高中数学必修二好题解答题精选(附答案)
高一数学必修2习题(答案详解)

高一数学必修2习题(答案详解)高一数学必修2习题(答案详解)一、选择题1. 题目:已知集合A={1, 2, 3, 4},集合B={3, 4, 5, 6},则A∩B的最小值是()选项:A. 0B. 1C. 2D. 3解析:集合A和集合B的交集即为A∩B。
在这里,A和B的交集为{3, 4},共有两个元素。
因此,答案为C. 2。
2. 题目:若sinθ=1/2,θ∈(0, π),则cosθ的值为()选项:A. 1/2B. -1/2C. √3/2D. -√3/2解析:根据三角函数的定义,sinθ=对边/斜边。
在这里,sinθ=1/2,代表一个直角三角形中,对边的长度是斜边长度的一半。
根据勾股定理,可知另外一个边的长度为√3/2。
因此,cosθ=邻边/斜边=√3/2。
答案为C. √3/2。
二、填空题1. 题目:已知事件A的概率为0.6,事件B的概率为0.4,事件A 和事件B同时发生的概率为0.3,则事件A和事件B互不独立。
事件A的补事件的概率是()。
解析:事件A的概率为0.6,补事件即为事件A不发生的概率,即1-0.6=0.4。
2. 题目:已知函数y=2x-1,若x=3,则y的值为()。
解析:将x=3代入函数中,得到y=2*3-1=5。
三、计算题1. 题目:已知函数y=2x+3,求当x=1时,y的值。
解析:将x=1代入函数中,得到y=2*1+3=5。
2. 题目:已知函数y=3x^2-2x+1,求当x=2时,y的值。
解析:将x=2代入函数中,得到y=3*2^2-2*2+1=13。
四、解答题1. 题目:求解方程2x-5=7。
解析:将方程两边都加上5,得到2x=12。
再将方程两边都除以2,得到x=6。
因此,方程的解为x=6。
2. 题目:求解方程3x^2-5=0。
解析:将方程两边都加上5,得到3x^2=5。
再将方程两边都除以3,得到x^2=5/3。
对方程两边取平方根,得到x=±√(5/3)。
因此,方程的解为x=±√(5/3)。
高中数学必修二答案(共7篇)

高中数学必修二答案(共7篇)高中数学必修二答案(一): 高一数学必修一必修二课后习题答案习题1-11.右2.14/33.768习题1-21.第一象限不一定可能超过360度2.⑴305 度42分第四象限⑵35度8分第一象限⑶249度30分第三象限⑷123度3.⑴-660度;-300度;60度⑵-45度;-405度;315度⑶-136度42分;223度18分;-496度42分⑷-585度;-225度;135度希望对你有些帮助不把分赏给我你就对不起我了哦,我找了很久的高中数学必修二答案(二): 高中数学必修二关于直线的倾斜角斜率直线l的方程为y=xtanα+2,则(A)α一定是直线的倾斜角(B)α一定不是直线的倾斜角(C)π-α一定是直线的倾斜角(D)α不一定是直线的倾斜角D倾斜角要求在[0,π)高中数学必修二答案(三): 高中数学必修二习题《两点间的距离》、《点到直线的距离》、《两条平行直线间的距离》,就是它们求与直线L:5x-12y+6=0平行且与L的距离为2的直线的方程.求求大家了,有答有赏!5x-12y+4=0 5x-12y+8=0高中数学必修二答案(四): 高中数学必修二的内容【高中数学必修二答案】高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. (7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点三、立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(3)棱台:几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;②原来与y轴平行的线段仍然与y平行,长度为原来的一半.4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和.(2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)(3)柱体、锥体、台体的体积公式(4)球体的表面积和体积公式:V= ; S=4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内.应用:判断直线是否在平面内用符号语言表示公理1:公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a,记作α∩β=a.符号语言:公理2的作用:①它是判定两个平面相交的方法.②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.③它可以判断点在直线上,即证若干个点共线的重要依据.公理3:经过不在同一条直线上的三点,有且只有一个平面.推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据公理4:平行于同一条直线的两条直线互相平行空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线② 异面直线性质:既不平行,又不相交.③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角.两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.求异面直线所成角步骤:A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.B、证明作出的角即为所求角C、利用三角形来求角(7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补.(8)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:aα a∩α=A a‖α(9)平面与平面之间的位置关系:平行——没有公共点;α‖β相交——有一条公共直线.α∩β=b5、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.线线平行线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行线线平行(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行,两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行.(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)7、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直. (2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.9、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角.③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角.(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为. ②平面的垂线与平面所成的角:规定为.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”.在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线. (3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角高中数学必修二答案(五): 求学海导航高一数学必修2答案全部谁有高一必修2数学的学海导航练习册的答案..即高中新课标同步攻略...首都师范大学出版社出的【高中数学必修二答案】我有,给个邮箱地址,发给你ps 实物我还要用,没有扫描仪,只能用相机拍下来o(∩_∩)o~高中数学必修二答案(六): 高中数学必修1第二章函数末的复习题二A组的答案亲,我们没有答案的,你有什么问题直接发,我们才能给你解答高中数学必修二答案(七): 人教A版高中数学必修二习题4.1 A组 T6 B组人教A版高中数学必修二习题4.1 A组6、△ABC的顶点B、C的坐标分别是(-3,-1),(2,1),顶点A在圆(x+2)2+(y-4)2=4上运动,求△ABC的重心G的轨迹方程.设顶点A为(x,y),重心G为(E,F),所以:E=(-3+2+x)/3=(x-1)/3,得:x=3E+1F=(-1+1+y)/3,得:Y=3F把X,Y代入圆中:(3E+1+2)^+(3F-4)^2=4所以△ABC的重心G的轨迹方程为 (3X+3)^2+(3Y-4)^2=4B组2、长为2a的线段AB的两个端点A和B分别在x轴和y轴上滑动,求线段AB的中点的轨迹方程.令AB中点为M根据直角三角形斜边上的中线等于斜边的一半,在直角三角形OAB中,OM=AB/2=a根据圆的定义,M的轨迹是以O为圆心,a为半径的圆 (除去与坐标轴的4个交点)轨迹方程为x^2+y^2=a^2(x≠0,±a)高中数学必修二教案高中数学必修二电子书。
必修2数学经典练习题(含答案)

(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台B.棱锥C.棱柱D.都不对2.棱长都是1的三棱锥的表面积为( )A. 3B. 23C. 33D. 433.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在 同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )A .3:1B .3:2C .2:3D .3:35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周, 则所形成的几何体的体积是( )A. 92π B. 72π C. 52π D. 32π6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160 二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点, 顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a , 则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是____________。
5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________. 三、解答题 1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
人教版高中数学必修二教材课后习题答案及解析

精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档精品文档'⅛.⅛∣ U s≡ 回 * ⅛峦讯Ilr÷ 训ft⅛W⅛SWH*JF⅛⅛⅛⅛k⅛i⅛fca Jff ⅛M⅛l i I∏⅛⅛^M FI即題电楼册Jff論草审誓⅛r測帝诩J 芹觀用菲劳口刚门)孫屮i⅛⅛⅛^f?⅛M⅛⅛t^f6> t V⅞⅛J M-J l⅛ JV^U⅛ J 写⅛Iiir起草轴JV r窮阜常爭叩HT—悌*皐垂聚草阖睡谦Hf/覃甲HH燈l⅛JVJ¾⅞φtfl⅛⅛*⅛f⅛≡ψ-f∏W⅛3}⅛⅛⅞ 业* 阳堕壬卑卑掘卿麴电(D ⅛3XP=G—佔一刊⅛i^⅛^1f⅛=⅛⅛1⅛S⅛⅛ JH ^>vi<ε*>)3 *∖X^riI花一=广T "出瞬时単⅛rτn⅛②“①甲前山乃用帀4总才吕)y艸讯询n甲川讪i 2—HW3⅛B⅛ff^*σr^)⅛⅛⅛U3 W V⅛l⅛(3),o∙ U C I Z⅛⅛t f⅛⅛'tv r)z-[ <⅛i l⅛¼tyJV r UU∖∙*1 “旳・11YΛ t '6 璋-寡:幵仙⅛i?Jf厘爪吾(Q T r⅛≡⅛⅛ ι>tf>o畔ι>^>0甲•盟漏∣⅛[Q巧修(「【)甲晉牡血一【)+;W-Dy V *鬧嘅丽(-^ *1 )蒔("T 1 料?I r M -⑴T- (F 「广=Kf 1/ •暈両拠MFM手【I P}片和评沖(^-O - ^L-O)/ = E- 1)* “ ⅞r覽丽轴口]狛f1 √ ⅞r⅞¾at Λ+x^∕⅜ ^¾⅛π⅞∣pj¾⅛>⅞ι⅛⅛⅞⅞也鄂GTirO巾刼酬Ey書J戸T卩啊・丁Jv刃K •丁田丿号却<7呼网护F祁冷⅛TFH JV =∣J<∕R V J Hy衍丨= Iffdl + I Od! ≡ MB⅜φs∕z⅞t(jc-t)+t(r-i)Z + 止土竺二U广+ "一Ij亠屮产十√<+^Λ囲i JV - O0 ⅛Uc∕i- Vrf ∣F∕d∣+ kΛ∕ ■;SΨXW≡O = I-¢-^3 ft≡5'θ=s-γ^P=£盅FqOh【【-1C十丄记IIlHHU捕精品文档精品文档精品文档精品文档精品文档。
高中数学必修2精选习题(含答案)

高中数学必修2精选习题(含答案)一、选择题:(每小题3分,共30分)1.垂直于同一条直线的两条直线一定( )A 、平行B 、相交C 、异面D 、以上都有可能 2. 下列说法正确的是( )A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点 3. 若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是 ( )A 、 l ∥αB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有 4. 直线k 10x y -+=,当k 变动时,所有直线都通过定点( ) A (0,0)B (0,1)C (3,1)D (2,1)5.用单位立方块搭一个几何体,使它的主视图和俯视图如右图所示,则它的体积的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与156.如图,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=1,则梯形ABCD 的面积是( )A .10B .5C .5 2D .1027.直线l 过点(-1,2)且与直线2x -3y +4=0垂直,则l 的方程是( ) A .3x +2y -1=0B .3x +2y +7=0C .2x -3y +5=0D .2x -3y +8=08.与直线2x+3y-6=0关于点(1,-1)对称的直线是( ) A.3x-2y-6=0 B.2x+3y+7=0 C. 3x-2y-12=0 D. 2x+3y+8=09. 已知点A (1,3),B (-2,-1).若直线l :y =k (x -2)+1与线段AB 相交,则k 的取值范围是 ( )俯视图主视图A .k ≥12B .k ≤-2C .k ≥12 或k ≤-2D .-2≤k ≤1210. 在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条二、填空题:(每小题4分,共16分)11若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值等于________.12.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________13. 正四棱锥S ABCD -S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为_________。
高一数学必修2经典习题答案

高一数学必修2经典习题答案数学2(必修)第一章空间几何体[基础训练A组]一、选择题1. A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台2.A因为四个面是全等的正三角形,则44S S===表面积底面积3.B 长方体的对角线是球的直径,2450l R R S Rππ======4.D 正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是a222aa r r r r r r=====内切球内切球外接球外接球内切球外接球,,:5.D213(1 1.51)32V V V rππ=-=+-=大圆锥小圆锥6.D 设底面边长是a,底面的两条对角线分别为12,l l,而22222212155,95,l l=-=-而222124,l l a+=即22222155954,8,485160a a S ch-+-====⨯⨯=侧面积二、填空题1.5,4,3符合条件的几何体分别是:三棱柱,三棱锥,三棱台2.1:333333123123::::11:r r r r r r===3.316a画出正方体,平面11AB D与对角线1AC的交点是对角线的三等分点,三棱锥11O AB D-的高23111,2336h V Sh a a====或:三棱锥11O AB D-也可以看成三棱锥11A OB D-,显然它的高为AO,等腰三角形11OB D 为底面。
4. 平行四边形或线段5设ab bc ac===则1abc c a c===l==15设3,5,15ab bc ac===则2()225,15abc V abc===三、解答题1.解:(1)如果按方案一,仓库的底面直径变成16M ,则仓库的体积23111162564()3323V Sh M ππ⎛⎫==⨯⨯⨯= ⎪⎝⎭如果按方案二,仓库的高变成8M ,则仓库的体积23211122888()3323V Sh M ππ⎛⎫==⨯⨯⨯= ⎪⎝⎭(2)如果按方案一,仓库的底面直径变成16M ,半径为8M .棱锥的母线长为l ==则仓库的表面积218()S M π=⨯⨯= 如果按方案二,仓库的高变成8M .棱锥的母线长为10l == 则仓库的表面积 2261060()S M ππ=⨯⨯=(3)21V V > ,21S S < ∴方案二比方案一更加经济2. 解:设扇形的半径和圆锥的母线都为l ,圆锥的半径为r ,则21203,3360l l ππ==;232,13r r ππ⨯==;24,S S S rl r πππ=+=+=侧面表面积底面2111333V Sh π==⨯⨯⨯=第一章 空间几何体 [综合训练B 组]一、选择题1.A恢复后的原图形为一直角梯形1(11)222S =⨯=+2.A2312,,23R r R r h V r h R πππ=====3.B正方体的顶点都在球面上,则球为正方体的外接球,则2R =,2412R S R ππ=== 4.A(3)84,7S r r l r ππ=+==侧面积5.C 中截面的面积为4个单位, 12124746919V V ++==++6.D 过点,E F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,1313152323234222V =⨯⨯⨯⨯+⨯⨯⨯=二、填空题1.6π 画出圆台,则12121,2,2,()6r r l S r r l ππ====+=圆台侧面2.16π 旋转一周所成的几何体是以BC 为半径,以AB 为高的圆锥,2211431633V r h πππ==⨯⨯=3.<设334,3V R a a R π====2264S a S R π=====<正球从长方体的一条对角线的一个端点出发,沿表面运动到另一个端点,有两种方案==5.(1)4 (2)圆锥6. 设圆锥的底面的半径为r ,圆锥的母线为l ,则由2l r ππ=得2l r =,而22S r r r aππ=+⋅=圆锥表,即23,3r a r ππ===,即直径为三、解答题解:'1(),3V S S h h ==319000075360024001600h ⨯==++2. 解:2229(25)(25),7l l ππ+=+=空间几何体 [提高训练C 组] 一、选择题1.A 几何体是圆台上加了个圆锥,分别由直角梯形和直角三角形旋转而得2.B 从此圆锥可以看出三个圆锥,123123::1:2:3,::1:2:3,r r r l l l ==12312132::1:4:9,:():()1:3:5S S S S S S S S =--=3.D111115818322226V V -=-⨯⨯⨯⨯⨯=正方体三棱锥 4.D 121:():()3:13V V Sh Sh ==5.C121212:8:27,:2:3,:4:9V V r r S S ===6.A 此几何体是个圆锥,23,5,4,33524r l h S πππ====⨯+⨯⨯=表面2134123V ππ=⨯⨯=二、填空题1.设圆锥的底面半径为r ,母线为l ,则123r l ππ=,得6l r =,226715S r r r r ππππ=+⋅==,得r =h =211153377V r h ππ==⨯= 2.109Q22223,S R R R Q R πππ=+===全32222221010,,2233339V R R h h R S R R R R Qπππππ==⋅==+⋅== 3.821212,8r r V V ==4.12234,123V Sh r h R R ππ=====5.28'11()(416)32833V S S h =+=⨯⨯=三、解答题1.解:圆锥的高h =1r =,22(2S S S πππ=+=+=+侧面表面底面 解:S S S S =++表面圆台底面圆台侧面圆锥侧面25(25)2πππ=⨯+⨯+⨯⨯⨯1)π=V V V =-圆台圆锥222112211()331483r r r r h r h πππ=++-=第二章 点、直线、平面之间的位置关系 [基础训练A 组]一、选择题1. A ⑴两条直线都和同一个平面平行,这两条直线三种位置关系都有可能 ⑵两条直线没有公共点,则这两条直线平行或异面⑶两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能⑷一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内2. D 对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形3.D 垂直于同一条直线的两条直线有三种位置关系4.B 连接,VF BF ,则AC 垂直于平面VBF ,即AC PF ⊥,而//DE AC ,DE PF ∴⊥5.D 八卦图 可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交6.C 当三棱锥D ABC -体积最大时,平面DAC ABC ⊥,取AC 的中点O , 则△DBO 是等要直角三角形,即045DBO ∠= 二、填空题1.异面或相交 就是不可能平行2.0030,90⎡⎤⎣⎦ 直线l 与平面α所成的030的角为m 与l 所成角的最小值,当m 在α内适当旋转就可以得到l m ⊥,即m 与l 所成角的的最大值为0903.作等积变换:123411(),33d d d d h +++=而h =4.060或0120 不妨固定AB ,则AC 有两种可能5.2 对于(1)、平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间; (2)是对的;(3)是错的;(4)是对的 三、解答题1.证明://,////EH BCD FG BCD EH BCD BD BCD EH BD EH FG ⊄⎫⎪⊂⇒⊂⇒⎬⎪⎭2.略第二章 点、直线、平面之间的位置关系 [综合训练B 组] 一、选择题1.C 正四棱柱的底面积为4,正四棱柱的底面的边长为2,正四棱柱的底面的对角线为即2R =2424R S R ππ===球2.D 取BC 的中点G ,则1,2,,EG FG EF FG ==⊥则EF 与CD 所成的角030EFG ∠=3.C 此时三个平面两两相交,且有三条平行的交线4.C 利用三棱锥111A AB D -的体积变换:111111A AB D A A B D V V --=,则1124633h ⨯⨯=⨯⨯5.B11211332A A BD D A BAa V V Sh --===⨯=6. D 一组对边平行就决定了共面;同一平面的两条垂线互相平行,因而共面;这些直线都在同一个平面内即直线的垂面;把书本的书脊垂直放在桌上就明确了 二、填空题1.27 分上、中、下三个部分,每个部分分空间为9个部分,共27部分 2.异面直线;平行四边形;BD AC =;BD AC ⊥;BD AC =且BD AC ⊥3.0604.060 注意P 在底面的射影是斜边的中点5.三、解答题 1.证明://b c ,∴不妨设,b c 共面于平面α,设,a b A a c B ==,,,A a B a A B αα∴∈∈∈∈,即a α⊂,所以三线共面 2.提示:反证法 3.略第二章 点、直线、平面之间的位置关系 [提高训练C 组] 一、选择题1. A ③若m//α,n //α,则m n //,而同平行同一个平面的两条直线有三种位置关系 ④若αγ⊥,βγ⊥,则//αβ,而同垂直于同一个平面的两个平面也可以相交2.C 设同一顶点的三条棱分别为,,x y z ,则222222222,,x y a y z b x z c +=+=+=得2222221()2x y z a b c ++=++=3.B 作等积变换A BCD C ABD V V --=4.B BD 垂直于CE 在平面ABCD 上的射影 5.C BC PA BC AH ⊥⇒⊥6.C 取AC 的中点E ,取CD 的中点F,1,22EF BE BF ===cos EF BF θ==7.C 取SB 的中点G ,则2a GE GF ==,在△SFC中,EF =,045EFG ∠=二、填空题1.5cm 或1cm 分,A B 在平面的同侧和异侧两种情况2.48 每个表面有4个,共64⨯个;每个对角面有4个,共64⨯个3.090 垂直时最大4.030底面边长为1,tan θ=5.11 沿着PA 将正三棱锥P ABC -侧面展开,则',,,A D E A 共线,且'//AA BC 三、解答题:略第三章 直线和方程 [基础训练A 组] 一、选择题1.Dtan 1,1,1,,0ak a b a b b α=-=--=-=-=2.A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-=3.B42,82m k m m -==-=-+ 4.C ,0,0a c a cy x k b b b b =-+=-><5.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在6.C2223,m m m m +--不能同时为0 二、填空题1.22d ==2.234:23,:23,:23,l y x l y x l x y =-+=--=+3.250x y --='101,2,(1)2(2)202k k y x --==-=--=--4.8 22x y +可看成原点到直线上的点的距离的平方,垂直时最短:d ==5.23y x=平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2)三、解答题解:(1)把原点(0,0)代入A x B yC ++=0,得0C =;(2)此时斜率存在且不为零即0A ≠且0B ≠;(3)此时斜率不存在,且不与y 轴重合,即0B =且0C ≠; (4)0,A C ==且0B ≠ (5)证明:()00P x y ,在直线A x B yC ++=0上00000,Ax By C C Ax By ∴++==--()()000A x xB y y ∴-+-=。
高中数学 必修二 习题:第3章 直线与方程3.2.2 Word版含解析

第三章 3.2 3.2.2一、选择题1.直线x 2-y5=1在x 轴、y 轴上的截距分别为( )A .2,5B .2,-5C .-2,-5D .-2,5[答案] B[解析] 将x 2-y 5=1化成直线截距式的标准形式为x 2+y -5=1,故直线x 2-y5=1在x 轴、y 轴上的截距分别为2、-5.2.已知点M (1,-2)、N (m,2),若线段MN 的垂直平分线的方程是x2+y =1,则实数m 的值是( )A .-2B .-7C .3D .1 [答案] C[解析] 由中点坐标公式,得线段MN 的中点是(1+m 2,0).又点(1+m2,0)在线段MN的垂直平分线上,所以1+m4+0=1,所以m =3,选C .3.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李,行李费用y (元)与行李质量x (kg)的关系如图所示,则旅客最多可免费携带行李的重量为( )A .20 kgB .25 kgC .30 kgD .80 kg [答案] C[解析] 由图知点A (60,6)、B (80,10),由直线方程的两点式,得直线AB 的方程是y -610-6=x -6080-60,即y =15x -6.依题意,令y =0,得x =30,即旅客最多可免费携带30千克行李.4.如右图所示,直线l 的截距式方程是x a +yb=1,则有( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0[答案] B[解析] 很明显M (a,0)、N (0,b ),由图知M 在x 轴正半轴上,N 在y 轴负半轴上,则a >0,b <0.5.已知△ABC 三顶点A (1,2)、B (3,6)、C (5,2),M 为AB 中点,N 为AC 中点,则中位线MN 所在直线方程为( )A .2x +y -8=0B .2x -y +8=0C .2x +y -12=0D .2x -y -12=0[答案] A[解析] 点M 的坐标为(2,4),点N 的坐标为(3,2),由两点式方程得y -24-2=x -32-3,即2x+y -8=0.6.过两点(-1,1)和(3,9)的直线在x 轴上的截距为( )A .-32B .-23C .25D .2[答案] A[解析] 直线方程为y -91-9=x -3-1-3,化为截距式为x -32+y 3=1,则在x 轴上的截距为-32.二、填空题7.已知点P (-1,2m -1)在经过M (2,-1)、N (-3,4)两点的直线上,则m =________[答案] 32[解析] 解法一:MN 的直线方程为:y +14+1=x -2-3-2,即x +y -1=0,代入P (-1,2m -1)得m =32.解法二:M 、N 、P 三点共线, ∴4-(2m -1)-3+1=4-(-1)-3-2,解得m =32.8.过点(0,3),且在两坐标轴上截距之和等于5的直线方程是________.[答案] 3x +2y -6=0[解析] 设直线方程为x a +yb =1,则⎩⎪⎨⎪⎧b =3a +b =5,解得a =2,b =3,则直线方程为x 2+y3=1,即3x +2y -6=0. 三、解答题9.已知点A (-1,2)、B (3,4),线段AB 的中点为M ,求过点M 且平行于直线x 4-y2=1的直线l 的方程.[解析] 由题意得M (1,3),直线x 4-y 2=1的方程化为斜截式为y =12x -2,其斜率为12,所以直线l 的斜率为12.所以直线l 的方程是y -3=12(x -1),即x -2y +5=0.10.求分别满足下列条件的直线l 的方程:(1)斜率是34,且与两坐标轴围成的三角形的面积是6;(2)经过两点A (1,0)、B (m,1);(3)经过点(4,-3),且在两坐标轴上的截距的绝对值相等. [解析](1)设直线l 的方程为y =34x +b .令y =0,得x =-43b ,∴12|b ·(-43b )|=6,b =±3. ∴直线l 的方程为y =43x ±3.(2)当m ≠1时,直线l 的方程是 y -01-0=x -1m -1,即y =1m -1(x -1) 当m =1时,直线l 的方程是x =1. (3)设l 在x 轴、y 轴上的截距分别为a 、b . 当a ≠0,b ≠0时,l 的方程为x a +yb =1;∵直线过P (4,-3),∴4a -3b =1.又∵|a |=|b |,∴⎩⎪⎨⎪⎧4a -3b =1a =±b,解得⎩⎪⎨⎪⎧ a =1b =1,或⎩⎪⎨⎪⎧a =7b =-7. 当a =b =0时,直线过原点且过(4,-3), ∴l 的方程为y =-34x .综上所述,直线l 的方程为x +y =1或x 7+y -7=1或y =-34x .一、选择题1.如果直线l 过(-1,-1)、(2,5)两点,点(1 008,b )在直线l 上,那么b 的值为( )A .2 014B .2 015C .2 016D .2 017[答案] D[解析] 根据三点共线,得5-(-1)2-(-1)=b -51 008-2,得b =2 017.2.两直线x m -y n =1与x n -ym=1的图象可能是图中的哪一个( )[答案] B[解析] 直线x m -yn =1化为y =n m x -n ,直线x n -ym=1化为 y =mnx -m ,故两直线的斜率同号,故选B .3.已知A 、B 两点分别在两条互相垂直的直线y =2x 和x +ay =0上,且线段AB 的中点为P (0,10a),则直线AB 的方程为( )A .y =-34x +5B .y =34x -5C .y =34x +5D .y =-34x -5[答案] C[解析] 依题意,a =2,P (0,5).设A (x 0,2x 0)、B (-2y 0,y 0),则由中点坐标公式,得⎩⎪⎨⎪⎧ x 0-2y 0=02x 0+y 0=10,解得⎩⎪⎨⎪⎧x 0=4y 0=2,所以A (4,8)、B (-4,2).由直线的两点式方程,得直线AB 的方程是y -82-8=x -4-4-4,即y =34x +5,选C .4.过P (4,-3)且在坐标轴上截距相等的直线有( )A .1条B .2条C .3条D .4条[答案] B[解析] 解法一:设直线方程为y +3=k (x -4)(k ≠0). 令y =0得x =3+4kk ,令x =0得y =-4k -3.由题意,3+4k k =-4k -3,解得k =-34或k =-1.因而所求直线有两条,∴应选B .解法二:当直线过原点时显然符合条件,当直线不过原点时,设直线在坐标轴上截距为(a,0),(0,a ),a ≠0,则直线方程为x a +ya=1,把点P (4,-3)的坐标代入方程得a =1.∴所求直线有两条,∴应选B . 二、填空题5.直线l 过点P (-1,2),分别与x 、y 轴交于A 、B 两点,若P 为线段AB 的中点,则直线l 的方程为________.[答案] 2x -y +4=0 [解析] 设A (x,0)、B (0,y ). 由P (-1,2)为AB 的中点,∴⎩⎨⎧x +02=-10+y 2=2,∴⎩⎪⎨⎪⎧x =-2y =4.由截距式得l 的方程为 x -2+y4=1,即2x -y +4=0. 6.已知A (3,0)、B (0,4),直线AB 上一动点P (x ,y ),则xy 的最大值是________.[答案] 3[解析] 直线AB 的方程为x 3+y4=1,∴y =4-4x3,∴xy =x (4-43x )=4x -43x 2=-43(x 2-3x )=-43[(x -32)2-94]=-43(x -32)2+3,∴当x =32时,xy 取最大值3.三、解答题7.△ABC 的三个顶点分别为A (0,4)、B (-2,6)、C (-8,0).(1)分别求边AC 和AB 所在直线的方程; (2)求AC 边上的中线BD 所在直线的方程; (3)求AC 边的中垂线所在直线的方程; (4)求AC 边上的高所在直线的方程; (5)求经过两边AB 和AC 的中点的直线方程.[解析] (1)由A (0,4),C (-8,0)可得直线AC 的截距式方程为x -8+y4=1,即x -2y +8=0.由A (0,4),B (-2,6)可得直线AB 的两点式方程为y -46-4=x -0-2-0,即x +y -4=0.(2)设AC 边的中点为D (x ,y ),由中点坐标公式可得x =-4,y =2,所以直线BD 的两点式方程为y -62-6=x +2-4+2,即2x -y +10=0.(3)由直线AC 的斜率为k AC =4-00+8=12,故AC 边的中垂线的斜率为k =-2.又AC 的中点D (-4,2),所以AC 边的中垂线方程为y -2=-2(x +4), 即2x +y +6=0.(4)AC 边上的高线的斜率为-2,且过点B (-2,6),所以其点斜式方程为y -6=-2(x +2),即2x +y -2=0.(5)AB 的中点M (-1,5),AC 的中点D (-4,2), ∴直线DM 方程为y -25-2=x -(-4)-1-(-4),即x -y +6=0.8.已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点,点M 在此抛物线上,点N 在y 轴上,以A 、B 、M 、N 为顶点的四边形为平行四边形,求点M 的坐标.[解析] 容易求得抛物线与x 轴的交点分别为(-3,0)、(1,0)不妨设A (-3,0)、B (1,0),由已知,设M (a ,b )、N (0,n ),根据平行四边形两条对角线互相平分的性质,可得两条对角线的中点重合.按A 、B 、M 、N 两两连接的线段分别作为平行四边形的对角线进行分类,有以下三种情况:①若以AB 为对角线,可得a +0=-3+1,解得a =-2;②若以AN为对角线,可得a+1=-3+0,解得a=-4;③若以BN为对角线,可得a+(-3)=1+0,解得a=4.因为点M在抛物线上,将其横坐标的值分别代入抛物线的解析式,可得M(-2,3)或M(-4,-5)或M(4,-21).。
高中数学必修2课后习题及答案

高中数学必修2课后习题及答案一、选择题1.某团体每个月会员费35元,今年第一季度总收入为6300元,那么该团体今年的会员人数是多少?A. 180人B. 160人C. 200人D. 150人答案:C. 200人2.已知等差数列的公差为3,首项为4,末项是多少?A. 19B. 20C. 21D. 22答案:C. 213.有一辆以10 m/s的速度匀速行驶的火车,从静止开始先行驶了180 m,然后经过几秒后停下,停下的时间是多少秒?A. 20秒B. 15秒C. 18秒D. 12秒答案:B. 15秒二、填空题1.某个等差数列的首项为7,公差为4,其中第5项是多少?答案:232.一辆汽车以每小时60千米的速度行驶2小时,其行驶的路程是多少千米?答案:120千米3.某个几何图形的边数比顶点数多4,那么该几何图形的顶点数是多少?答案:6三、解答题1.给定一个正三角形ABC,其中AB=AC=8cm,P是BC的中点。
求证:PA ⊥ BC。
证明:由三角形的性质可知,对于等边三角形,它的中线同时也是它的高线。
所以,以P为中心,PC为半径画一个圆,该圆将三角形ABC分成了三个等腰三角形。
所以,该圆除了包括等边三角形的三个顶点外,还包括了等腰三角形的三个顶点。
而根据等腰三角形的性质可知,该圆经过了A点,即PA ⊥ BC得证。
2.某公司甲、乙两人同时开始独立地向北方和东方行走,甲每分钟向北方走2米,乙每分钟向东方走3米。
如果两人行走相同的时间后,他们此时相隔5米,那么他们行走的时间是多少?解答:设甲行走x分钟后,乙行走y分钟。
由于甲每分钟向北方走2米,乙每分钟向东方走3米,所以甲走的距离为2x米,乙走的距离为3y米。
根据勾股定理可知,他们相隔的距离为$\\sqrt{(2x)^2 + (3y)^2}$米。
由于他们相隔的距离为5米,所以$\\sqrt{(2x)^2 + (3y)^2} = 5$。
即(2x)2+(3x)2=25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).参考答案与试题解析一.解答题(共22小题)1.如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD =,点M在线段EC上.(1)是否存在点M,使得FM⊥平面BDM,如果存在求出点M位置,如果不存在说明理由;(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M﹣BDE的体积.【解答】解:(1)不存在点M,使得FM⊥平面BDM.证明如下:∵正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,∴DA,DC,DE所在直线两两互相垂直,以D为坐标原点,分别以DA,DC,DE所在直线为x,y,z轴建立空间直角坐标系.则D(0,0,0),F(2,0,2),B(2,2,0),设M(0,b,c),则,,.设平面DBM的一个法向量为,由,取y=﹣1,则.若与共线,则,即c2﹣2c+2=0,此方程无解.∴不存在点M,使得FM⊥平面BDM;(2)由(1)知,是平面BDM的一个法向量,而ABF的一个法向量为.由|cos<>|==,得,即b=2c.再由与共线,可得b=2c=2.即点M为EC中点,此时,S△DEM=2,AD为三棱锥B﹣DEM的高,∴.2.如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为2的正方形,E,F分别为线段DD1,BD的中点.(1)求证:EF∥平面ABC1D1;(2)四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,求异面直线EF与BC所成的角的大小.【解答】解:(1)连接BD1,在△DD1B中,E、F分别为线段DD1、BD的中点,∴EF为中位线,∴EF∥D1B,∵D1B?面ABC1D1,EF?面ABC1D1,∴EF∥平面ABC1D1;(2)由(1)知EF∥D1B,故∠D1BC即为异面直线EF与BC所成的角,∵四棱柱ABCD﹣A1B1C1D1的外接球的表面积为16π,∴四棱柱ABCD﹣A1B1C1D1的外接球的半径R=2,设AA1=a,则,解得a=,在直四棱柱ABCD﹣A1B1C1D1中,∵BC⊥平面CDD1C1,CD1?平面CD﹣D1C1,∴BC⊥CD1,在RT△CC1D1中,BC=2,CD1=,D1C⊥BC,∴tan∠D1BC=,则∠D1BC=60°,∴异面直线EF与BC所成的角为60°.3.如图,PA⊥平面ABCD,四边形ABCD为矩形,PA=AB=1,AD=2,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E﹣PAD的体积;(2)证明:无论点E在边BC的何处,都有AF⊥PE.【解答】(1)解:∵PA⊥平面ABCD,且四边形ABCD为矩形.∴,…(3分)∴…(6分)(2)证明:∵PA⊥平面ABCD,∴PA⊥AB,又∵PA=AB=1,且点F是PB的中点,∴AF⊥PB…(8分)又PA⊥BC,BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,又AF?平面PAB,∴BC⊥AF…(10分)由AF⊥平面PBC,又∵PE?平面PBC∴无论点E在边BC的何处,都有AF⊥PE成立.…(12分)4.如图所示,正三棱柱ABC﹣A1B1C1的底面边长是2,侧棱长是,D是AC的中点.(Ⅰ)求证:B1C∥平面A1BD;(Ⅱ)在线段AA1上是否存在一点E,使得平面B1C1E⊥平面A1BD?若存在,求出AE 的长;若不存在,说明理由.【解答】解:(I)连接AB1交A1B于点M,连接MD.∵三棱柱ABC﹣A1B1C1是正三棱柱,∴四边形BAA1B1是矩形,∴M为AB1的中点.∵D是AC的中点,∴MD∥B1C.又MD?平面A1BD,B1C?平面A1BD,∴B1C∥平面A1BD.(II)作CO⊥AB于点O,则CO⊥平面ABB1A1,以O为坐标原点建立空间直角坐标系,假设存在点E,设E(1,a,0).∵AB=2,AA1=,D是AC的中点,∴A(1,0,0),B(﹣1,0,0),C(0,0,),A1(1,,0),B1(﹣1,,0),C1(0,,).∴D(,0,),=(,0,),=(2,,0).设是平面A1BD的法向量为=(x,y,z),∴,,∴,令x=﹣,得=(﹣,2,3).∵E(1,a,0),则=(1,a﹣,﹣),=(﹣1,0,﹣).设平面B1C1E的法向量为=(x,y,z),∴,.∴,令z=﹣,得=(3,,﹣).∵平面B1C1E⊥平面A1BD,∴=0,即﹣3+﹣3=0,解得a=.∴存在点E,使得平面B1C1E⊥平面A1BD,且AE=.5.已知直四棱柱ABCD﹣A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.(1)求证:FM∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1.【解答】证明:(1)延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又MF不在平面ABCD内,AN?平面ABCD,∴MF∥平面ABCD.(2)连BD,由直四棱柱ABCD﹣A1B1C1D1,可知A1A⊥平面ABCD,又∵BD?平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC,A1A?平面ACC1A1,∴BD⊥平面ACC1A1.在四边形DANB中,DA∥BN且DA=BN,∴四边形DANB为平行四边形,故NA∥BD,∴NA⊥平面ACC1A1,又∵NA?平面AFC1,∴平面AFC1⊥ACC1A1.6.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,PD⊥面ABCD,M是PPC的中点,G是线段DM上异于端点的一点,平面GAP∩平面BDM=GH,PD=2.(Ⅰ)证明:GH∥面PAD;(Ⅱ)若PD与面GAP所成的角的正弦值为,求四棱锥D﹣PAHG的体积.【解答】(Ⅰ)证明:连接AC,交BD于O,则O为AC的中点,连接OM,∵M为PC的中点,则OM∥PA,∵OM?平面BMD,PA?平面BMD,∴PA∥平面BMD,∵PA?平面GPA,平面GPA∩平面MDB=GH,∴PA∥GH,而PA?平面PAD,GH?平面PAD,∴GH∥面PAD;(Ⅱ)解:以D为坐标原点,分别以DA,DC,DP所在直线为x,y,z轴建立空间直角坐标系,则D(0,0,0),A(2,0,0),P(0,0,2),M(0,1,1),设=(0,λ,λ),则,=(0,λ,λ﹣2),设平面PAG的一个法向量为.由,取z=1,得.,由PD与面GAP所成的角的正弦值为,得|cos<>|=,解得:或λ=﹣1(舍).∴G为DM的中点,则H为OD的中点,此时,PA=,GH==,.D到平面PCAH的距离d==.由,,得cos<>===.∴sincos<>=.则GH与PA间的距离为h=.∴四棱锥D﹣PAHG的体积V==.7.如图,在四棱锥A﹣BCDE中,平面ADC⊥平面BCDE,∠CDE=∠BED=∠ACD=90°,AB=CD=2,DE=BE=1,(I)证明:平面ABD⊥平面ABC;(Ⅱ)求直线AD与平面ACE所成的角的正弦值.【解答】(Ⅰ)证明:取CD的中点M,连接BM,可得四边形BMDE是正方形.BC2=BM2+MC2=2.∵BD2+BC2=DE2+BE2+BC2=DC2,∴∠CBD=90°,∴BD⊥BC.又AC⊥平面CDE,BD?平面BCDE,∴BD⊥AC,故BD⊥平面ABC.∵BD?平面ABD,∴平面ABD⊥平面ABC.(Ⅱ)解:过点D作DH⊥CE.∵AC⊥DH,∴DH⊥平面ACE.∴∠DAH即为AD与平面ACE所成的角.AB=DC=2.在Rt△DCE中,DE=1,CD=2,∴CE=,∴DH===.∵AC==,∴AD==,在Rt△AHD中,sin∠DAH==.8.如图,在四棱锥P﹣ABCD中,AB∥CD,AD⊥平面PCD,PC⊥CD,CD=2AB=2AD =λPC.(Ⅰ)求证:平面BDP⊥平面BCP;(Ⅱ)若平面ABP与平面ADP所成锐二面角的余弦值为,求λ的值.【解答】(Ⅰ)证明:∵AD⊥平面PCD,∴AD⊥PC,又∵CD⊥PC,AD∩CD=D,∴PC⊥平面ABCD,∵BD?平面ABCD,∴PC⊥BD,设AB=AD=1,则CD=2,由题意知在梯形ABCD中,有BD=BC=,∴BD2+BC2=CD2,∴BD⊥BC,又PC∩BC=C,∴BD⊥平面BCP.∵BD?平面BDP,∴平面BPD⊥平面BCP.(2)解:以点D为原点,DA、DC、DQ为x轴、y轴、z轴建立空间直角坐标系.设AB=1,PC=a,则D(0,0,0),A(1,0,0),B(1,1,0),P(0,2,a),=(1,0,0),=(0,2,a),设=(x,y,z)为平面ADP的一个法向量,则==0,可得,令z=﹣2,则y=a,∴=(0,a,﹣2).同理可得平面ABP的一个法向量=(a,0,1).∴|cos|===,解得:a=,∴λ=.9.已知直线2x+y﹣4=0与圆C:x2+y2﹣2mx﹣y=0(m>0)相交于点M、N,且|OM|=ON|(O为坐标原点).(Ⅰ)求圆C的标准方程;(Ⅱ)若A(0,2),点P、Q分别是直线x+y+2=0和圆C上的动点,求|PA|+|PQ|的最小值及求得最小值时的点P坐标.【解答】解:(Ⅰ)化圆C:x2+y2﹣2mx﹣y=0(m>0)为.则圆心坐标为C(m,),∵|OM|=|ON|,则原点O在MN的中垂线上,设MN的中点为H,则CH⊥MN,∴C、H、O三点共线,则直线OC的斜率k=,∴m=2或m=﹣2.∴圆心为C(2,1)或C(﹣2,﹣1),∴圆C的方程为(x﹣2)2+(y﹣1)2=5或(x+2)2+(y+1)2=5,由于当圆方程为(x+2)2+(y+1)2=5时,直线2x+y﹣4=0到圆心的距离d>r,此时不满足直线与圆相交,故舍去,∴圆C的方程为(x﹣2)2+(y﹣1)2=5;(Ⅱ)点A(0,2)关于直线x+y+2=0的对称点为A′(﹣4,﹣2),则|PA|+|PQ|=|PA′|+|PQ|≥|A′Q|,又A′到圆上点Q的最短距离为|A′C|﹣r=﹣=3﹣=2.∴|PA|+|PQ|的最小值为2,直线A′C的方程为y=x,则直线A′C与直线x+y+2=0的交点P的坐标为(﹣,﹣).10.已知圆C过点P(2,2),且与圆M:(x+6)2+(y﹣6)2=r2(r>0)关于直线x﹣y+6=0对称.(1)求圆C的方程;(2)过点P作两条相异直线分别与圆C相交于点A和点B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.【解答】(1)解:由题意可得点C和点M(﹣6,6)关于直线x﹣y+6=0对称,且圆C和圆M的半径相等,都等于r.设C(m,n),由且,解得:m=0,n=0.故原C的方程为x2+y2=r2.再把点P(2,2)代入圆C的方程,求得r=.故圆的方程为:x2+y2=8;(2)证明:过点P作两条相异直线分别与圆C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,则得直线OP和AB平行,理由如下:由题意知,直线PA和直线PB的斜率存在,且互为相反数,故可设PA:y﹣2=k(x﹣2),PB:y﹣2=﹣k(x﹣2).由,得(1+k2)x2+4k(1﹣k)x+4(1﹣k)2﹣8=0,∵P的横坐标x=2一定是该方程的解,∴,同理,x B=.由于AB的斜率k AB====1=k OP(OP的斜率),∴直线AB和OP一定平行.11.已知圆C的圆心在直线y=x+1上,半径为,且圆C经过点P(3,6)和点Q(5,6).①求圆C的方程.②过点(3,0)的直线l截图所得弦长为2,求直线l的方程.【解答】解:①由题意可知,设圆心为(a,a+1),则圆C为:(x﹣a)2+[y﹣(a+1)]2=2,∵圆C经过点P(3,6)和点Q(5,6),∴,解得:a=4.则圆C的方程为:(x﹣4)2+(y﹣5)2=2;②当直线l的斜率存在时,设直线l的方程为y=k(x﹣3)即kx﹣y﹣3k=0,∵过点(3,0)的直线l截圆所得弦长为2,∴,则.∴直线l的方程为12x﹣5y﹣36=0,当直线l的斜率不存在时,直线l为x=3,此时弦长为2符合题意,综上,直线l的方程为x=3或12x﹣5y﹣36=0.12.已知圆C的圆心坐标(1,1),直线l:x+y=1被圆C截得弦长为.(Ⅰ)求圆C的方程;(Ⅱ)从圆C外一点P(2,3)向圆引切线,求切线方程.【解答】解:(Ⅰ)设圆C的标准方程为:(x﹣1)2+(y﹣1)2=r2(r>0),则圆心C(1,1)到直线x+y﹣1=0的距离为:,…(2分)则,∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1;…(5分)(Ⅱ)①当切线的斜率不存在时,切线方程为:x=2,此时满足直线与圆相切;…(6分)②当切线的斜率存在时,设切线方程为:y﹣3=k(x﹣2),即y=kx﹣2k+3;则圆心C(1,1)到直线kx﹣y﹣2k+3=0的距离为:,…(8分)化简得:4k=3,解得,∴切线方程为:3x﹣4y+6=0;…(11分)综上,切线的方程为:x=2和3x﹣4y+6=0.…(12分)13.在平面直角坐标系xOy中,已知圆M的圆心在直线y=﹣2x上,且圆M与直线x+y﹣1=0相切于点P(2,﹣1).(1)求圆M的方程;(2)过坐标原点O的直线l被圆M截得的弦长为,求直线l的方程.【解答】解:(1)过点(2,﹣1)且与直线x+y﹣1=0垂直的直线方程为x﹣y﹣3=0,…(2分)由解得,所以圆心M的坐标为(1,﹣2),…(4分)所以圆M的半径为r=,…(6分)所以圆M的方程为(x﹣1)2+(y+2)2=2.…(7分)(2)因为直线l被圆M截得的弦长为,所以圆心M到直线l的距离为d==,…(9分)若直线l的斜率不存在,则l为x=0,此时,圆心M到l的距离为1,不符合题意.若直线l的斜率存在,设直线l的方程为y=kx,即kx﹣y=0,由d==,…(11分)整理得k2+8k+7=0,解得k=﹣1或﹣7,…(13分)所以直线l的方程为x+y=0或7x+y=0.…(14分)14.已知圆C的圆心C在直线y=x上,且与x轴正半轴相切,点C与坐标原点O的距离为.(Ⅰ)求圆C的标准方程;(Ⅱ)直线l过点M(1,)且与圆C相交于A,B两点,求弦长|AB|的最小值及此时直线l的方程.【解答】解:(Ⅰ)由题可设圆心C(a,a),半径r,∵.∴a=±1.又∵圆C与x轴正半轴相切,∴a=1,r=1.∴圆C的标准方程:(x﹣1)2+(y﹣1)2=1.(Ⅱ)①当直线l的斜率不存在时,直线l的方程为x=1,此时弦长|AB|=2.②当直线l的斜率存在时,设直线l的方程:点C到直线l的距离,弦长,当k=0时,弦长|AB|取最小值,此时直线l的方程为.由①②知当直线l的方程为时,弦长|AB|取最小值为.15.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x﹣3y ﹣6=0,点T(﹣1,1)在AD边所在直线上.(1)AD边所在直线的方程;(2)矩形ABCD外接圆的方程.【解答】解:(1)∵AB边所在直线的方程为x﹣3y﹣6=0,且AD与AB垂直,∴直线AD的斜率为﹣3.又因为点T(﹣1,1)在直线AD上,∴AD边所在直线的方程为y﹣1=﹣3(x+1),3x+y+2=0.(2)由,解得点A的坐标为(0,﹣2),∵矩形ABCD两条对角线的交点为M(2,0).∴M为矩形ABCD外接圆的圆心,又|AM|2=(2﹣0)2+(0+2)2=8,∴.从而矩形ABCD外接圆的方程为(x﹣2)2+y2=8.16.已知三条直线l1:x+y﹣3=0,l2:3x﹣y﹣1=0,l3:2x+my﹣8=0经过同一点M.(1)求实数m的值;(2)求点M关于直线l:x﹣3y﹣5=0的对称点N的坐标.【解答】解:(1)解方程组,得交点M(1,2).……………………………(3分)将点M(1,2)的坐标代入直线l3:2x+my﹣8=0的方程,得m=3.…………(6分)(2)法一:设点N的坐标为(m,n),则由题意可………(9分)解得…………………………………………………………………………(12分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)法二:由(1)知M(1,2),所以,过M且与x﹣3y﹣5=0垂直的直线方程为:y﹣2=﹣3(x﹣1),即3x+y﹣5=0.…………………………………………………………………(8分)解方程组得交点为H(2,﹣1)………………………………………(10分)因为M,N的中点为H,所以,x N=2×2﹣1=3,y N=2×(﹣1)﹣2=﹣4.……(13分)所以,所求对称点N的坐标(3,﹣4).………………………………………………(14分)17.已知圆C1与y轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线l上.(I)求圆C1的方程;(I)若圆C1与圆C2:x2+y2﹣6x﹣3y+5=0相交于M、N两点,求两圆的公共弦MN的长.【解答】解:(Ⅰ)经过点(2,1)与点(﹣2,﹣3)的直线方程为,即y=x﹣1.由题意可得,圆心在直线y=3上,联立,解得圆心坐标为(4,3),故圆C1的半径为4.则圆C1的方程为(x﹣4)2+(y﹣3)2=16;(Ⅱ)∵圆C1的方程为(x﹣4)2+(y﹣3)2=16,即x2+y2﹣8x﹣6y+9=0,圆C2:x2+y2﹣6x﹣3y+5=0,两式作差可得两圆公共弦所在直线方程为2x+3y﹣4=0.圆C1的圆心到直线2x+3y﹣4=0的距离d=.∴两圆的公共弦MN的长为2=2.18.在平面直角坐标系xOy中,已知以点C(a﹣1,a2)(a>0)为圆心的圆过原点O,不过圆心C的直线2x+y+m=0(m∈R)与圆C交于M,N两点,且点F(,)为线段MN的中点.(Ⅰ)求m的值和圆C的方程;(Ⅱ)若Q是直线y=﹣2上的动点,直线QA,QB分别切圆C于A,B两点,求证:直线AB恒过定点;(Ⅲ)若过点P(0,t)(0≤t<1)的直线L与圆C交于D,E两点,对于每一个确定的t,当△CDE的面积最大时,记直线l的斜率的平方为u,试用含t的代数式表示u.【解答】(Ⅰ)解:由题意,,即2a2﹣a﹣1=0,解得a=1(a>0).∴圆心坐标为(0,1),半径为1,由圆心到直线2x+y+m=0的距离d==,可得m=0或m=﹣2,∵点F(,)在直线2x+y+m=0上,∴m=﹣2.故m=﹣2,圆C的方程为x2+(y﹣1)2=1;(Ⅱ)证明:设Q(t,﹣2),则QC的中点坐标为(),以QC为直径的圆的方程为,即x2+y2﹣tx+y﹣2=0.联立,可得AB所在直线方程为:tx﹣3y+2=0.∴直线AB恒过定点(0,);(Ⅲ)解:由题意可设直线l的方程为y=kx+t,△ABC的面积为S,则S=|CA|?|CB|?sin∠ACB=sin∠ACB,∴当sin∠ACB最大时,S取得最大值.要使sin∠ACB=,只需点C到直线l的距离等于,即=,整理得:k2=2(t﹣1)2﹣1≥0,解得t≤1﹣.①当t∈[0,1﹣]时,sin∠ACB最大值是1,此时k2=2t2﹣4t+1,即u=2t2﹣4t+1.②当t∈(1﹣,1)时,∠ACB∈(,π).∵y=sin x是(,π)上的减函数,∴当∠ACB最小时,sin∠ACB最大.过C作CD⊥AB于D,则∠ACD=∠ACB,∴当∠ACD最大时,∠ACB最小.∵sin∠CAD=,且∠CAD∈(0,),∴当|CD|最大时,sin∠CAD取得最大值,即∠CAD最大.∵|CD|≤|CP|,∴当CP⊥l时,|CD|取得最大值|CP|.∴当△ABC的面积最大时,直线l的斜率k=0,∴u=0.综上所述,u=.19.在平面直角坐标系xOy中,已知圆M:x2+y2+ay=0(a>0),直线l:x﹣7y﹣2=0,且直线l与圆M相交于不同的两点A,B.(1)若a=4,求弦AB的长;(2)设直线OA,OB的斜率分别为k1,k2,若k1+k2=,求圆M的方程.【解答】解:(1)由题意知,a=4时圆心M坐标为(0,﹣2),半径为2,圆心到直线距离d=,∴弦|AB|=;(2)设A(x1,y1),B(x2,y2),联立,整理得50y2+(28+a)y+4=0.∵△=(28+a)2﹣16×50>0,∴.,则,.于是==.∴a=2.∴圆的方程为x2+y2+2y=0.20.在平面直角坐标系xOy中,圆O:x2+y2=1,(1)P为直线l:x=上一点.①若点P在第一象限,且OP=,求过点P的圆O的切线方程;②若存在过点P的直线交圆O于点A,B,且B恰为线段AP的中点,求点P纵坐标的取值范围;(2)已知C(2,0),M为圆O上任一点,问:是否存在定点D(异于点C),使为定值,若存在,求出D坐标;若不存在,说明你的理由.【解答】解:(1)①设点P的坐标为(,y0),∵OP=,∴+y02=,解得y0=±1.又点P在第一象限,∴y0=1,即P的坐标为(,1).易知过点P的圆O的切线的斜率必存在,可设切线的斜率为k,则切线为y﹣1=k(x﹣),即kx﹣y+1﹣k=0,于是有=1,解得k=0或k=.因此过点P的圆O的切线方程为:y=1或24x﹣7y﹣25=0;②设A(x,y),则B(,),∵点A、B均在圆O上,∴有圆x2+y2=1与圆(x+)2+(y+y0)2=4有公共点.于是1≤≤3,解得﹣≤y0≤,即点P纵坐标的取值范围是[﹣,];(2)设M(x,y),假设存在点D(m,n),使为定值t(t>0),则MC2=t2MD2,即(x﹣2)2+y2=t2(x﹣m)2+t2(y﹣n)2,∴,∵M在圆O:x2+y2=1上,∴,解得t=,m=,n=0.∴存在定点D(),使为定值.21.如图,正三棱柱ABC﹣A1B1C1的侧棱长和底边长均为2,D是BC的中点.(Ⅰ)求证:AD⊥平面B1BCC1;(Ⅱ)求证:A1B∥平面ADC1;(Ⅲ)求三棱锥C1﹣ADB1的体积.【解答】(Ⅰ)证明:因为ABC﹣A1B1C1是正三棱柱,所以CC1⊥平面ABC因为AD?平面ABC,所以CC1⊥AD因为△ABC是正三角形,D为BC中点,所以BC⊥AD,…(4分)因为CC1∩BC=C,所以AD⊥平面B1BCC1.…(5分)(Ⅱ)证明:连接A1C,交AC1于点O,连接OD.由ABC﹣A1B1C1是正三棱柱,得四边形ACC1A1为矩形,O为A1C的中点.又D为BC中点,所以OD为△A1BC中位线,所以A1B∥OD,…(8分)因为A1B?平面ADC1,OD?平面ADC1,所以A1B∥平面ADC1;(10分)(Ⅲ)解:V C1﹣ADB1=V A﹣C1DB1==.…(14分)22.如图,三棱锥P﹣ABC中,PA⊥底面ABC,M是BC的中点,若底面ABC是边长为2的正三角形,且PB与底面ABC所成的角为.求:(1)三棱锥P﹣ABC的体积;(2)异面直线PM与AC所成角的大小(结果用反三角函数值表示).【解答】解:(1)因为PA⊥底面ABC,PB与底面ABC所成的角为所以因为AB=2,所以(2)连接PM,取AB的中点,记为N,连接MN,则MN∥AC 所以∠PMN为异面直线PM与AC所成的角计算可得:,MN=1,异面直线PM与AC所成的角为。