高等流体力学课件 第一章 流体力学的基本概念
合集下载
高等流体力学课件

静止流体满足力的平衡条件,即合力为零。
流体静力学的基本概念
流体静力学是研究流体平衡和压力分布的学 科。
压力分布
静止流体的压力分布与重力场和其他外力场 有关,可以通过静力学方程求解。
流体动力学
总结词
流体动力学的基本概念、一维流动、层流与湍流
一维流动
一维流动是指流体沿着一条线的流动,可以用于 描述长距离管道内的流动或某些对称的流动。
水利工程
机械工程
流体动力学在水力发电、水利枢纽设计、 灌溉系统优化等方面具有广泛应用,为水 利工程提供了重要的技术支持。
流体动力学在机械工程领域的应用也十分 广泛,如内燃机、通风 system等的设计和 优化。
流体在自然界中的应用
气候变化
流体动力学在气候变化研究中发挥着重要作用,如风场、洋流等 对气候的影响研究。
详细描述
连续性方程是流体动力学的基本方程之一,它表达了单位时间内流经某一封闭 曲面微元体的流体质量的增加等于该微元体所受质量源的净增量,用于描述流 体运动的连续性。
动量方程
总结词
描述流体动量守恒的方程
详细描述
动量方程是流体动力学的基本方程之一,它表达了流体动量的变化率等于作用在 流体上的外力之和,包括重力、压力、摩擦力等。
方法
02
常用的线性稳定性分析方法包括特征值分析、傅里叶分析和庞
加莱截面法等。
应用
03
线性稳定性分析在气象、海洋、航空航天等领域有广泛应用,
用于预测和控制流体运动的稳定性。
非线性稳定性分析
定义
非线性稳定性分析是研究流体运动在较大扰 动下的响应,需要考虑非线性效应对流体运 动的影响。
方法
非线性稳定性分析需要求解非线性偏微分方程,常 用的方法包括数值模拟和近似解析法。
流体静力学的基本概念
流体静力学是研究流体平衡和压力分布的学 科。
压力分布
静止流体的压力分布与重力场和其他外力场 有关,可以通过静力学方程求解。
流体动力学
总结词
流体动力学的基本概念、一维流动、层流与湍流
一维流动
一维流动是指流体沿着一条线的流动,可以用于 描述长距离管道内的流动或某些对称的流动。
水利工程
机械工程
流体动力学在水力发电、水利枢纽设计、 灌溉系统优化等方面具有广泛应用,为水 利工程提供了重要的技术支持。
流体动力学在机械工程领域的应用也十分 广泛,如内燃机、通风 system等的设计和 优化。
流体在自然界中的应用
气候变化
流体动力学在气候变化研究中发挥着重要作用,如风场、洋流等 对气候的影响研究。
详细描述
连续性方程是流体动力学的基本方程之一,它表达了单位时间内流经某一封闭 曲面微元体的流体质量的增加等于该微元体所受质量源的净增量,用于描述流 体运动的连续性。
动量方程
总结词
描述流体动量守恒的方程
详细描述
动量方程是流体动力学的基本方程之一,它表达了流体动量的变化率等于作用在 流体上的外力之和,包括重力、压力、摩擦力等。
方法
02
常用的线性稳定性分析方法包括特征值分析、傅里叶分析和庞
加莱截面法等。
应用
03
线性稳定性分析在气象、海洋、航空航天等领域有广泛应用,
用于预测和控制流体运动的稳定性。
非线性稳定性分析
定义
非线性稳定性分析是研究流体运动在较大扰 动下的响应,需要考虑非线性效应对流体运 动的影响。
方法
非线性稳定性分析需要求解非线性偏微分方程,常 用的方法包括数值模拟和近似解析法。
第一章 流体力学的基本概念

dx dy dz dt u v w
第一章 流体力学的基本概念
x x( x0 , y 0 , z 0 , t , ) y y ( x0 , y 0 , z 0 , t , ) z z ( x , y , z , t , ) 0 0 0
τ固定,t变化时,迹线;
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
一、拉格朗日参考系
1.流动的描述
流体的物理量表示为流体质点和时间的函数。
p p( x0 , y0 , z0 , t )
T T ( x0 , y0 , z0 , t )
( x0 , y0 , z0 , t )
(x0 , y0 , z0) 固定,t 变化: 表示某一确定流体质点的空间位臵及相 关物理量随时间的变化规律。 (x0 , y0 , z0)变化,t 固定: 表示同一时刻不同流体质点的空间位臵 及相关物理量。
0
有限大的正数
r0 , r 互为反函数。
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
三、两个参考系间的相互转换
2.两个参考系间的相互转换
r0 r0 (r , t )
x0i x0i ( x j , t )
x0 x0 ( x, y, z , t ) y0 y0 ( x , y , z , t ) z z ( x, y , z , t ) 0 0
三、两个参考系间的相互转换
2.两个参考系间的相互转换
(2) 已知欧拉参考系的物理量
u u (r , t )
积分 代入
dr u (r , t ) dt
dx dt u ( x, y , z , t ) dy v ( x, y , z , t ) dt dz dt w( x, y , z , t )
第一章 流体力学的基本概念
x x( x0 , y 0 , z 0 , t , ) y y ( x0 , y 0 , z 0 , t , ) z z ( x , y , z , t , ) 0 0 0
τ固定,t变化时,迹线;
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
一、拉格朗日参考系
1.流动的描述
流体的物理量表示为流体质点和时间的函数。
p p( x0 , y0 , z0 , t )
T T ( x0 , y0 , z0 , t )
( x0 , y0 , z0 , t )
(x0 , y0 , z0) 固定,t 变化: 表示某一确定流体质点的空间位臵及相 关物理量随时间的变化规律。 (x0 , y0 , z0)变化,t 固定: 表示同一时刻不同流体质点的空间位臵 及相关物理量。
0
有限大的正数
r0 , r 互为反函数。
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
三、两个参考系间的相互转换
2.两个参考系间的相互转换
r0 r0 (r , t )
x0i x0i ( x j , t )
x0 x0 ( x, y, z , t ) y0 y0 ( x , y , z , t ) z z ( x, y , z , t ) 0 0
三、两个参考系间的相互转换
2.两个参考系间的相互转换
(2) 已知欧拉参考系的物理量
u u (r , t )
积分 代入
dr u (r , t ) dt
dx dt u ( x, y , z , t ) dy v ( x, y , z , t ) dt dz dt w( x, y , z , t )
高等流体力学的讲义课件流体力学的基本概念

t x y z
D lim 1 (xx,yy,zz,tt)(x,y,z,t)
Dt t0t
lit m0t
x t
x
y t
y
z t
z
uvw
t x y z
1.2 欧拉和拉格朗日参考系
1.1 连续介质假说
当流体分子的平均自由程远远小于流场的最小宏观尺度时, 可用统计平场的方法定义场变量如下:
ur lim(vrm) V m
lim(m)
V V
在微观上充分大统计平均才有确
定的值;宏观上充分小,统计平均 才能代表一点的物理量变化。
V
vr
•
m
连续介质方法的适用条件
1.2 欧拉和拉格朗日参考系
系统和控制体
通常力学和热力学定律都是针对系统的,于是需要在拉格朗日参考 系下推导基本守恒方程,而绝大多数流体力学问题又是在欧拉参考 系下求解的,因此需要寻求联系两种参考系下场变量及其导数的关 系式
欧拉和拉格朗日参考系中的时间导数
1.2 欧拉和拉格朗日参考系
欧拉参考系: u u (x,y,z,t)
x - x0 = u ( t - t0) y - y0 = v (t - t0) z - z0 = w (t - t0)
用 x0 , y0 , z0 来区分不同的流体质点,而用 t 来确定流体质点
的不同空间位置。
1.2 欧拉和拉格朗日参考系
系统和控制体
系统 某一确定流体质点集合的总体。 随时间改变其空间位置、大小和形状;系统边界上没有质量交换; 始终由同一些流体质点组成。 在拉格朗日参考系中,通常把注意力集中在流动的系统上,应用质 量、动量和能量守恒定律于系统,即可得到拉格朗日参考系中的基 本方程组。
D lim 1 (xx,yy,zz,tt)(x,y,z,t)
Dt t0t
lit m0t
x t
x
y t
y
z t
z
uvw
t x y z
1.2 欧拉和拉格朗日参考系
1.1 连续介质假说
当流体分子的平均自由程远远小于流场的最小宏观尺度时, 可用统计平场的方法定义场变量如下:
ur lim(vrm) V m
lim(m)
V V
在微观上充分大统计平均才有确
定的值;宏观上充分小,统计平均 才能代表一点的物理量变化。
V
vr
•
m
连续介质方法的适用条件
1.2 欧拉和拉格朗日参考系
系统和控制体
通常力学和热力学定律都是针对系统的,于是需要在拉格朗日参考 系下推导基本守恒方程,而绝大多数流体力学问题又是在欧拉参考 系下求解的,因此需要寻求联系两种参考系下场变量及其导数的关 系式
欧拉和拉格朗日参考系中的时间导数
1.2 欧拉和拉格朗日参考系
欧拉参考系: u u (x,y,z,t)
x - x0 = u ( t - t0) y - y0 = v (t - t0) z - z0 = w (t - t0)
用 x0 , y0 , z0 来区分不同的流体质点,而用 t 来确定流体质点
的不同空间位置。
1.2 欧拉和拉格朗日参考系
系统和控制体
系统 某一确定流体质点集合的总体。 随时间改变其空间位置、大小和形状;系统边界上没有质量交换; 始终由同一些流体质点组成。 在拉格朗日参考系中,通常把注意力集中在流动的系统上,应用质 量、动量和能量守恒定律于系统,即可得到拉格朗日参考系中的基 本方程组。
工程流体力学课件-第一章

二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
流体力学课件(全)

X 1 p 0 x
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
大学流体力学课件5——第一章流体的基本概念(粘性)

粘性的定义
牛顿内摩擦定律
粘度
粘温特性
牛顿流体
§1-2
流体的主要物理性质
二、粘性
1. 粘性的定义
现象: # 手粘油或水,感觉不同; # 油加温,变稀,易流
# 右图:下盘转动,会带动上盘
§1-2
流体的主要物理性质
二、粘性 1.粘性的定义
一般分析:
定义:
流体内部质点间或流层间因相对运动而产生 内摩擦力,以反抗相对运动的性质。
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (2) :运动粘度
量纲和单位:
国际单位制:
物理单位制:
工程单位制:
例: 机械油的牌号 液压油 20#: N32:
§1-2
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (3) 相对粘度
恩氏粘度计
恩氏粘度
§1-2
流体的主要物理性质
二、粘性
间隙中速度梯度近似按线性分布处理; 计算过程中注意单位统一; 作业中应作图,并分析
§1-2
流体的主要物理性质
二、粘性
4.粘~温, 粘~压特性
一般
粘温特性是工程液体的重要技术参量 粘性阻力的微观机理: 分子引力产生粘阻 (液体中为主) 分子动量交换产生粘阻 (气体中为主)
§1-2
流体的主要物理性质
流体力学中分两步走的研究方法: 分析无粘性流体模型 ----→初步运动规律
考虑粘性影响修正
----→实际运动规律
§1-2
流体的主要物理性质 小 结
二、粘性
0. 粘性是流体区别于固体的重要特性
是产生流动阻力的内因
1. 粘性:流体质点间可流层间因相对运动而产生 摩擦力以反抗相对运动的性质 2. 牛顿内摩擦定律反映粘性的数值关系 3. 粘度是粘性的度量 4. 符合牛顿内摩擦定律的流体为牛顿流体 5. 不考虑粘性的流体称为理想气体
牛顿内摩擦定律
粘度
粘温特性
牛顿流体
§1-2
流体的主要物理性质
二、粘性
1. 粘性的定义
现象: # 手粘油或水,感觉不同; # 油加温,变稀,易流
# 右图:下盘转动,会带动上盘
§1-2
流体的主要物理性质
二、粘性 1.粘性的定义
一般分析:
定义:
流体内部质点间或流层间因相对运动而产生 内摩擦力,以反抗相对运动的性质。
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (2) :运动粘度
量纲和单位:
国际单位制:
物理单位制:
工程单位制:
例: 机械油的牌号 液压油 20#: N32:
§1-2
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (3) 相对粘度
恩氏粘度计
恩氏粘度
§1-2
流体的主要物理性质
二、粘性
间隙中速度梯度近似按线性分布处理; 计算过程中注意单位统一; 作业中应作图,并分析
§1-2
流体的主要物理性质
二、粘性
4.粘~温, 粘~压特性
一般
粘温特性是工程液体的重要技术参量 粘性阻力的微观机理: 分子引力产生粘阻 (液体中为主) 分子动量交换产生粘阻 (气体中为主)
§1-2
流体的主要物理性质
流体力学中分两步走的研究方法: 分析无粘性流体模型 ----→初步运动规律
考虑粘性影响修正
----→实际运动规律
§1-2
流体的主要物理性质 小 结
二、粘性
0. 粘性是流体区别于固体的重要特性
是产生流动阻力的内因
1. 粘性:流体质点间可流层间因相对运动而产生 摩擦力以反抗相对运动的性质 2. 牛顿内摩擦定律反映粘性的数值关系 3. 粘度是粘性的度量 4. 符合牛顿内摩擦定律的流体为牛顿流体 5. 不考虑粘性的流体称为理想气体
大学流体力学课件6——第一章流体的基本概念(可压缩性)

体积弹性模量:体积压缩系数的倒数
P. 10 表1-2 水的弹性模量
§1-2
流体的主要物理ห้องสมุดไป่ตู้质
三、压缩性
体积膨胀系数: 即当压强 一定时,单位温度升高,而引起的体积 变化率。表示液体膨胀性的大小。
一般工程问题,可以不考虑 。 在容器设计,热工问题中要考虑 P.10 表1-3 水的体积膨胀系数
§1-2
第一章
§1-2
流体的基本概念
流体的主要物理性质
一、惯性
二、粘性
三、压缩性 四、表面张力
第一章
§1-2
流体的基本概念
流体的主要物理性质
三、压缩性 (compressibility) 一、流体的压缩性
微观分析
压缩性: 热胀性:
§1-2
流体的主要物理性质
三、压缩性
1. 液体的压缩性和热胀性
体积压缩系数:表征液体压缩性的大小 即当温度 一定时,每升高单位压强 而引起的体积变化率。
三、压缩性
3. 不可压缩流体的概念 不考虑压缩性的流体,是真实流体的一个简化 物理模型。 任何流体都是可压缩的。有些工程问题中可以 不考虑压缩性,认为流体是不可压缩的,即可减化 计算,又能满足计算精度要求。 通常,认为水不可压缩; 通风问题中气体为不可压缩的 高速、高压情况下必须考虑流体的压缩性。
§1-2
流体的主要物理性质
三、压缩性
2.气体的压缩性和热胀性 的变化,对气体体积变化影响很大。在一定 的温度和压力变化范围内,都可以用理想(完全)气体 (假设分子间无引力,分子本身不占容积)的气体状态 方程来表示各参数的变化规律。
R----气体常数 其参数变化关系由物理学或热力学内容中学习。
第一章 流体力学的基本概念

当i j 时 当i j 时
(b)];2)转动,使正方形绕4轴转动,直至对角线42与
42重合[图1-1(c)],则其转角为242;3)变形,剪切 正方形1234,并拉伸42对角线,使2与2重合[图1-1 (d)]。由此可见,这种流线都是直线的简单流动,也还 是由平动、转动、变形这三种运动形式复合而成的。
分析一般情况下流体运动的分解
ai ei a1e1 a2e2 a3e3 ax i a y j az k a
ei e1 e2 e3 i j k xi x1 x2 x3 x y z
描述流体运动的两种方法
速度分解定理
变形速度张量
应力张量
本构方程 漩涡运动的基本概念
第一节 描述流体运动的两种方法
一、拉格朗日法
拉格朗日法是从分析各个流体质点的运动状态着手来研究整个流场的流体 运动的。该方法的基本思想是:从某个时刻开始跟踪每一个流体质点,记 录这些质点的位置、速度、加速度及其它物理参数的变化。这种方法是离 散的质点运动描述方法在流体力学中的推广。该方法的分析公式为
r a, b, c, t t
,
2 r a , b, c , t a t 2
p p a, b, c, t ,
T T a, b, c, t ,
a, b, c, t
拉格朗日法初看容易理解,但就某些特定问题来求解方程是很困难的。
b1 b3 b3 b1 b1 b2 b2 b2 b3 a1 a2 a3 a2 a3 a2 a3 e1 a1 e2 a1 e3 x2 x3 x2 x3 x2 x3 x1 x1 x1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
J 0
x y z x0 x0 x0 J x y z 0 y0 y0 y0 x y z z0 z0 z0
有限大的正数
rr r0 , r
互为反函数。
§1.1 拉格朗日参考系和欧拉参考系
三、两个参考系间的相互转换
2.两个参考系间的相互转换
若已知流线经过点 (x0,y0,z0) ,则参数方程的初始条件可定为,
《高等流体力学》电子课件
§1.1 拉格朗日参考系和欧拉参考系
一、拉格朗日参考系
1.流动的描述
着眼于流体质点。 描述每个流体质点自始至终的运动,即位置随时间的变化。
r r r r(x 0,y0,z0,t) 式中x0 , y0 , z0 是t =t0 时刻流体质点的空间坐标,用来区分不同的流体质点。
二、流线
1.定义
某时刻,流场中的一条曲线,曲线上各点的速度矢量方向和曲线在 该点的切线方向相同。
2.流线方程的微分方程
d r d i x d j y d k z u u i v j w k
i dru dx u
j dy v
k dz0 w
2.流动物理量随时间的变化
加速度:
ai
ui t
uj
ui xj
其他物理量:
d dt
t uj
xj
dp dt
p t
uj
p xj
§1.1 拉格朗日参考系和欧拉参考系
三、两个参考系间的相互转换
1.两个参考系间相互联系——雅可比行列式
0 初始时刻流体微团体积 T时刻变形后流体微团体积
1.流动的描述
着眼于空间点。 描述流过每个空间点上的流体质点的运动。
u r u r(x,y,z,t)
x , y , z , t是独立变量。
流体的物理量是空间位置和时间的函数。
pp(x,y,z,t) TT(x,y,z,t)
(x,y,z,t)
§1.1 拉格朗日参考系和欧拉参考系
二、欧拉参考系
积分
x y
x(x0 , y0 , z0 ,t) y(x0 , y0 , z0 ,t)
z z(x0 , y0 , z0 , t)
请注意在以上方程组中 t 是自变量。 x,y,z 是流体质点的空间
坐标,因此都是 t 的函数。
§1.2 迹线 流线 脉线
一、迹线
例. 设两维流动,u x( 1 2 t),v y ,w 0求 t 通0过(1,1)点的迹线。
u (x, y,z,t)
dy
dt
v(x, y,z,t)
dz dt
w (x, y,z,t)
§1.2 迹线 流线 脉线
一、迹线
1.定义
流体质点在空间运动时描绘出来的曲线。
始终与同一流体质点的速度矢量相切的曲线。
2.迹线方程
dxdydzdt uvw 初始条件: t 0 时 , x = x o ,y y o ,z z o
dx dy dz u(x,y,z,t) v(x,y,z,t) w (x.y.z.t)
请注意在以上方
程组中 t 是常数。
§1.2 迹线 流线 脉线
二、流线
3.流线方程的参数方程
选用s 作为参变量,
dxdydzds uvw
积分上式可得到流线参数方程, xi xi(x0j,t,s)
消去 s 即可得到流线方程。
x0 , y0 , z 0, t 是独立变量。
§1.1 拉格朗日参考系和欧拉参考系
一、拉格朗日参考系
1.流动的描述
流体的物理量表示为流体质点和时间的函数。
pp(x0,y0,z0,t)
TT(x0,y0,z0,t)
(x0,y0,z0,t)
(x0 , y0 , z0) 固定,t 变化: 表示某一确定流体质点的空间位置及相 关物理量随时间的变化规律。
代入
u r u r ( r r , t ) u r r r ( r r 0 , t ) , t u r r r 0 , t
p p ( r r , t ) p r r ( r r 0 , t ) , t p r r 0 , t
dx
dt
解:
dx d t
x
(1
2t)
dy dt
y
积分以上方程得,
x y
c1et c2et
(1 t
)
由条件 t 0时, x,y可解1 出,
c1 c2 1
x e t (1t )
y
et
消去t 得, x y1lny
§1.2 迹线 流线 脉线
(x0 , y0 , z0)变化,t 固定: 表示同一时刻不同流体质点的空间位置 及相关物理量。
§1.1 拉格朗日参考系和欧拉参考系
一、拉格朗日参考系
2.流动物理量随时间的变化
速度:
ui
xi t
其他物理量:
t
p , ,T t t t
§1.1 拉格朗日参考系和欧拉参考系
二、欧拉参考系
1.流动的描述
u r u r(x,y,z,t)
pp(x,y,z,t)
(x , y , z) 固定,t 变化: 表示某一空间点的流体速度及相关物理 量随时间的变化规律。
(x , y , z)变化,t 固定:
表示同一时刻流体速度及相关物理量在 空间的分布规律。
§1.1 拉格朗日参考系和欧拉参考系
二、欧拉参考系
y
0
y0 ( x,
y, z,t)
z 0 z 0 ( x , y , z , t )
§1.1 拉格朗日参考系和欧拉参考系
三、两个参考系间的相 已知欧拉参考系的物理量
urur(rr,t)
drr ur(rr,t) dt
积分
r r r r c 1 ( r r 0 ) , c 2 ( r r 0 ) , c 3 ( r r 0 ) , t r r r r 0 , t
r rr r0r0(r,t)
x0i x0i(xj,t)
rr r0 , r
互为反函数。
(1) 已知拉格朗日参考系的物理量
urur(rr0,t) u rr r0(r r),t u r(r r,t)
p p (r r 0 ,t) p (r r,t)
x0 x0(x, y, z,t)