数字电路与逻辑设计
数字电路与逻辑设计教程-第1章

1.2 数制和码制
【例1-4】求十进制数(26)10所对应的二进制数。
因此(26)10=(11010)2。
上一页 下一页 返回
1.2 数制和码制
【例1-5】求十进制数(357 ) 10所对应的八进制数。 解
因此(357 )10=(545)8。
上一页 下一页 返回
1.2 数制和码制
上一节介绍了数字信号的两种取值,实际生活中的数字表示 大多采用进位计数制。
下一页 返回
1.2 数制和码制
1.2.1 进位计数制与常用计数制
用数字量表示物理量大小时,仅用一位数码往往不够用,经 常需要用进位计数的方法组成多位数码表示。把多位数码中 每一位的构成方法以及从低位到高位的进位规则称为计数制 。在生产实践中除了人们最熟悉的十进制以外,还大量使用 各种不同的进位计数制,如八进制、十六进制等。在数字设 备中,机器只认识二进制代码,由于二进制代码书写长,所 以在数字设备中又常采用八进制代码或十六进制代码。
上一页 下一页 返回
1.2 数制和码制
任何进制数的值都可以表示为该进制数中各位数字符号值与 相应权乘积的累加和形式,该形式称为按权展开的多项式之 和。一个J进制数(N为按权展开的多项式的普遍形式可表示为 :
式中,K为任意进制数中第i位的系数,可以为0~ (J-1)数码中 的任何一个;i是数字符号所处位置的序号;m和n为整数,m为 小数部分位数(取负整数),n为整数部分位数(取正整数);.J为 进位基数,Ji为第i位的权值。例如,十进制数(123.75 )10表示 为:
第1章 微型计算机系统概述
1.1 数字电路概述 1.2 数制和码制 1.3 逻辑代数基础 本章小结
1.1 数字电路概述
数字电路与逻辑设计PPT课件

Cn+1 Dn
0
0
1
1
1
1
1
0
0
1
0
0
0
0
1
1
第3章 组合逻辑电路
AnBn
AnBn
An Bn
全 减
Dn
Cn 0
00 0
01 1
11 0
10 0
Cn 00 01 11 10 00 1 0 1
Cn
器
Cn+1 1 1
1
1
0
11 0 1 0
(a)
(b)
(c)
全减器框图及K图 (a) 框图; (b) Cn+1; (c) Dn
0 0 0
带编码器的MCU应用电路
3.3.2 译码器
第3章 组合逻辑电路
将二进制代码转换成不同的输出 信号的过程称为译码。常用的MSI译码器 为74HC138(3-8Line Decoder)。
② 根据输出函数表达式列出真值表。
③ 确定电路的逻辑功能。
第3章 组合逻辑电路
【例3-1】分析图所示电路,指出该电路 的逻辑功能。
Ai
=1
=1
Bi
Si
Ci
& ≥1
Ai Bi
∑
Si
1
Ci+1 Ci
Ci+1
(a)
(b)
解: ① 写出函数表达式。
第3章 组合逻辑电路
Si Ai Bi Ci Ci1 ( Ai Bi )Ci Ai Bi
第3章 组合逻辑电路
组合逻辑电路:任何时候的输 出仅仅取决于该时刻的输入,而与电路原 来的状态没有任何关系。输出状态随着输 入信号的改变而改变。
数字电路与逻辑设计微课版(第一章数字电路与逻辑设计基础)教案

第一章数字电路与逻辑设计基础本章的主要知识点包括数制及其转换、二进制的算术运算、BCD码和可靠性编码等。
1.参考学时2学时(总学时32课时,课时为48课时可分配4学时)。
2.教学目标(能力要求)●系统梳理半导体与微电子技术发展的历史,激发学生专业热情,结合我国计算机发展面临的卡脖子现状,鼓励学生积极投身信息成业自主可控;●学生可解释数字系统的概念、类型及研究方法;●学生能阐述数制的基本特点,可在不同数制之间进行数字的转换;●学生能理解带符号二进制数的代码表示,能将真值和原码、反码、补码的进行转换;●学生能熟记几种常用的编码(8421码、2421码、5421码、余三码),说明有权码和无权码的区别,能阐述不同编码的特点和特性;●学生能阐述奇偶校验码和格雷码的工作原理与主要特征,并能利用相关原理进行二进制和格雷码的转换,能根据信息码生成校验码,并能根据信息码和校验码辨别数据是否可靠。
3.教学重点●BCD码●奇偶校验码●格雷码4.教学难点●理解不同BCD码的编码方案及相关特征●理解可靠性编码方案、验证的原理以及使用方法。
5.教学主要内容(1)课程概述(15分钟)➢科技革命促生互联网时代➢半导体与微电子技术发展历程➢课程性质、内容与学习方法(2)芯片与数字电路(20分钟)➢数字信号和模拟信号➢数字逻辑电路的特点➢数字逻辑电路的分类➢数字逻辑电路的研究方法(3)数制及其转换(5分钟)➢进位计数值的概念和基本要素➢二进制和十进制的相互转换➢二进制和八进制数的相互转换➢二进制和十六进制数的相互转换(4)二进制数的算术运算(5分钟)➢无符号二进制数的算术运算➢带符号二进制数的机器码表示➢带符号二进制数的算术运算(5)BCD码(20分钟)➢有权码和无权码的区别➢8421码的编码规律及和十进制数的转换➢2421码的编码规律及和十进制数的转换➢5421码的编码规律及和十进制数的转换➢余三码的编码规律及和十进制数的转换(6)奇偶校验码(15分钟)➢奇校验和偶校验的概念➢奇校验和偶校验校验位的生成方法和校验方法➢奇校验和偶校验的特点(7)格雷码(10分钟)➢格雷码的特点和用途➢格雷码和二进制数的相互转换6.教学过程与方法(1)课程概述(15分钟)➢科技革命促生互联网时代以习总书记的讲话作为整个课程的导入,说明科技发展是强国必有之路,穿插不同国家崛起的历史,结合第一次工业革命、第二次工业革命,推出目前进入的互联网时代,结合中美贸易战事件,引导学生积极投身国产IT生态的建设。
数字电路与逻辑设计

数字电路与逻辑设计数字电路与逻辑设计1. 概述数字电路与逻辑设计指的是使用电子元件,如晶体管和集成电路,来设计电路,实现所需的数字电路逻辑功能。
这项技术是电路设计的基础,延伸到微处理器设计,功能实现以及控制系统的设计等领域。
它的核心目的是将某种逻辑功能模型所需的电路电路元件和元件组件,在尽可能小的控制要求下设计出来。
2. 技术和工具为了实现数字电路作为一种逻辑模型必须用到一系列的技术和工具,这类技术主要包括模拟信号处理、数字逻辑设计、多级逻辑组态设计、微程序控制、系统控制等,通过这些技术可以让电路系统更具功能、可靠性。
此外,在进行数字电路与逻辑设计时,还需要使用的设计工具,如电路设计工具、多级逻辑和控制系统设计工具、条件控制语言、功能描述语言等等。
3. 技术难点在实际的数字电路设计与逻辑设计中,面临着许多技术挑战。
在电路设计的时候,数字电路的设计者需要考虑仪器的数量、分布、功能、可靠性、保险设计以及可靠性测试等要素,而在进行多级逻辑组态的设计的过程中,还需要考虑项目组态、项目之间的关联性、信号的处理多样性等。
另外,在微程序控制、系统控制的设计过程中,有许多工程技术概念、技术原理和程序控制理论、工程武器思想和技术抽象原理要考虑,还有波形布局和数字运算,所以整个数字电路和应用的实现都非常复杂,里面的技术难点一大堆。
4. 应用数字电路与逻辑设计技术在电子工程和控制系统等多个应用领域中得到了深入应用,如家用电器、汽车系统、航空航天技术、信号处理技术、运动控制技术、智能仪表和自动制造等。
数字电路和逻辑设计技术日趋复杂,正逐步深入到计算机网络、信息处理、图像处理、自动化和网络安全等诸多领域,数字电路和逻辑设计的综合应用,极大地丰富了信息技术的应用领域,从而使国家才能得到提升。
电子信息工程专业电子电路课程数字电路与逻辑设计

电子信息工程专业电子电路课程数字电路与逻辑设计数字电路与逻辑设计是电子信息工程专业中的一门重要课程。
在现代科技快速发展的背景下,数字电路与逻辑设计的基本概念和原理成为电子工程师必备的知识。
本文将从数字电路的基本概念、逻辑门电路设计以及应用实例等方面进行探讨。
一、数字电路的基本概念数字电路是指由数字信号控制或处理信息的电路系统。
它由数字电子元件(如逻辑门)和数字电子元件之间的相互连接组成。
数字电路采用的是离散的信号状态,通常用0和1表示,0代表逻辑低电平,1代表逻辑高电平。
数字电路是电子信息领域中最基础也是最重要的内容之一,广泛应用于计算机、通信、仪器仪表等领域。
二、逻辑门电路设计逻辑门是构建数字电路的基本元件,它根据特定的逻辑关系对输入信号进行处理,产生相应的输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
逻辑门的设计是数字电路与逻辑设计的核心内容之一。
1. 与门的设计与门是逻辑运算中最基础的逻辑门之一,其输出信号仅当所有输入信号为高电平时才为高电平,否则为低电平。
与门的设计需要根据实际需求确定输入端的数量,并合理选择逻辑门的输入和输出端口。
2. 或门的设计或门是逻辑运算中另一个重要的逻辑门,其输出信号仅当任意一个输入信号为高电平时即为高电平,否则为低电平。
与门的设计同样需要根据实际需求确定输入端的数量,并选择合适的逻辑门。
3. 非门的设计非门是逻辑运算中最简单的逻辑门,它只有一个输入信号,输出信号与输入信号正好相反。
非门的设计相对简单,仅需要一个逻辑门即可满足基本要求。
4. 异或门的设计异或门是逻辑运算中常用的逻辑门之一,其输出信号仅当输入信号相异(一个为高电平,一个为低电平)时为高电平,否则为低电平。
异或门的设计需要根据实际需求确定输入端的数量,并合理选择逻辑门的输入和输出端口。
三、应用实例数字电路与逻辑设计的应用非常广泛,涵盖了各个领域。
以下是一些典型的应用实例:1. 计算机CPU计算机的中央处理器(CPU)是由大量的数字电路与逻辑门构成的。
数字电路与逻辑设计-

卡诺图化简
卡诺图化简是通过填涂卡诺图来化简 逻辑函数,通过圈并和圈乘的方法来 合并最小项。
04
组合逻辑电路设计
组合逻辑电路简介
组合逻辑电路
由门电路组成的数字电路,用于执行逻辑运算。
特点
输入和输出之间没有存储功能,仅根据当前输入 产生输出。
应用
如编码器、译码器、多路选择器等。
组合逻辑电路的分析
分析步骤 列出逻辑表达式;
强、精度高等优点。
逻辑运算和存储功能
02
数字电路具有逻辑运算和存储功能,可以实现各种复杂的逻辑
函数和数据存储。
高集成度和高性能
03
随着微电子技术的发展,数字电路的集成度越来越高,性能越
来越强大,可以实现高速、高可靠性的信息处理。
03
逻辑设计基础
逻辑代数简介
01
逻辑代数定义
逻辑代数是一种用于描述逻辑关 系的数学系统,它使用二进制变 量来表示逻辑值。
物联网技术的发展将推动数字电路在智能感 知和数据处理方面的应融合,实现 更加智能化的应用。
绿色环保
随着环保意识的提高,低功耗、低污染的数 字电路将成为未来的重要发展方向。
THANKS
感谢观看
波形图
波形图是一种用于表示逻辑函数时间变化的图形方法,它通过波 形的形状和幅度来表示逻辑值。
逻辑函数的化简
公式化简
波形图化简
公式化简是通过代数方法对逻辑表达 式进行化简,常用的化简方法有合并 律、分配律、吸收律等。
波形图化简是通过观察波形图的形状 和幅度来化简逻辑函数,通过调整波 形的相位和幅度来简化函数。
02
03
基本逻辑运算
真值表
逻辑代数包括与、或、非三种基 本逻辑运算,以及一些复合逻辑 运算。
电子信息专业优质课数字电路与逻辑设计

电子信息专业优质课数字电路与逻辑设计数字电路与逻辑设计是电子信息专业中的一门重要课程,它是电子技术和计算机科学的基础。
本文将从数字电路基础、逻辑门电路设计、组合逻辑电路设计和时序逻辑电路设计四个方面进行论述。
一、数字电路基础数字电路是用于处理数字信号的电路,数字信号只有两个状态,即0和1。
数字电路以逻辑门为基本单元,通过逻辑门的组合和连接形成各种功能的数字电路。
常见的逻辑门有与门、或门、非门、异或门等。
数字电路有许多重要概念,如真值表、卡诺图、布尔代数等。
二、逻辑门电路设计逻辑门电路是由多个逻辑门组成的电路,在实际应用中用于完成某种特定的逻辑功能。
逻辑门电路设计是数字电路设计的关键环节之一。
在逻辑门电路设计中,需要根据所需的逻辑功能,选择适当的逻辑门类型,并合理地连接它们。
逻辑门电路设计要求我们掌握逻辑代数的基本原理和设计的方法。
三、组合逻辑电路设计组合逻辑电路是由多个逻辑门组成的电路,在给定输入条件下,通过逻辑操作得出输出结果。
组合逻辑电路不含有时钟信号,输出只与输入有关,不受先后顺序的影响。
组合逻辑电路设计的关键在于确定输入信号和输出信号之间的逻辑关系,并选择适当的逻辑门进行连接。
四、时序逻辑电路设计时序逻辑电路是在组合逻辑电路基础上加入时钟信号,使得输出不仅与输入有关,还与时间有关。
时序逻辑电路设计需要考虑信号的时序关系和状态的转换条件。
常见的时序逻辑电路有触发器、计数器等。
时序逻辑电路设计的关键是确定状态转换条件和时钟频率,并合理地选择适当的触发器进行设计。
综上所述,数字电路与逻辑设计是电子信息专业中一门重要的课程,它涵盖了数字电路的基础知识、逻辑门电路设计、组合逻辑电路设计和时序逻辑电路设计等内容。
通过学习这门课程,我们可以深入了解数字电路原理和设计方法,为今后的电子技术和计算机科学相关工作打下坚实的基础。
数字电路与逻辑设计复习

第二章 逻辑函数及其简化 公式法化简
① F=(A⊕B)(B⊕C) ●A+B+A+C
解: F=[(A⊕B)(B⊕C) +A+B] ●(A+C) =[(AB+AB)(BC+BC)+A+B) ●(A+C)
第二章 逻辑函数及其简化 1 若A、B、C、D、E为某逻辑函数输入变量,函数的最大项表达式 所包含的最大项的个数不可能是: A 32 B 15 C 31 D 632 2 以下表达式中符合逻辑运算规则的是: A. C●C=C2 B. 1+1=10 C. 0﹤1 D. A+1=1 3 符合逻辑运算规则的是: A. 1×1=1 B. 1+1=10 C. 1+1=1 D. 1+1=2 4 逻辑函数F=AB+CD+BC的反函数F是:_____;对偶函数F﹡是:____; 5 逻辑代数的三个重要规则是:_________,__________,_________ 当逻辑函数有n个变量时,共有____种变量取值组合。 6 异或与同或在逻辑上正好相反,互为反函数,对吗? 7 逻辑变量的取值,1比0大,对吗? 8 F=A⊕B⊕C=A⊙B⊙C,对吗? 答案:1. D 2. D 3. C 4. ___ 5. ____ ____ 6. √ 7. × 8. √
第一章 绪论 1.数制的转换 (1)任意进制→十进制(按位权展开相加) (2)十进制→任意进制(除R取余,乘R取整) (3) 二进制--八进制--十六进制(中介法) (4)精度要求(1/Ri<精度要求值) 2.常用的BCD码 有权码(8421码、2421码、5121码、631-1码) 无权码(余3码,移存码、余3循环码)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电路与逻辑设计
数字电路与逻辑设计是计算机科学与工程领域中非常重要的基础知
识之一。
它涉及到数字信号的处理和转换,以及逻辑门电路和数字系
统的设计。
本文将为您介绍数字电路与逻辑设计的基本概念、原理和
设计方法。
一、数字电路的基本概念
数字电路是由数字信号驱动的电路,它能够对输入信号进行处理和
转换,并输出相应的数字信号。
数字信号是以离散的形式表示的信号,它只能取0和1两个值,分别代表逻辑假和逻辑真。
数字电路通常由
逻辑门电路组成,逻辑门电路是由逻辑门和逻辑元件构成的电路。
1.1 逻辑门
逻辑门是数字电路最基本的组成元件,它能够根据输入信号的逻辑
关系,产生相应的输出信号。
常见的逻辑门有与门(AND)、或门(OR)、非门(NOT)等。
例如,与门的输出信号仅在两个输入信号
均为1时为1,否则为0。
1.2 逻辑元件
逻辑元件是由逻辑门组成的电路,它可以实现更加复杂的逻辑功能。
常见的逻辑元件有多路选择器、译码器、加法器等。
例如,多路选择
器可以根据控制信号的不同,将多个输入信号中的某一个传递到输出端。
二、数字电路的设计原理
数字电路的设计原理包括布尔代数、卡诺图和编码器原理。
这些原理为数字电路的设计提供了理论基础和方法。
2.1 布尔代数
布尔代数是一种用于描述逻辑关系和逻辑运算的数学方法。
它使用逻辑运算符号(如与、或、非)和变量来表示逻辑关系。
布尔代数可以用来简化逻辑表达式,减少逻辑门的数量和实现复杂逻辑功能。
2.2 卡诺图
卡诺图是一种用于优化逻辑表达式的图形工具。
它将逻辑函数的输入和输出关系以表格形式表示,然后通过对表格中的1进行合并、提取和简化,得到最简化的逻辑表达式。
卡诺图可以减少逻辑门的数量和简化电路的复杂性。
2.3 编码器原理
编码器是一种将多个输入信号转换为相应输出信号的逻辑电路。
它具有将多个输入信号映射到唯一输出信号的功能。
常见的编码器有优先编码器、十进制到二进制编码器等。
编码器可以在数字系统中实现数据的压缩和传输。
三、数字系统的设计方法
数字系统的设计方法包括组合逻辑电路的设计和时序逻辑电路的设计。
组合逻辑电路的输出仅依赖于当前输入信号,而时序逻辑电路的
输出还受到时钟信号的控制。
3.1 组合逻辑电路的设计
组合逻辑电路的设计是根据逻辑关系和逻辑功能,选择适当的逻辑
门和逻辑元件进行连接和组合。
常见的组合逻辑电路有加法器、减法器、比较器等。
设计组合逻辑电路时,需要考虑电路延迟、功耗等因素。
3.2 时序逻辑电路的设计
时序逻辑电路的设计是根据时序关系和时钟信号,选择适当的触发
器和时序元件进行连接和组合。
常见的时序逻辑电路有寄存器、计数器、状态机等。
设计时序逻辑电路时,需要考虑时序逻辑的稳定性、
时钟频率等因素。
结语
数字电路与逻辑设计是计算机科学与工程领域中必不可少的基础知识。
通过学习数字电路的基本概念、原理和设计方法,我们可以理解
计算机内部的运行原理,设计和实现各种数字系统和逻辑功能。
同时,数字电路与逻辑设计也为我们提供了解决实际问题的方法和思路。
通过本文的介绍,希望读者能够对数字电路与逻辑设计有一个全面
的了解,并在实际应用中灵活运用。
数字电路与逻辑设计的学习需要
结合理论和实践,通过动手实验和设计,不断提升自己的技能和能力。
祝愿大家在数字电路与逻辑设计领域取得优秀的成果!。