴AB=CD∠C=∠D=90°∴∠EGF =∠D =90°在Rt △EGF 与Rt △EDF 中 {EG =ED EF =EF∴Rt △EGF ≌Rt △EDF (HL )∴FG =FD∵F 点恰好是DC 的中点∴CF =DF =FG =12CD =12AB∴BF =BG +FG =AB +12AB =32AB在Rt △BCF 中 BC 2+CF 2=BF 2即:(2√6)2+(12AB )2=(32AB )2 解得:AB =2√3.总结提升:本题考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识 熟练掌握折叠的性质 证明三角形全等是解题的关键.8.(2018春•新抚区校级期中)如图 在矩形ABCD 中 已知AD =10 AB =8 将矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处 求CE 的长.思路引领:先根据矩形的性质得AD =BC =10 AB =CD =8 再根据折叠的性质得AF =AD =10 EF =DE 在Rt △ABF 中 利用勾股定理计算出BF =6 则CF =BC ﹣BF =4 设CE =x 则DE =EF =8﹣x 然后在Rt △ECF 中根据勾股定理得到x 2+42=(8﹣x )2 再解方程即可得到CE 的长.解:∵四边形ABCD 为矩形∴AD =BC =10 AB =CD =8∵矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处∴AF=AD=10 EF=DE在Rt△ABF中∵BF=√AF2−AB2=6∴CF=BC﹣BF=10﹣6=4设CE=x则DE=EF=8﹣x在Rt△ECF中∵CE2+FC2=EF2∴x2+42=(8﹣x)2解得x=3即CE=3.总结提升:本题考查了折叠的性质:折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和对应角相等.也考查了矩形的性质和勾股定理.9.(2018秋•通川区校级期中)将一张边长为2的正方形纸片ABCD对折设折痕为EF(如图(1));再沿过点D的折痕将∠A翻折使得点A落在线段EF上的点H处(如图(2))折痕交AE于点G则EG 的长度是()A.8﹣4√3B.4√3−6C.4﹣2√3D.2√3−3思路引领:由于正方形纸片ABCD的边长为2 所以将正方形ABCD对折后AF=DF=1 由折叠的性质得出AD=DH=2 AG=GH在Rt△DFH中利用勾股定理可求出HF的长进而求出EH的长再设EG=x在Rt△EGH中利用勾股定理即可求解.解:∵正方形纸片ABCD的边长为2∴将正方形ABCD对折后AE=DF=1∵△GDH是△GDA沿直线DG翻折而成∴AD=DH=2 AG=GH在Rt△DFH中HF=√HD2−DF2=√22−12=√3∴EH=2−√3在Rt△EGH中设EG=x则GH=AG=1﹣x∴GH2=EH2+EG2即(1﹣x)2=(2−√3)2+x2解得x=2√3−3.∴EG=2√3−3.故选:D.总结提升:本题考查了正方形的性质折叠的性质勾股定理关键是学会用方程的思想方法解题.10.(2020秋•新都区校级月考)如图AD是△ABC的中线∠ADC=45°把△ADC沿着直线AD对折点C落在点E的位置.如果BC=6 那么以线段BE为边长的正方形的面积为()A.6B.72C.12D.18思路引领:由题意易得BD=CD=DE=3 再求出∠BDE=90°然后根据勾股定理求出BE最后由正方形的面积进行求解即可.解:∵D是BC中点BC=6∴BD=CD=3由折叠的性质得:CD=DE=3 ∠ADC=∠ADE=45°即∠CDE=90°∴BD=DE=3 ∠BDE=90°在Rt△BDE中由勾股定理得:BE=√BD2+DE2=√32+32=3√2∴以BE为边的正方形面积为:(3√2)2=18故选:D.总结提升:本题考查了折叠的性质、勾股定理、正方形的面积计算等知识熟练掌握勾股定理及折叠的性质是解题的关键.。

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。

人教版八年级数学下第十八章 平行四边形 专题4 特殊平行四边形中的折叠问题

人教版八年级下第十八章平行四边形专题4 特殊平行四边形中的折叠问题姓名:________ 班级:________ 成绩:________一、单选题1 . 如图,直线BC与⊙A相切于点C,过B作CB的垂线交⊙O于D,E 两点,已知AC=,CB=a,则以BE,BD的长为两根的一元二次方程是()A.x2+bx+a2=0B.x2﹣bx+a2=0C.x2+bx﹣a2=0D.x2﹣bx﹣a2=02 . 如图,在四边形ABCD中,AD∥BC,∠C=90°,△BCD与△BC′D关于直线BD轴对称,BC=6,CD=3,点C 与点C′对应,BC′交AD于点E,则线段DE的长为()A.3B.C.5D.3 . 现有边长AB=10,BC=5的矩形纸片ABCD,对角线BD.在AB上取一点G,以DG为折痕,使DA落在DB上,则AG的长是:()A.B.C.D.二、填空题4 . 一只蚂蚁从长、宽都是3cm,高是8cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是_____________cm.三、解答题5 . 如图,在△ABC中,AB=17cm,AC=8cm,BC=15cm,将AC沿AE折叠,使得点C与AB上的点D重合.(1)证明:△ABC是直角三角形;(2)求△AEB的面积.6 . 四边形ABDF中,点C、E分别在AF、DF上,且AB=AC,BD=DE,∠BDF=2∠ABC,M为CE的中点.(1)画出△ACM关于点M成中心对称的图形;(2)求证:AM⊥DM;(3)若AM=DM,求∠ABC的度数.7 . 综合与实践:问题情境:在矩形ABCD中,点E为BC边的中点,将△ABE沿直线AE翻折,使点B与点F重合,直线AF交直线CD于点A.特例探究实验小组的同学发现:(1)如图1,当AB=BC时,AG=BC+CG,请你证明该小组发现的结论;(2)当AB=BC=4时,求CG的长;延伸拓展:(3)实知小组的同学在实验小组的启发下,进一步探究了当AB∶BC=∶2时,线段AG,BC,CG之间的数量关系,请你直接写出实知小组的结论:___________.参考答案一、单选题1、2、3、二、填空题1、三、解答题1、2、3、。

【初中数学】人教版八年级下册方法提升(三) 巧用勾股定理解折叠问题(练习题)

人教版八年级下册方法提升(三)巧用勾股定理解折叠问题(849)1.如图所示,有一块直角三角形纸片,两直角边AC=3,BC=4,将直角三角形纸片ABC折叠,使直角边AC落在斜边AB上,点C与点C′重合,折痕为AD,求BD 的长.2.如图,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求CE的长.3.如图所示,将长方形ABCD沿直线BD折叠,使点C落在点C′处,BC′交AD于点E.若AD=8,AB=4,求△BED的面积.4.如图所示,将长方形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接CE.(1)求证:AE=AF=CE=CF;(2)设AE=a,ED=b,DC=c,请写出一个a,b,c三者之间的数量关系式.参考答案1.【答案】:解:在直角△ABC中,AB=√AC2+BC2=5,由折叠知,AC′=AC=3,DC=DC′,设BD=x,则DC′=DC=4−x,在直角△BC′D中,根据勾股定理,得x2=22+(4−x)2,,解得x=52.故BD的长为522.【答案】:解:由折叠的性质,知AD=AF=10cm,DE=EF.在Rt△ABF中,BF=√AF2−AB2=√102−82=√36=6(cm),∴CF=BC−BF=4cm.设CE=xcm,则DE=EF=(8−x)cm.在Rt△FEC中,CF2+CE2=FE2,即42+x2=(8−x)2,解得x=3,即CE=3cm【解析】:由折叠的性质推导出BF的长度,进而得到CF的长度,然后集中在Rt△CEF中,根据勾股定理设边列方程求解CE的长.3.【答案】:解:如图,由折叠知,∠1=∠2,又∵AD//BC,∴∠1=∠3,∴∠2=∠3,∴BE=DE,设DE=BE=x,则AE=8−x,在直角△ABE中,根据勾股定理,得x2−(8−x)2=42,解得x=5,DE⋅AB=10.∴S△BED=12故△BED的面积为104(1)【答案】证明:∵四边形ABCD是矩形,∴AD//BC,∴∠AEF=∠EFC.由折叠的性质,可得∠AEF=∠CEF,AE=CE,AF=CF,∴∠EFC=∠CEF,∴CF=CE,∴AF=CF=CE=AE.(2)【答案】解:a,b,c三者之间的数量关系式为a2=b2+c2. 理由:由折叠的性质,得CE=AE.∵四边形ABCD是矩形,∴∠D=90∘.∵AE=a,ED=b,DC=c,∴CE=AE=a.在Rt△DCE中,CE2=CD2+ED2,∴a,b,c三者之间的数量关系式为a2=b2+c2.。

八年级数学下册《图形的折叠问题》练习题与答案(人教版)

八年级数学下册《图形的折叠问题》练习题与答案(人教版)一、选择题1.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°2.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm3.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.若BE平分∠ABC,且AB=5,BE=4,则AE=( )A.2B.3C.4D.54.在△ABC中,AB=10,AC=12,BC=9,AD是BC边上的高,将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )A.9.5B.10.5C.11D.15.55.如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为( )A.7cmB.10cmC.12cmD.22cm6.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题7.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.8.如图,将菱形ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF.若菱形的边长为2 cm,∠BAD=120°,则EF的长为 .9.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC 上的点F处.若点D的坐标为(10,8),则点E的坐标为10.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.若AB=6cm,BC=8cm,则线段FG的长为11.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF面积为________.12.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为______.三、解答题13.如图,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已AB=32cm,BC=40cm,求CE的长.14.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F 处.(1)求EF的长;(2)求四边形ABCE的面积.15.如图①,将矩形ABCD沿DE折叠使点A落在A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.16.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.17.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长.18.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.19.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4求QF的值.20.如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.21.如图1,在矩形纸片ABCD中,AB=12 cm,AD=20 cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P,Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P,Q分别在边BA,BC上移动,求出点E在边AD上移动的最大距离.图1 图2参考答案1.A.2.A3.B.4.D.5.C.6.A7.答案为:36°.8.答案为:3(cm).10.答案为:3cm.11.答案为:2.12.答案为:28.8.13.解:∵四边形ABCD是矩形∴AD=BC=40cm,DC=AB=32cm;∠B=90°由题意得:AF=AD=40cm;DE=EF(设为x),EC=40﹣x;由勾股定理得:BF2=402﹣322=576∴BF=24,CF=40﹣24=16;由勾股定理得:x2=162+(40﹣x)2,解得:x=23.2∴EC=32﹣23.2=8.8.14.解:(1)设EF=x依题意知:△CDE≌△CFE∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC=10∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5∴S梯形ABCE=(5+8)×6÷2=39.15.解:(1)证明:由折叠知△AEF≌△GEF,△BCE≌△HCE∵AE=A′E=BC,∠AEF=∠BCE∴△AEF≌△BCE∴△GEF≌△HCE∴EG=CH;(2)∵AF=FG=2,∠FDG=45°∴FD=2,AD=2+2;∵AF=FG=HE=EB=2,AE=AD=2+ 2∴AB=AE+EB=2+2+2=2+2 2.16.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形∴BC=OA=4,∠AOC=∠DCE=90°由折叠的性质可得DE=BD=BC﹣CD=4﹣1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC=22,则有OE=OC﹣CE=m﹣2 2.在Rt△AOE中,OA2+OE2=AE2,即42+(m﹣22)2=m2,解得m=3 2.17.证明:(1)∵AD⊥BC∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°∠BAG=∠BAD,∠CAF=∠CAD∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形解:(2)∵四边形AFHG是正方形∴∠BHC=90°又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去) ∴AD=12∴AB=6 5.18.证明:(1)由题意可得,△BCE≌△BFE∴∠BEC=∠BEF,FE=CE∵FG∥CE∴∠FGE=∠CEB∴∠FGE=∠FEG∴FG=FE∴FG=EC∴四边形CEFG是平行四边形又∵CE=FE∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF∴∠BAF=90°,AD=BC=BF=10∴AF=8∴DF=2设EF=x,则CE=x,DE=6﹣x∵∠FDE=90°∴22+(6﹣x)2=x 2,解得,x =103 ∴CE =103∴四边形CEFG 的面积是:CE •DF =103×2=203. 19.证明:(1)∵E ,F 分别是正方形ABCD 边BC ,CD 的中点 ∴CF =BE在△ABE 和△BCF 中∴Rt △ABE ≌Rt △BCF(SAS)∴∠BAE =∠CBF又∵∠BAE +∠BEA =90°∴∠CBF +∠BEA =90°∴∠BGE =90°∴AE ⊥BF ;(2)解:∵将△BCF 沿BF 折叠,得到△BPF∴FP =FC ,∠PFB =∠BFC ,∠FPB =90°∵CD ∥AB∴∠CFB =∠ABF∴∠ABF =∠PFB∴QF =QB设QF =x ,PB =BC =AB =4,CF =PF =2∴QB =x ,PQ =x ﹣2在Rt △BPQ 中∴x 2=(x ﹣2)2+42解得:x =5,即QF =5.20.解:(1)∵在△OAB 中,∠OAB =90º,∠AOB =30º,OB =8 ∴OA =43,AB =4.∴点B 的坐标为(43,4).(2)∵∠OAB =90º∴AB ⊥x 轴∴AB ∥EC.又∵△OBC 是等边三角形∴OC =OB =8.又∵D 是OB 的中点,即AD 是Rt △OAB 斜边上的中线∴AD =OD∴∠OAD =∠AOD =30º∴OE =4.∴EC =OC -OE =4.∴AB =EC.∴四边形ABCE 是平行四边形.(3)设OG =x ,则由折叠对称的性质,得GA =GC =8-x. 在Rt △OAG 中,由勾股定理,得GA 2=OA 2+OG2 即,解得,x =1. ∴OG 的长为1.21. (1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ∴点B 与点E 关于PQ 对称∴PB =PE ,BF =EF ,∠BPF =∠EPF.又∵EF ∥AB∴∠BPF =∠EFP ,∴∠EPF =∠EFP∴EP =EF ,∴BP =BF =EF =EP ∴四边形BFEP 为菱形.(2)解:①∵四边形ABCD 是矩形∴BC =AD =20,CD =AB =12,∠A =∠D =90°.∵点B 与点E 关于PQ 对称∴CE =BC =20.在Rt △CDE 中,DE =CE 2-CD 2=16∴AE =AD -DE =20-16=4.在Rt △APE 中,AE =4,AP =12-PB =12-PE∴EP 2=42+(12-EP)2.解得EP =203∴菱形BFEP 的边长为203cm. ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =4. 当点P 与点A 重合时,如图点E离点A最远,此时四边形ABQE为正方形,AE=AB=12 ∴点E在边AD上移动的最大距离为8 cm.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形折叠问题作业
1、在Rt △ABC 中,∠G=90°,AC=6,BC=8,D 、E 分别是斜边AB 和直角边CB 上的点,把△ABC 沿着直线DE 折叠,顶点B 的对应点是点B ’.
(1) 如图①,如果点B ’和顶点A 重合,在图①画出图形,再求CE 的长; (2) 如果②,如果点B ’落在直角边AC 的中点上,请在图②中画出图形,然后
求CE 的长.
图①
图②
2、(1)如图所示,将矩形ABCD 沿DF 折叠,顶点A 恰好落在对角线DB 上的点
E 处,已知AD =1,AB =2,求B
F 的长.
A
A
(2)如图所示,将矩形ABCD沿AE折叠,顶点D恰好落在BC边上的点F处,已知AB=8,BC=10,求CE的长.
(3)如图所示,将矩形ABCD沿AC折叠,使点B落在B’处,B’C与AD边交于点E,且BC=8,CE=6.25,求AB的长.
(4)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B 和点D 重合,折痕为EF.若AB = 3 cm,BC = 5 cm,求重叠部分△DEF的面积.。

相关文档
最新文档