20多种能耗分析软件的比较

合集下载

EnergyPlus能耗模拟软件及其应用工具_冯晶琛

EnergyPlus能耗模拟软件及其应用工具_冯晶琛

收稿日期:2011-09-14;修回日期:2011-09-24*基金项目:广州市教育局科技计划项目(项目编号:08C052)0引言能源问题已经成为我国现代化建设的一个重大挑战,随着我国建筑总量的不断攀升和居住舒适度的提升,建筑能耗呈现急剧上升趋势,建筑耗能在我国总能源消耗的比例不断增加。

我国建筑围护结构保温隔热性能差,采暖空调系统效率低,导致单位建筑面积能耗为发达国家新建建筑的3倍以上。

正确分析建筑能耗,对于合理地利用能源,保护生态环境,促进经济的可持续发展均具有重大的现实意义和理论价值[1]。

建筑节能的核心是建造低能耗的建筑,涉及建筑围护结构、建筑设备系统等许多方面,因此,在建筑设计阶段,必须对建筑物的能耗,尤其是全年运行的动态能耗进行模拟,这使得各种建筑能耗模拟软件应运而生。

1能耗模拟软件现状迄今世界各国都意识到能耗模拟分析的重要性。

从20世纪60年代到今天,随着计算机技术的发展完善,能耗动态模拟分析计算方法的日趋成熟,很多国家都根据自己的特点及要求研发了建筑能耗计算程序,可以很方便地对建筑物进行全年动态模拟。

美国是开展建筑节能研究最早的国家之一,与节能标准相关的软件有120多种,有关建筑节能评估的有70多种。

其中具代表性的是美国能源部(DOE)和美国劳伦斯伯克利国家实验室(LBNL)研发的DOE-2及基于DOE-2内核的应用软件(如PowerDOE 、VisualDOE 、EZDOE 、DesiCalc)、伊利诺斯大学研发的BLAST (Building Loads Analysis and System Thermodynamics)、美国可持续建筑工业委员会(Sustainable Buildings Industry Council)主持开发的Energy-10、得克萨斯建筑工程大学建筑学院(College of Architecture Texas A&M University)开发的ENER-WIN 、美国劳伦斯伯克利国家实验室(Lawrence Berkeley National Laborato-ry)开发的SPARK (Simulation Problem Analysis and Research Kernel),以及威斯康星大学太阳能实验室(Solar Energy Laboratory ,University of Wisconsin)开发的TRNSYS(Transient System Simulation Program)等[2]。

EnergyPlus能耗的几点分析

EnergyPlus能耗的几点分析

EnergyPlus能耗的几点分析1、建筑全能耗分析软件介绍世界上有很多用来设计或分析建筑及暖通空调系统的软件,它们具有不同的功能和复杂程度,面向不同的用户。

建筑全能耗分析软件可以用来模拟建筑及空调系统全年逐时的负荷及能耗,有助于建筑师和工程师从整个建筑设计工程来考虑如何节能。

大多数的建筑全能耗分析软件由四个主要模块构成:负荷模块、系统模块、设备模块和经济模块。

这四个模块相互联系形成一个建筑系统模块。

其中负荷模块模拟建筑外围护结构及其与室外环境和室内负荷之间的相互影响。

系统模块模拟空调系统得空气输送设备、风机、盘管以及相关的控制装置。

设备模块模拟制冷机、锅炉、冷却塔、能源储存设备、发电设备、泵等冷热源设备。

经济模块计算为满足建筑负荷所需要的能源费用。

有些软件没有经济模块,有些软件把系统模块和设备模块合并为一个模块。

2、EnergyPlus模拟介绍EnergyPlus是美国能源部资助的、由劳伦斯·伯克利国家实验室等科研机构协作开发的一种功能齐全的建筑能耗分析软件,作为已有的两个著名的能耗分析软件BLAST和DOE-2的全新替代产物EnergyPlus不但继承了BLAST 和DOE-2程序原有的特点和功能,同时在计算方法和程序结构等方面均有了很显著的进步。

1)负荷模拟EnergyPlus采用集成同步的负荷/系统/设备的模拟方法,在计算负荷时,时间步长可由用户选择,一般为10~15min。

在系统的模拟中,软件会自动设定更短的步长以便于更快地收敛。

EnergyPlus采用CTF来计算墙体传热,采用热平衡法计算负荷。

CTF实质上还是一种反映系数法,但它的计算更为精确,因为它是基于墙体的内表面温度,而不同于一般的基于室内空气温度的反应系数法。

在EnergyPlus中采用各向异性的天空模型对DOE-2的日光照明模型进行了改造,以更为精确地模拟倾斜表面上的天空散射强度。

2 )系统模拟EnergyPlus采用模块化的系统模拟方法,时间步长可变。

建筑能耗模拟软件对比

建筑能耗模拟软件对比

建筑能耗模拟软件建筑能耗模拟软件是计算分析建筑性能、辅助建筑系统设计运行与改造、指导建筑节能标准制定的有力工具,已得到越来越广泛的应用。

据统计,目前全世界建筑能耗模拟软件超过一百种,如美国BLASTs DOE-2、EnergyPlus,英国ESP-r,中国DeST等。

D0E-2是开发最早应用也最广泛的模拟软件之一,并作为计算核心衍生了一系列模拟软件,如eQuest, VisualDOE, EnergyPro等;EnergyPlus是美国能源部支持开发的新一代建筑能耗模拟软件, 目前仅是一个无用户图形界面的计算核心,以此为核心开发的软件有DesignBuilder 等DeST是以AutoCAD为图形界面的建筑能耗模拟软件。

在实际工程与研究中,建筑系统往往十分复杂,针对同一问题的研究,使用不同的模拟软件,由于用户对软件熟练程度不同、输入参数和软件计算核心存在差异,计算结果的差异较大,从而得出不同甚至相反的结论。

对大多数使用者而言,由于不了解软件的内部情况,往往简单地认为这种差异是软件本身引起的,从而对模拟工具和模拟方法产生质疑。

事实上,模拟结果的差异不仅受软件本身的影响,更加取决于使用者对软件操作的熟练程度。

1•计算核心的差异2•同一计算核心的的不同简化边界3.用户对软件操作的熟练程度直接影响模拟结果,因为用户决定了模型简化、输入参数和输出结果的选择建筑热平衡DOE-2采用反应系数法求解房间不透明围护传热,冷负荷系数法计算房间负荷和房间温度。

DOE-2不直接计算各围护内表面的长波辐射换热,而是将其折合在内表面与空气的对流换热系数中;在考虑围护内表面与空气的对流换热时,将空气温度设为固定值,求得自围护传入室内的热量,当空气温度改变后,不再重新计算;在考虑邻室换热时采用邻室上一时刻的温度进行计算,以避免房间之间的联立求解。

所以,DOE-2在负荷计算时没有严格考虑房间热平衡。

(假设各个房间都维持在同一个温度)。

当前国内外几款主要建筑节能软件分析

当前国内外几款主要建筑节能软件分析

当前国内外几款主要建筑节能软件分析建筑的能耗分析对建筑节能设计非常重要,设计人员需要根据计算的结果进行设计方案的调整和优化。

当前,国内外对建筑能耗计算方法的研究和软件的开发也屡见不鲜。

计算方法已经非常成熟,比较知名的软件也非常多。

比如国外的DOE-2、EnergyPlu,国内的CHEC、DEST等。

DOE-2DOE-2是美国劳伦斯伯克力国家实验室开发的能耗分析模拟软件,包括负荷计算模块、空气系统模块、机房模块、经济分析模块。

它可以提供整幢建筑物每小时的能量消耗分析,用于计算系统运行过程中的能效和总费用,也可以用来分析围护结构(包括屋顶、外墙、外窗、地面、楼板、内墙等)、空调系统,电器设备和照明对能耗的影响。

Doe-2的功能非常全面而强大,经过了无数工程的实践检验,是国际上都公认的比较准确的能耗分析软件,并且该软件是免费软件,使用人数和范围非常广泛。

ViualDOE是一款基于DOE-2开发的标准的建筑能耗模拟软件。

这款软件可以帮助建筑师或者设备工程师进行建筑的能耗模拟,设计方案的选择,还可以进行美国绿色建筑标准中能耗分析部分的评价。

ViualDOE可以模拟包括照明,太阳辐射,暖通系统,热水供暖等建筑所有主要的能耗。

并可以从DOE-2输出文件中自动提取计算结果。

相对与DOE-2来说,用户可以比较容易的上手使用。

但是软件的输人格式DOE-2的输入语言,因此用户需要了解一些DOE-2输入文件的格式规则,对于需要模拟复杂的高级用户,用户需要手动修改输入文件。

目前软件为全英文版,尚未出现比较成熟的汉化版本。

eQUESTeQUEST同样是一款基于DOE-2基础上开发的建筑能耗分析软件,它允许设计者进行多种类型的建筑能耗模拟,并且也向设计者提供了建筑物能耗经济分析、日照和照明系统的控制以及通过从列表中选择合适的测定方法自动完成能源利用效率。

这款软件的主要特点是为DOE-2输入文件的写入提供了向导。

用户可以根据向导的指引写入建筑描述的输入文件。

常用的能耗模拟软件

常用的能耗模拟软件

国内外建筑物的相关物理分析软件1.能耗分析软件目前国内外的能耗分析软件有几十种,以下是列出的国内外使用频率,市场占有率,和精确度较高的一些软件的基本介绍。

国外常用的能耗模拟软件•国内常用分析软件•能耗软件的分析由于能耗分析软件针对的使用阶段,使用人群不同,软件的重点设置也有所不同。

目前大部分的软件主要针对于设计阶段,对设计师起到一个参考的价值。

国内外存在的软件中,energy plus有很强的能耗计算功能,能够分区块将各个部分的能耗数据单独列出来,虽然操作上有一定的困难,但是适用范围比较广泛,精度比较高,不仅仅可以针对于设计院的设计师,也可对建筑物有特殊要求的业主。

ECOTECT先归属于Autodesk,可与revit建立的模型进行导入,方便操作和分析。

但软件功能性不高,只能提供给设计师一个参考数据,不能作为绿色建筑评估提交的数据。

目前国内使用较多的国外软件是Equest,也是以DOE-2为内核计算,精确度高,简易操作。

本土化较差,目前没有中文版本。

国内的软件目前有天正,斯维尔,PKPM这三种市场占有率高,使用率高的能耗分析软件。

国内的分析软件与国外的一些权威软件一样,采用的DOE-2内核,但是由于国内软件本土化,并且与国内的绿色建筑评估有很好的链接,能够提供国内绿色建筑评估的数据,并且能够在一些设计审核中得到国内建筑部门的认可。

2.其他物理分析软件能耗分析模拟是对建筑物节能耗能方面的分析模拟,而建筑物的物理分析也包括了日照,噪音,人流疏散,消防,室内环境的模拟分析,风环境的模拟,冷热负荷的模拟等。

以上的大部分能耗分析软件里也有很多涉及到了日照,室内外环境,冷热负荷等多方面的模拟分析。

还有一些软件可以相互导入,进行专业的分析。

目前国内用的较多的软件:Radiance光环境分析软件Airpak 风环境分析Retscreen分析光伏系统,再生能源系统的分析评估软件Simulex人流疏散软件Raynoise和cadna/A声环境。

建筑能耗模拟软件空调系统模拟对比研究_周欣

建筑能耗模拟软件空调系统模拟对比研究_周欣

专题研讨暖通空调HV&AC 2014年第44卷第4期113 建筑能耗模拟软件空调系统模拟对比研究*清华大学 周 欣☆ 燕 达△美国伯克利国家实验室 洪天真清华大学 朱丹丹摘要 对EnergyPlus,DeST和DOE-2.1E这3个建筑能耗模拟软件的空调系统模拟部分,从计算结构、主要设备模型及控制策略几方面进行了对比和分析,并通过一系列测试案例对不同模拟软件的计算过程进行了详细对比分析。

研究显示,这3个模拟软件均可实现空调系统和能耗的模拟,且在输入参数保持一致或等效的前提下,模拟结果的差异较小。

关键词 建筑能耗模拟软件 空调系统模拟 理论对比 案例分析 计算结构 设备模型 控制策略Comparison and research on HVAC system simulationpart for different building energy modeling programsBy Zhou Xin★,Yan Da,Hong Tianzhen and Zhu DandanAbstract Compares and analyses the calculation structure,main equipment models and controlstrategies of HVAC system simulation part for three building energy modeling programs,i.e.EnergyPlus,DeST and DOE-2.1E.Performs detailed analysis on different calculation processes of these modelingprograms through a series of test cases.The results show that the three programs can be all used to simulateHVAC system and energy consumption,and the simulation results have little difference on the conditionthat the input parameters are kept consistent or equivalent.Keywords building energy modeling program,HVAC system simulation,theory comparison,caseanalysis,calculation structure,equipment model,control strategy★Tsinghua University,Beijing,China *国际科技合作计划合作项目课题(编号:2010DFA72740-02),“十二五”国家科技支撑计划项目(编号:2012BAJ12B03)0 引言计算机模拟是预测及分析建筑能耗和性能的最经济有效的方法之一。

BIM能耗软件介绍

降低初投资和运行费用
创造可持续发展的建筑,将建筑的二氧化碳排放量降到最低
VE的模块主要包括:
ModelIT:三维建模工具
ApacheCal:供暖,制冷负荷计算工具
ApacheSim:动态负荷计算工具,可逐时分析建筑的负荷
ApacheHVAC:建筑空调系统模拟工具
Flucs:采光分析,设计工具
Radiance:建筑采光模拟软件
SunCast:日照分析工具
CostPlan:初投资分析工具
LifeStyle:运行费用分析工具
Simulex:避难分析工具
Lisi:电梯分析工具
IndusPro:管路尺寸计算
Pisces: 供暖水/冷冻水管路尺寸计算 来自四、IES能耗分析软件
IES是由英国IES公司开发的集成化建筑模拟软件,其核心思想是通过建立一个三维模型,来进行各种建筑功能分析,减少了重复建模的工作,保证了数据的准确和工作的快捷。
IES VE可以帮助你:
了解不同的设计方案所产生的实际效果
提高建筑的性能和用户的满意度
二、ArchiCAD能源分析软件
ArchiCAD的能源分析软件为EcoDesigner,其能源分析种类也大多相同,估算每月或每年的能源使用数据(瓦斯、电能、石油、核能)及建筑物的整体碳排放量数据,可以导出PDF文件显示。
三、BentleySystem能源分析软件
用于设计、仿真及分析建筑机械系统、环境条件及能源,可创建2D与3D节能模型和文文件,分析每年的能源,碳排放和燃料成本的报告。支持多个不同的软件平台,AECOsim能源仿真器可以接收MicroStation、AutoCAD、Revit。
Taps:自来水管路尺寸计算

电源管理软件

电源管理软件介绍电源管理软件是一种用于管理电源和能耗的工具。

它可以帮助用户监控和控制计算机和其他电子设备的电源使用情况,以提高能效并延长电池寿命。

本文档将介绍电源管理软件的功能、优势和用途,以及一些常见的电源管理软件的示例。

功能以下是电源管理软件常见的功能:1.电源监控:电源管理软件能够实时监测计算机或设备的电源使用情况,包括功率消耗、电池电量和充电状态等。

用户可以通过软件界面查看这些信息,并对其进行分析。

2.能耗分析:电源管理软件可以分析和报告设备的能耗情况,帮助用户了解设备在不同工作负载下的能耗情况。

用户可以根据这些分析结果制定能效改进计划。

3.电源控制:电源管理软件可以远程控制计算机或设备的电源选项,例如关闭或启动设备、调整电源模式以及设定休眠时间等。

这些控制功能可以帮助用户减少不必要的能耗和延长电池寿命。

4.能效优化:电源管理软件可以根据用户的需求和设定,优化计算机或设备的电源管理策略。

例如,在不使用设备时,自动进入休眠模式以降低能耗;还可以根据设备的工作负载实时调整电源模式,提高能效。

优势电源管理软件的使用可以带来以下优势:1.节能环保:通过电源管理软件,用户可以了解自己的电脑或设备的能耗情况,并采取相应措施来减少能耗,从而降低能源消耗和二氧化碳排放,起到节能环保的作用。

2.延长电池寿命:对于依赖于电池供电的设备,电源管理软件可以监控电池状态并提供相应建议,从而帮助用户合理使用电池,延长电池寿命。

3.提高工作效率:通过电源管理软件,用户可以选择电源模式和设备休眠时间等,以适应不同的工作需求。

这样可以减少电源切换的时间,提高工作效率。

4.实时监控:电源管理软件可以实时监控电源使用情况,帮助用户及时发现并解决能耗过高或无法正常工作的问题。

应用场景电源管理软件适用于各种场景,包括但不限于以下几种:1.个人电脑:对于个人电脑用户,电源管理软件可以帮助他们了解自己电脑的能耗情况,选择合适的电源模式以延长电池寿命,提高工作效率。

建筑环境设计模拟分析软件DeST

建筑环境设计模拟分析软件DeST一、本文概述随着科技的发展和人们对生活质量要求的提高,建筑环境设计在追求美观和实用的也越来越注重节能减排和绿色可持续发展。

为了应对这一挑战,模拟分析软件在建筑环境设计中的应用变得日益重要。

本文旨在介绍一款名为DeST(Design Environment Simulation Toolkit)的建筑环境设计模拟分析软件,其强大的功能和广泛的应用领域使得其在建筑行业中占据重要地位。

DeST软件以其精确的模拟、灵活的操作和高效的分析能力,为建筑设计师和工程师提供了一个全面、高效的解决方案,有助于实现建筑环境设计的绿色化和智能化。

本文首先将对DeST软件的基本情况进行介绍,包括其开发背景、主要功能和技术特点等。

随后,我们将深入探讨DeST软件在建筑环境设计中的应用场景,包括建筑能耗模拟、室内环境分析、可再生能源利用等方面。

通过具体案例的分析,我们将展示DeST软件在实际项目中的应用效果和价值。

我们还将对DeST软件的发展趋势和前景进行展望,以期为相关领域的研究和实践提供参考和借鉴。

本文旨在全面介绍DeST建筑环境设计模拟分析软件的应用与发展,以期为推动建筑行业的绿色化和智能化发展贡献力量。

二、DeST软件概述《建筑环境设计模拟分析软件DeST》(Design Environment for Sustnable Technology)是一款针对建筑环境设计进行高效模拟与分析的软件工具。

该软件基于先进的建筑物理和热力学原理,通过数值计算的方法,对建筑物的热湿环境、采光、通风、能耗等多个方面进行全面模拟和分析。

DeST软件旨在帮助建筑设计师、工程师和研究人员在设计阶段就能对建筑的环境性能进行预测和优化,从而实现绿色建筑和可持续发展目标。

DeST软件拥有丰富的功能模块,包括但不限于:建筑热湿环境模拟、能耗分析、自然通风模拟、采光模拟、空调负荷计算等。

这些模块能够满足建筑环境设计在不同阶段、不同需求下的模拟分析要求。

建筑常用节能软件及其不足_章雅平

科技信息
工程技术
建筑常用节能软件及其不足
中机国际工程设计研究院有限责任公司第三建筑所 章雅平
[摘 要]文章结合建筑常际应用中的不足。 [关键词]节能软件 比较 软件的不足
在建筑设计中,建筑节能已经成为很重要的一个设计环节。《建筑 工程设计文件编制深度规定》(2008 年版)就已经要求,在建筑初步设计 阶段,建筑节能设计说明中,需要写明项目的设计依据,所在地的气候
设计软件(8.2 版),PKPM 建筑节能设计分析软件(PBECA2008 1.00 版), 清华斯维尔 BECS 建筑节能设计软件(2010 版)。
节能软件的使用过程大同小异,都是通过建立三维节能模型,设置
项目信息,房间功能,设定维护结构的材料类型。最后计算项目的规定 性指标,动态权衡,生成节能报告,节能审查表等。
保存下来。 5、在有些复杂建筑中,房间数量太多,超出软件的计算能力,不能
进行动态计算。这时需要人为的合并一些相同功能房间,再进行节能计 算。但不知道实际节能效果和计算结果有多大差距,在审查中也不好发 现。
清华斯维尔 BECS 建筑节能设计软件(2010 版) 优点:
1、BECS 是国内唯一支持 DeST 和 DOE—2 双核能耗模拟程序的节 能软件,操作方法与天正节能类似,不过其对节能模型的可视性做了补
充,让图中节能设置有更直观的表述,类似于天正节能的升级版。操作 方式相对更人性化。
2、功能实用,使用也很方便, 修改起来也很顺手,数据的中间结果都 能查询,很准确。
3、可以判断模型中柱内墙体是否连接。 4、热桥过梁可以设置高度及深入墙体中的长度,相对其它软件更 精细化。 5、底图可以保留也可以隐藏,后期修改很方便,包括平面方案修 改,墙体开间变动可以准确定位。其它软件,没有底图,需要另开窗口打 开原图对照。 6、楼层组装中,可以数字输入代表各个标准层,相对方便快捷。 相对不足:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CONTRASTING THE CAPABILITIES OF BUILDING ENERGY PERFORMANCE SIMULATION PROGRAMSA Joint Report byDrury B. Crawley U S Department of Energy Washington, DC, USA Jon W. Hand Energy Systems Research Unit University of Strathclyde Glasgow, Scotland, UK Michal Kummert University of Wisconsin-Madison Solar Energy Laboratory Madison, Wisconsin, USA Brent T. Griffith National Renewable Energy Laboratory Golden, Colorado, USAVERSION 1.0 JULY 2005NOTICEThis report is sponsored jointly by the United States Department of Energy, University of Strathclyde, and University of Wisconsin. None of the sponsoring organizations, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by any of the sponsoring organizations. The views and opinions of authors expressed herein do not necessarily state or reflect those of the sponsoring organizations.iiContrasting the Capabilities of Building Energy Performance Simulation ProgramsTABLE OF CONTENTSABSTRACT............................................................................................................................................................ 1 OVERVIEW OF THE TWENTY SIMULATION PROGRAMS.......................................................................... 2 BLAST................................................................................................................................................................ 2 BSim ................................................................................................................................................................... 3 DeST ................................................................................................................................................................... 3 DOE-2.1E ........................................................................................................................................................... 4 ECOTECT........................................................................................................................................................... 4 Ener-Win............................................................................................................................................................. 5 Energy Express ................................................................................................................................................... 6 Energy-10............................................................................................................................................................ 6 EnergyPlus .......................................................................................................................................................... 6 eQUEST.............................................................................................................................................................. 7 ESP-r................................................................................................................................................................... 8 HAP .................................................................................................................................................................... 8 HEED.................................................................................................................................................................. 8 IDA ICE.............................................................................................................................................................. 9 IES <VE>.......................................................................................................................................................... 10 PowerDomus..................................................................................................................................................... 10 SUNREL ........................................................................................................................................................... 11 Tas..................................................................................................................................................................... 11 TRACE ............................................................................................................................................................. 12 TRNSYS ........................................................................................................................................................... 12 COMPARISON AMONG THE TOOLS.............................................................................................................. 13 CONCLUSIONS .................................................................................................................................................. 15 ACKNOWLEDGEMENTS.................................................................................................................................. 15 REFERENCES ..................................................................................................................................................... 15 ABBREVIATIONS IN THE TABLES ................................................................................................................ 21LIST OF TABLESTable 1 General Modeling Features..................................................................................................................... 22 Table 2 Zone Loads............................................................................................................................................... 24 Table 3 Building Envelope, Daylighting and Solar .............................................................................................. 26 Table 4 Infiltration, Ventilation, Room Air and Multizone Airflow ...................................................................... 30 Table 5 Renewable Energy Systems...................................................................................................................... 31 Table 6 Electrical Systems and Equipment........................................................................................................... 32 Table 7 HVAC Systems ......................................................................................................................................... 33 Table 8 HVAC Equipment..................................................................................................................................... 36 Table 9 Environmental Emissions ........................................................................................................................ 41 Table 10 Climate Data Availability ...................................................................................................................... 42 Table 11 Economic Evaluation............................................................................................................................. 44 Table 12 Results Reporting................................................................................................................................... 45 Table 13 Validation .............................................................................................................................................. 47 Table 14 User Interface, Links to Other Programs, and Availability................................................................... 49iiiCONTRASTING THE CAPABILITIES OF BUILDING ENERGY PERFORMANCE SIMULATION PROGRAMS Drury B. Crawley1, Jon W. Hand2, Michal Kummert3, and Brent T. Griffith4 U S Department of Energy, Washington, DC, USA Energy Systems Research Unit, University of Strathclyde, Glasgow, Scotland, UK 3 University of Wisconsin-Madison, Solar Energy Laboratory, Madison, Wisconsin, USA 4 National Renewable Energy Laboratory, Golden, Colorado, USA2 1ABSTRACTFor the past 50 years, a wide variety of building energy simulation programs have been developed, enhanced, and are in use throughout the building energy community. This report provides an up-to-date comparison of the features and capabilities of twenty major building energy simulation programs: BLAST, BSim, DeST, DOE2.1E, ECOTECT, Ener-Win, Energy Express, Energy-10, EnergyPlus, eQUEST, ESP-r, IDA ICE, IES <VE>, HAP, HEED, PowerDomus, SUNREL, Tas, TRACE and TRNSYS. This comparison is based on information provided by the program developers in the following categories: general modeling features; zone loads; building envelope, daylighting and solar; infiltration, ventilation and multizone airflow; renewable energy systems; electrical systems and equipment; HVAC systems; HVAC equipment; environmental emissions; economic evaluation; climate data availability; results reporting; validation; and user interfaces, links to other programs, and availability.INTRODUCTIONOver the past 50 years, literally hundreds of building energy programs have been developed, enhanced, and are in use throughout the building energy community. The core tools in the building energy field are the whole-building energy simulation programs that provide users with key building performance indicators such as energy use and demand, temperature, humidity, and costs. During that time, a number of comparative surveys of energy programs have been published, including: Building Design Tool Council (BDTC 1984, 1985 and Willman 1985): a procedure for evaluating simulation tools as well as a report on ASEAM, CALPAS3, CIRA, and SERIRES. U.S. Army Construction Engineering Research Laboratory (Lawrie et al. 1984): evaluation of available microcomputer energy programs. International Energy Agency Solar Heating and Cooling Programme (IEA SHC) Task 8, Jorgensen (1983): survey of analysis tools; Rittelmann and Ahmed (1985): survey of design tools specifically for passive and hybrid solar low-energy buildings including summary results on more than 230 tools. Matsuo (1985): a survey of available tools in Japan and Asia. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (Degelman and Andrade 1986): bibliography on programs in the areas of heating, ventilating, airconditioning and refrigeration. Building Environmental Performance Analysis Club (Wiltshire and Wright 1989) and UK Department of Energy (Wiltshire and Wright 1987): comparison of three tools. Bonneville Power Administration: comparison of energy software for the Energy Edge new commercial building program (Corson 1990). Ahmad and Szokolay (1993): comparative study of thermal tools used in Australia. Scientific Computing: a series of reviews from 1993 through 1995 in Engineered Systems Magazine (Amistadi 1993, 1995). Kenny and Lewis (1995): survey of available tools for the European Commission. Lighting Design and Application magazine (1996): survey of lighting design software. Lomas, Eppel, Martin and Bloomfield (1994): IEA SHC Task 12 empirical validation of thermal building simulation programs using test room data. U. S. Department of Energy (Crawley 1996): directory of 50 building energy tools developed by DOE1. Aizlewood and Littlefair (1996): survey of the use of daylight prediction models. This report comprised the initial content of the Building Energy Tools Directory launched in August 1996. This webbased directory now contains information on more than 300 tools: 1Version 1.01July 2005Contrasting the Capabilities of Building Energy Performance Simulation Programs Natural Resources Canada (Khemani 1997): directory of more than 100 tools for energy auditing. Underwood (1997): comparison of the results from two programs. Natural Resources Canada (Zmeureanu 1998, Haltrecht et al 1999): evaluation of capabilities of a broad range of simulation engines. IEA SHC Task 21 (de Boer and Erhorn 1999): survey of simple design tools for daylight in buildings including simple formulas, tables, nomographs, diagrams, protractors, software tools, and scale models. Waltz (2000): summary of contact and other basic information about a variety of building energy, life-cycle costing, and utility rate tools. ARTI 21CR (Jacobs and Henderson 2002): survey of user requirements (architectural designers, engineering practitioners, and design/build contractors), review whole building, building envelope, and HVAC component and system simulation and design tools, evaluate existing tools relative to user requirements, and provide recommendations for further tool development. This paper provides an up-to-date comparison of twenty major building energy simulation programs: BLAST, BSim, DeST, DOE-2.1E, ECOTECT, Energy-10, Energy Express, Ener-Win, EnergyPlus, eQUEST, ESP-r, IDA ICE, IES <VE>, HAP, HEED, PowerDomus, SUNREL, Tas, TRACE and TRNSYS. The developers of these programs provided initial detailed information about their tools, extending an earlier paper by Crawley et al. (2004) comparing DOE-2.1E, BLAST, and EnergyPlus. Because the programs differ substantially from DOE-2, BLAST, or EnergyPlus in structure, solution method, and features, the tables were extensively revised and extended. Readers are reminded that the tables are based on vendor-supplied information and only a limited peer review has been undertaken to verify the information supplied. Some of the descriptions within the table employ vendor specific jargon and thus is somewhat opaque to the broader simulation community. One of the findings of this project is that the simulation community is a long way from having a clear language to describe the facilities offered by tools and the entities that are used to define simulation models. As a result the tables are not yet uniform in their treatment of topics. Some vendors included components as separate entries and others preferred a general description of component types. Clearly there is considerable scope for improvement in both the layout of the table and in the clarity of the entries. It is the authors’ hope that this will become a living document that will evolve over time to reflect the evolution of tools and an evolution of the language the community uses to discuss the facilities within tools. This task is beyond the resources of three or four authors. It requires community input that not only holds vendors to account for the veracity of their entries, but injects additional methodologies into the task of tool comparison. This report first provides a brief overview of each of the programs. This is followed by 14 tables which compare the capabilities for each of the twenty simulation programs in the following areas: General Modeling Features, Zone Loads, Building Envelope and Daylighting, Infiltration, Ventilation and Multizone Airflow, Renewable Energy Systems, Electrical Systems and Equipment, HVAC Systems, HVAC Equipment, Environmental Emissions, Economic Evaluation, Climate Data Availability, Results Reporting, Validation, and User Interface, Links to Other Programs, and Availability. The twenty software programs are listed alphabetically in the tables.OVERVIEW OF THE TWENTY SIMULATION PROGRAMSBLAST Version 3.0 Level 334, August 1998 /BLAST The Building Loads Analysis and System Thermodynamics (BLAST) tool (Building Systems Laboratory 1999) is a comprehensive set of programs for predicting energy consumption and energy system performance and cost in buildings. The BLAST program was developed by the U.S. Army Construction Engineering Research Laboratory (USA CERL) and the University of Illinois. BLAST contains three major subprograms: Space Loads Prediction, Air System Simulation, and Central Plant. The Space Loads Prediction subprogram computes hourly space loads in a building based on weather data and user inputs detailing the building construction and operation. The heart of space loads prediction is the room heat balance. For each hour simulated, BLAST performs a heat balance for each surface of each zone described and a heat balance on the room air. The Air System Simulation subprogram uses the computed space loads, weather data, and user inputs describing the building air-handling system to calculate hot water, steam, gas, chilled water, and electric demands of the building and airhandling system. Once zone loads are calculated, they are translated into hot water, steam, chilled water, gas, and electrical demands on a central plant or utility system. This is done by using basic heat and mass balance principles in the system simulation subprogram of BLAST. Once the hotVersion 1.02July 2005Contrasting the Capabilities of Building Energy Performance Simulation Programswater, steam, chilled water, gas, and electrical demands of the building fan systems are known, the central plant must be simulated to determine the building's final purchased electrical power and/or fuel consumption. The Central Plant Simulation subprogram uses weather data, results of the air distribution system simulation, and user inputs describing the central plant to simulate boilers, chillers, on-site power generating equipment and solar energy systems; it computes monthly and annual fuel and electrical power consumption. BLAST can be used to investigate the energy performance of new or retrofit building design options of almost any type and size. In addition to performing peak load (design day) calculations necessary for mechanical equipment design, BLAST also estimates the annual energy performance of the facility, which is essential for the design of solar and total energy (cogeneration) systems and for determining compliance with design energy budgets. BLAST is no longer under development and no new versions have been released since 1998. BSim Version 4.4.12.11 www.bsim.dk BSim (Danish Building Research Institute 2004) is a user-friendly simulation package that provides means for detailed, combined hygrothermal simulations of buildings and constructions. The package comprise several modules: SimView (graphic model editor and input generator), tsbi5 (hygro-thermal building simulation core), SimLight (tool for analyses of daylight conditions in simple rooms), XSun (graphical tool for analyses of direct sunlight and shadowing), SimPV (a simple tool for calculation of the electrical yield from PV systems), NatVent (analyses of single zone natural ventilation) and SimDxf (a simple tool which makes it possible to import CAD drawings in DXF format). Only the most central modules will be described in the following. For further information see Rode and Grau (2003). BSim has been used extensively over the past 20 years, previously under the name tsbi3. Today BSim is the most commonly used tool in Denmark, and with increasing interest abroad, for energy design of buildings and for moisture analysis. The SimView module offers the user advanced opportunities for creating the building geometry and attributing properties to any object of the building model. SimView has an interface split into five frames, four showing different views of the geometry and one showing the model in a hierarchical tree structure. In this way it is easy for the user to identify any model object and make changes to it. The core of the BSim program package is a combined transient thermal and transient indoor humidity and surface humidity simulation module tsbi5. The transient simulation of indoor humidity conditions takes into account the moisture buffer capacity of building components and furnishings and the supply of humidity from indoor activities. XSun is a tool for detailed analyses and simulation of solar radiation through windows and openings in building constructions. Analyses of shadows from remote objects such as neighboring buildings can also be analyzed by using XSun. During thermal simulations with tsbi5, the routines of XSun are used to distribute solar energy to the exact location in the model. Simulations with XSun can be shown as animations of the movements of sunspots in the spaces of the building model. Animations can be saved as standard Windows video sequences and be shown on a PC where BSim has not been installed. DeST Version 2.0, 2005 (Chinese version only) DeST (Designer’s Simulation Toolkits) is a tool for detailed analysis of building thermal processes and HVAC system performance (Chen and Jiang 1999, Zhu and Jiang 2003). It can provide hourly building thermal performance, energy consumption and ratio of loads satisfied by the HVAC systems, and economic cost results base on the user description. Based on these results, designers can choose the best option at different stages in the design process. Prior to 1995, DeST was called BTP (Building Thermal Performance), mainly for building thermal performance analysis (Jiang and Hong 1993). BTP was validated as part of the IEA BESTEST work in early nineties (Eppel 1993). DeST comprises a number of different modules for handling different functions: Medpha (Meteorological Data Producer for HVAC Analysis) (Hong and Jiang 1993), VentPlus (Module for calculation of natural ventilation), Bshadow (module for external shadowing calculation), Lighting (module for indoor lighting calculation), and CABD (Computer Aided Building Description, provides the user interface for DeST, developed based on AutoCAD). BAS (Building Analysis & Simulation) is the core module for building thermal performance calculation. It performs hourly calculations for indoor air temperatures and cooling/heating loads for buildings. BAS adopted the state space solution method for building thermal heat balance equations (Jiang 1982). For each room, DeST takes into account the thermal process of adjacent rooms. DeST can handle complicated buildings of up to 1000 rooms (Hong and Jiang 1997).Version 1.03July 2005Contrasting the Capabilities of Building Energy Performance Simulation ProgramsScheme is the module for analysis of HVAC scheme, such as zoning method, system type selection (VAV, CAV or etc.). A designer provides his scheme (zoning method, system type, etc.) to DeST, DeST can provide the satisfied ratio and energy consumption of this scheme, based on simulation results. By comparing those different design, Designers can obtain an optimized solution for the buildings. DNA (Duct Network Analysis) is the module in DeST to carry out duct network calculations for both system design and validation. AHU (Air Handling Unit) module can provide sufficient hourly data for the designers to validate the selected air handing equipments. And also it provides data needed by CPS module. CPS (Combined Plant Simulation) is a module to carry out cooling/heating plant and water pipe network calculations for both system design and validation, and it provides the consumption of energy sources. EAM (Economic Analysis Model) is a module to carry out the calculations of initial and operating costs of the designed HVAC system. There are five versions in the DeST family: DeSTh (residential buildings), DeST-c (commercial buildings), DeST-e (building evaluation), DeST-r (building ratings) and DeST-s (solar buildings). DeST has been widely used in China for various prestige large structures such as the State Grand Theatre and the State Swimming Centre. DOE-2.1E Version 121, September 2003 DOE-2.1E (Winkelmann et al. 1993) predicts the hourly energy use and energy cost of a building given hourly weather information, a building geometric and HVAC description, and utility rate structure. Using DOE-2.1E, designers can determine the choice of building parameters that improve energy efficiency while maintaining thermal comfort and cost-effectiveness. DOE-2.1E has one subprogram for translation of input (BDL Processor), and four simulation subprograms (LOADS, SYSTEMS, PLANT and ECON). LOADS, SYSTEMS and PLANT are executed in sequence, with the output of LOADS becoming the input of SYSTEMS, etc. The output then becomes the input to ECONOMICS. Each of the simulation subprograms also produces printed reports of the results of its calculations. The Building Description Language (BDL) processor reads input data and calculates response factors for the transient heat flow in walls and weighting factors for the thermal response of building spaces. The LOADS simulation subprogram calculates the sensible and latent components of the hourly heating or cooling load for each constant temperature space taking into account weather andVersion 1.0building use patterns. The SYSTEMS subprogram handles secondary systems; PLANT handles primary systems. SYSTEMS calculates the performance of air-side equipment (fans, coils, and ducts); it corrects the constant-temperature loads calculated by the LOADS subprogram by taking into account outside air requirements, hours of equipment operation, equipment control strategies, and thermostat set points. The output of SYSTEMS is air flow and coil loads. PLANT calculates the behavior of boilers, chillers, cooling towers, storage tanks, etc., in satisfying the secondary systems heating and cooling coil loads. It takes into account the part-load characteristics of the primary equipment in order to calculate the fuel and electrical demands of the building. The ECONOMICS subprogram calculates the cost of energy. It can also be used to compare the costbenefits of different building designs or to calculate savings for retrofits to an existing building. DOE-2.1E has been used extensively for more than 25 years for both building design studies, analysis of retrofit opportunities, and for developing and testing building energy standards in the U.S. and around the world. DOE-2.1E has been used in the design or retrofit of thousands of well-known buildings throughout the world. The private sector has adapted DOE-2.1E by creating more than 20 interfaces that make the program easier to use. ECOTECT Version 5.50, April 2005 ECOTECT (Marsh 1996) is a highly visual and interactive complete building design and analysis tool that links a comprehensive 3D modeller with a wide range of performance analysis functions covering thermal, energy, lighting, shading, acoustics, resource use and cost aspects. Whilst its modelling and analysis capabilities can handle geometry of any size and complexity, its main advantage is a focus on feedback at the conceptual building design stages. The intent is to allow designers to take a holistic approach to the building design process making it easier to create a truly low energy building, rather than simply size a HVAC system to cope with a less than optimal design. ECOTECT aims to provide designers with useful performance feedback both interactively and visually. Thus, in addition to standard graph and table-based reports, analysis results can be mapped over building surfaces or displayed directly within the spaces that generated them, giving the designer the best chance of understanding exactly how their building is performing and from that basis make real design improvements. As well as the broad range of internal calculations that ECOTECT can execute, it also imports/exports to a range of more technical and focussed analysisJuly 20054Contrasting the Capabilities of Building Energy Performance Simulation Programsengines, such as Radiance, EnergyPlus, ESP-r, NIST FDS and others -- and for general data import/export facilities, it includes an array of formats suitable for use alongside most leading CAD programs. The recent addition of a comprehensive scripting engine that provides direct access to model geometry and calculation results has made performance based generative design and optimisation a very real option for the environmental engineer/designer who uses ECOTECT. Scripting allows models to be completely interactive and self-generative, automatically controlling and changing any number of parameters, materials, zone stettings or even geometry during calculations or as the user specifies—and at a more day-to-day level the scripting functions are excellent for automating the more mundane tasks involved in calculation runs, results comparison and report creation. ECOTECT is unique within the field of building analysis in that it is entirely designed and written by architects and intended mainly for use by architects—although the software is quickly gaining popularity through the wider environmental building design community. Ener-Win Version EC, June 2005 /enerwin Ener-Win, originally developed at Texas A&M University, is an hourly energy simulation model for assessing annual energy consumption in buildings. The software produces annual and monthly energy consumption, peak demand charges, peak heating and cooling loads, solar heating fraction through glazing, daylighting contribution, and a life-cycle cost analysis. Design data, tabulated by zones, also show duct sizes and electric power requirements. The Ener-Win software is composed of several modules — an interface module, a weather data retrieval module, a sketching module, and an energy simulation module. Ener-Win requires only three basic inputs: (1) the building type, (2) the building’s location, and (3) the building’s geometrical data. Default data derived from the initial inputs include economics parameters, number of occupied days and holidays, occupancy, hot water usage, lighting power densities, HVAC system types and schedules for hourly temperature settings, lighting use, ventilation and occupancy. Weather data generation is done hour-by-hour (Degelman 1990) based on statistical monthly means and standard deviations derived from the World Meteorological Organization and the National Solar Radiation Data Base from a 30-year period of record. The database currently contains 1280 cities. As an alternative, the user may elect to enter typical weather data from files such as TMY2 or WYEC2. The sketching interface allows the user to sketch the building’s geometry and HVAC zones, floorby-floor, and specify parameters such as number of repetitive floors, floor-to-floor heights, and building orientation. The user can specify up to 25 zones on each floor or a building total of 98 zones. Zones are simply represented in plan by different colors. After the sketching process is complete, a drawing processor will analyze the geometrical conditions, including zone floor, roof and wall areas and how the walls are shaded by adjoining and outside structures. Peak values for occupancy, hot water use, ventilation, lighting, and equipment are also specified and linked to their respective schedule numbers. Adjustments of any of the zone properties can be done by editing the zone description forms. Usually, some adjustments are desirable for occupancy numbers, lighting levels, whether daylighting is to be used and whether natural ventilation is to be specified. The default HVAC efficiencies may also be edited. Load calculations, system simulations, and energy summations are performed each hour of the year (Degelman 1990). The resulting zone air conditioning loads are based on a thermal balance model. Convective gains are translated into loads immediately, while the radiative gains are delayed by weighting factors for each source of heat. Daylighting algorithms are based on a modified Daylight Factor method and support dimmer controls. The program also has the capability of simulating the floating space temperature (passive designs) for comfort analyses in unheated or uncooled spaces. Output from Ener-Win is produced in both tabular and graphic forms. The tabular results include: breakdown of monthly energy loads and utility bills, energy savings from utilizing daylight, peak loads, electric demand charges, 24-hour energy use, temperature, energy and comfort profiles. The Life-Cycle Cost prediction is the final step in the program procedures. First costs for the building are based on the unit costs of walls, windows, and roofs from the assemblies catalog. Additional first costs include the lighting system and the mechanical system. A “Present Worth” analysis is then performed on the future recurring costs of fuel, electric, and maintenance. These calculations are based on fuel price escalation rates and opportunity interest rates.Version 1.05July 2005。

相关文档
最新文档