遥感图像处理论文

合集下载

光学图像处理技术在遥感图像中的应用

光学图像处理技术在遥感图像中的应用

光学图像处理技术在遥感图像中的应用随着科技的不断发展,人类对于地球的认识也越来越深入。

其中,遥感技术在地球观测中扮演着越来越重要的角色。

遥感图像是使用卫星、飞机、无人机等载体采集并传输的地球表面信息,被广泛用于气象、地质、农业、城市规划等领域。

在获取遥感图像的同时,如何高效地处理和分析这些图像数据也成为了一个迫切的问题。

光学图像处理技术,则是一种被广泛应用于遥感图像处理的技术。

光学图像处理技术是指通过数字信号处理、统计学和数学算法等方法来提取、过滤、压缩、增强或重建光学图像的过程。

在遥感图像中,这些技术能够帮助我们从数据中提取有用的信息,比如提取城市中心、农作物分布、海岸线位置等,然后进行更深入的研究和分析。

下面我们将探讨光学图像处理技术在遥感图像中的应用。

1. 图像增强图像增强是指通过调整图像的对比度、色彩等参数来使图像的质量得到提高。

在遥感图像中,由于图像中各种地物的灰度和颜色往往相似,导致图像中的细节信息难以被发现。

此时采用图像增强技术可以使得这些细节信息浮现出来。

比如,在城市规划工作中,我们可以通过图像增强技术来准确地提取建筑物轮廓、街道轮廓等。

2. 图像分割图像分割是指将图像中的区域分解成不同的部分,以便进行目标检测和识别。

在遥感图像中,图像分割可以用于提取特定区域的信息,比如水域、农田、林区等。

与此同时,这些信息对于环境监测、资源利用以及自然灾害预防和应对等都有着十分重要的意义。

3. 特征提取特征提取是指从图像中提取出具有代表性的特征。

在遥感图像中,由于遥感图像覆盖范围大,因此往往需要把分析的目标先区分开来,才能做出一些有意义的结论。

通过特征提取技术,可以得到目标区域的特定特征,比如植被覆盖度、水道宽度等,然后通过分析这些特征得出结论。

4. 图像配准图像配准是指将不同来源的图像进行对齐管理,以便进行更进一步的分析和处理。

在遥感图像中,由于各种图像数据来源不同,往往需要进行配准。

这种技术能够使得数据更加精确,确保精度和准确性。

基于MTFC的遥感图像复原方法

基于MTFC的遥感图像复原方法

基于MTFC的遥感图像复原方法基于MTFC的遥感图像复原方法的论文摘要:本文提出了一种基于MTFC(Multi-Task Fully Convolutional)的遥感图像复原方法。

该方法使用MTFC网络进行图像去噪、去模糊和超分辨率重建等任务,以提高遥感图像质量。

该方法在模拟实验中展示了其出色的去噪、去模糊和超分辨率重建效果。

介绍:遥感图像在军事、民用和商业等领域中发挥着重要的作用。

然而,由于遥感图像数据受到许多因素的干扰,如噪声、模糊和低分辨率等,导致图像质量下降。

因此,遥感图像复原是一项重要的任务。

本文提出了一种基于MTFC的遥感图像复原方法,以提高遥感图像的质量和准确性。

方法:MTFC网络是一种多任务全卷积网络,可以同时执行多个任务。

MTFC网络由一系列卷积层、池化层和上采样层组成,以有效地处理不同的任务。

在该方法中,我们使用MTFC网络进行图像去噪、去模糊和超分辨率重建等任务。

通过将MTFC网络与遥感图像复原任务相结合,我们可以有效地提高图像的质量和准确性。

实验:我们对该方法进行了模拟实验,并评估了其对遥感图像进行去噪、去模糊和超分辨率重建的效果。

实验结果表明,该方法能够显著地提高遥感图像的图像质量和准确性。

例如,当我们在噪声密集的情况下复原图像时,所得到的图像质量与原始图像相比得到了显著的提升。

此外,当我们在低分辨率图像上进行超分辨率重建时,所得到的图像质量也得到了显著的提升。

结论:本文提出了一种基于MTFC的遥感图像复原方法。

该方法可应用于遥感图像去噪、去模糊和超分辨率重建等任务,以提高图像的质量和准确性。

该方法的实验表明,MTFC网络可以有效地处理这些任务,并显著地提高图像的质量和准确性。

因此,该方法有望在遥感图像处理中得到广泛应用。

进一步探究:本文提出的基于MTFC的遥感图像复原方法具有优秀的性能,而MTFC网络在这些任务上已经被证明优于其他网络。

MTFC 网络通过对多任务训练,可以学习与图像复原任务相关的特征,并在处理相似任务时共享这些特征。

数字图像处理在航空遥感领域中的运用

数字图像处理在航空遥感领域中的运用

数字图像处理在航空遥感领域中的运用盟手摘要数字图像处理技术在航天和航空技术方面的应用,除了上面介绍的JPL对月球、火星照片的处理之外,另一方面的应用是在飞机遥感和卫星遥感技术中。

许多国家每天派出很多侦察飞机对地球上有兴趣的地区进行大量的空中摄影。

对由此得来的照片进行处理分析,以前需要雇用几千人,而现在改用配备有高级计算机的图像处理系统来判读分析,既节省人力,又加快了速度,还可以从照片中提取人工所不能发现的大量有用情报。

从60年代末以来,美国及一些国际组织发射了资源遥感卫星(如LANDSAT系列)和天空实验室(如SKYLAB),由于成像条件受飞行器位置、姿态、环境条件等影响,图像质量总不是很高。

因此,以如此昂贵的代价进行简单直观的判读来获取图像是不合算的,而必须采用数字图像处理技术。

如LANDSAT系列陆地卫星,采用多波段扫描器(MSS),在900km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米或100米左右(如1983年发射的LANDSAT-4,分辨率为30m)。

这些图像在空中先处理(数字化,编码)成数字信号存入磁带中,在卫星经过地面站上空时,再高速传送下来,然后由处理中心分析判读。

这些图像无论是在成像、存储、传输过程中,还是在判读分析中,都必须采用很多数字图像处理方法。

现在世界各国都在利用陆地卫星所获取的图像进行资源调查(如森林调查、海洋泥沙和渔业调查、水资源调查等),灾害检测(如病虫害检测、水火检测、环境污染检测等),资源勘察(如石油勘查、矿产量探测、大型工程地理位置勘探分析等),农业规划(如土壤营养、水份和农作物生长、产量的估算等),城市规划(如地质结构、水源及环境分析等)。

我国也陆续开展了以上诸方面的一些实际应用,并获得了良好的效果。

在气象预报和对太空其它星球研究方面,数字图像处理技术也发挥了相当大的作用。

数字图像处理的优点:1. 再现性好数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。

遥感论文——精选推荐

遥感论文——精选推荐

基于面向对象的多光谱数据的地表信息提取应用摘要随着计算机技术和遥感技术的发展,遥感技术在社会的各个方面得到了广泛应用,如对资源、环境、灾害、城市等进行调查、监督、分析和预测、预报等方面的工作。

所以分类作为遥感技术中的一项最基本的研究,也是遥感技术运用最为广泛的一项技术,也相应的提出了更高的要求。

然而目前主要的分类方法是监督分类和非监督分类,这两种方法是基于像元的分类方法,不能有效的利用影像的空间纹理信息。

而且基于像元的分类方法还存在着分类结果出现椒盐现象的问题,从而导致大量无效破碎图斑的产生,最终导致分类精度不高。

随后又提出了在此两种方法的基础上该进的方法,如模糊分类法、基于神经网络的分类方法和基于决策树的分类方法等。

虽然后述这些方法在一定的程度上提高了分类的精度,但是他们依旧是建立在像元的基础上,也没有考虑到对象的空间纹理信息。

所以也会出现上述的一些问题(如:椒盐现象等)。

所以传统的分类方法已不能满足分类的需求。

所以基于以上这些问题,面向对象的分类方法应运而生,面向对象的分类方法充分利用影像的光谱信息、空间几何信息、纹理信息来进行分类。

采用多尺度分割算法,采用不同的分割尺度,能够较好的提取各种尺寸大小的地物。

所以运用面向对象的分类方法提取地表信息是,能够细致的提取出地表所覆盖的地物种类,并且能够达到更高的提取精度,能够更加准确的为相关部门提供数据资料,为相关部门作出决策判断提供依据。

本文中采用面向对象的分类方法与传统的基于像元的分类方法相比有一下有点:基于影像多尺度分割得到同质像元组成的影像对象,对象内部的光谱差异值很小可以忽略其内部的信息,从而避免了椒盐现象的出现,对象之间的区分同时考虑了光谱和形状两种因子,为分类提供了更多的特征,有效地克服了基于像元分类的一些局限性;多尺度的空间分析,可以满足不同尺度地物的信息提取要求;模拟人脑的思维方式充分利用影像对象的各种特征,以达到尽可能高的精度提取地物信息的目的。

对遥感数字图像处理的认识和理解

对遥感数字图像处理的认识和理解

对遥感数字图像处理的认识和理解对遥感数字图像处理的认识和理解10资源(2)班徐某人进入20世纪后,人类面临着尖锐的人口大幅度增长、非再生资源趋向枯竭和生态环境不断恶化的巨大压力等问题。

卫星遥感技术的兴起使人们有可能从太空的高度连续、重复地观测地球,从而为人类进一步认识地球的全貌与动态变化,更准确的摸清地球所拥有的资源、更加合理地规划利用资源、更有效地治理和保护环境提供了一种其所未有的强大技术。

尤其是随着对地球观测技术的迅速发展,遥感图像在社会生活和经济建设中发挥着越来越重要的作用。

遥感图像已不仅仅是科学研究和工程设施建设的基础数据,同时,伴随着Google Earth的使用,各种类型的遥感图像已经成为普通人生活的一部分。

遥感图像正不断扩展人类对世界的认知广度和深度。

遥感数字图像的处理,是对遥感数字图像的计算机处理,主要应用在地物成分的分析和信息的提取。

与其他领域的数字图像不同,遥感数字图像拥有更加多样的内心,更为复杂的内容。

因此,遥感数字图像的处理,不仅仅需要掌握已有的数字图像处理方法,而且需要具有相当的地理学知识,所以遥感数字图像的处理是科学和艺术的有机结合。

在遥感数字图像处理中,数据源不同,图像的特征便不同。

通过传感器获取的数字图像以数字文件的方式储存。

传感器的分辨率不同,产生的文件格式不同,文件大小不同,图像处理的复杂程度也不同。

数字图像处理是对图像中的像素进行系列的才做,图像的处理过程就是文件的存取过程和数据处理过程。

为了方便图像的处理,一般会建立遥感数字模型。

遥感数字模型是理解遥感数据的根本;不同类型的图像,其表达方式不同,描述方法也不同。

一般情况下,统计描述是数字图像最基本的定量描述手段。

数字图像处理的方法多样,有显示和拉伸、校正、变换等。

其中图像的合成显示和拉伸是最基本的。

显示是为了理解数字图像中的内容或对处理结果进行对比;图像的拉伸是为了提高图像的对比度,改善图像的显示效果;图像的校正,是图像的预处理工作,目的是校正成像过程中各种因素影响导致的图像失真,校正一般包括辐射校正和几何精纠正两部分。

遥感图像处理与分析技术的发展趋势

遥感图像处理与分析技术的发展趋势

遥感图像处理与分析技术的发展趋势随着遥感技术的不断发展和进步,越来越多的遥感数据被获取到并被应用到各种领域中。

然而,在大量的遥感影像中,如何提取出所需的信息和数据,进一步研究遥感图像的信息,是遥感图像处理与分析技术的重要方向。

本文将从影像处理与分析两个角度来讨论遥感图像处理与分析技术的发展趋势。

一、遥感图像处理技术的发展趋势1. 数字化数字化是遥感图像处理的基础,也是其发展的前提。

在遥感图像的获取过程中,通常需要使用许多成像传感器,获取到大量的数据后,需要进行数字化处理才能获得高质量的遥感图像。

数字化技术能够移除遥感图像中的噪声和不必要的信息,还能够提高遥感图像处理的效率。

2. 智能化智能化处理是遥感图像处理的一大发展趋势。

随着计算机应用的发展以及人工智能技术的进步,人工智能技术已经被应用到遥感图像处理中。

智能化处理能够利用计算机算法进行遥感图像自动分析,如目标自动检测、红外图像处理等。

智能化处理不仅可以提高遥感图像分析精度,也能够提高分析处理的效率。

3. 高分辨率遥感图像处理随着国内外遥感图像技术的快速发展,高分辨率遥感图像已经成为遥感图像处理发展的重要标志。

高分辨率遥感图像处理技术的目标是提取大量详细的空间信息,如地图、城市规划、资源研究、环境监测等方面。

高分辨率遥感图像处理技术因其高精度、高分辨率和强大可靠性,在城市规划、林业、水资源和农业等领域已有广泛应用。

二、遥感图像分析技术的发展趋势1. 特征提取特征提取是遥感图像分析的重要环节,该技术能够从大量的遥感影像中提取出具有重要意义的信息和数据。

遥感图像的特征提取可以通过遥感影像自动解算和特征选择工具实现,提高遥感图像分析的精度和效率。

在这个过程中,通常会使用计算机视觉技术和机器学习技术。

2. 遥感图像分类遥感图像分类是将特定的地物或目标从遥感图像中抽象出来,进行半自动和自动识别。

遥感图像分类可以分为监督和非监督两种方法。

监督的分类方法是根据已知的地物类型和特性建立分类模型,然后将这个模型用于其他遥感数据的分类。

图像处理技术在遥感中的应用

图像处理技术在遥感中的应用

图像处理技术在遥感中的应用遥感技术是指对地球表面采用卫星、飞机等遥感器进行观测、测量和记录,然后对所获取的数据进行处理、分析和解释的一种技术。

遥感技术广泛应用于环境监测、灾害预警、农业生产、城市规划等领域,其中图像处理技术是遥感技术中的重要组成部分,它可以对采集到的遥感图像进行数字化处理和分析,从而揭示出地表物体的信息和特征。

本文将从图像的获取和处理两个方面来介绍图像处理技术在遥感中的应用。

一、图像的获取1. 卫星遥感图像卫星遥感图像是遥感技术中最常用的图像,它可以通过卫星传输到地面站点进行接收和处理。

卫星遥感图像的主要特点是具有高时空分辨率和广覆盖范围。

高时空分辨率可使我们更加清晰地观察地表物体的细节,广覆盖范围则可以让我们对地球表面进行全面的观测和研究。

卫星遥感图像处理的主要技术包括图像去噪、图像增强、特征提取等。

2. 无人机遥感图像无人机遥感图像是近年来出现的新型遥感图像,与卫星遥感图像相比,无人机遥感图像的时空分辨率更高,能够更加准确地观测和记录地表物体的信息和特征。

无人机遥感图像可以应用于快速应急响应、高精度地理空间数据采集、精准农业等领域。

与卫星遥感图像不同,无人机遥感图像的处理技术更加灵活和个性化,可以根据不同的任务需求进行处理和分析。

二、图像的处理1. 图像去噪遥感图像经常出现一些“噪点”,它们会影响到图像的质量和准确性,因此进行图像去噪是遥感图像处理的重要步骤。

图像去噪的方法包括中值滤波、均值滤波、高斯滤波等。

通过图像去噪,可以使遥感图像更加清晰,有利于后续的图像处理和分析。

2. 图像增强遥感图像往往受到许多复杂因素的干扰,如云层、雾霾、大气折射等,这些因素会影响到遥感图像的亮度、对比度、色彩等方面。

因此,进行图像增强是遥感图像处理中的重要环节之一。

图像增强的方法有直方图均衡化、对比度拉伸、色彩增强等。

通过图像增强,可以使遥感图像更具有可读性和可视性,方便用户的观察和分析。

3. 特征提取遥感图像中包含着大量的地表物体信息和特征,如河流、道路、建筑物等等。

遥感图像处理及其在军事目标定位中的应用概要

遥感图像处理及其在军事目标定位中的应用概要

多媒体技术及其应用本栏目责任编辑 :李桂瑾1前言随着科技的不断进步 , 遥感工具的使用越来越频繁 , 人们能够从高空以及太空中来观察人类居住的地球 , 也能够利用获得的遥感图像进行一系列研究和探索。

现已应用于农林业、测绘、地质勘探、水利、气象、环境保护以及军事等部门 , 并取得了很好的效益。

军事目标是一项特殊的研究内容 , 如何充分利用遥感图像资料来分析和定位军事目标是需要解决的主要问题。

遥感图像资料主要来自遥感卫星以及侦察飞机拍摄的影像资料 , 本文主要研究利用无人侦察飞机拍摄的影像资料对军事目标进行定位的问题。

2遥感图像处理技术概论遥感图像处理是遥感技术的一个重要环节 , 它直接影响到遥感信息的增强提取和分析应用效果。

遥感图像处理技术一般可以分为两大类。

一是光学处理技术 , 它可以分为机械光学和光化学处理两种方法 , 机械光学又称电子光学或物理光学 , 主要是利用相干光光源作图像处理 , 譬如密度分割、位相交换、等照度变换等内容 ; 光化学处理是依据摄影光化学原理 , 利用非相干光光源 , 即普通暗房摄影处理方法进行图像处理 , 它可以进行图像镶嵌、图像增强 (包括反差调整、彩色增强、比值处理、边缘增强、黑白发色等、图像密度分割、假彩色合成以及信息复合处理等 ; 二是计算机数字图像处理技术 , 它可以精确地进行几何定位与几何校正 , 还可以多功能地进行图像镶嵌、图像增强 (包括线性变换、直方图均衡、彩色增强、比值处理等等、图像分类、图像统计分析、多波段图像组合以及信息复合处理等。

这些处理结果在地表环境要素不太复杂的情况下 , 完全可以定量化精确分析 , 应用效果比较好。

这里 , 我们主要就数字图像处理中的几何校正等方面进行研究与分析。

除此之外 , 遥感图像处理技术开始进行信息复合的研究应用工作。

这种处理技术主要是综合使用现有的遥感资料 , 挖掘遥感资料所提供的全部信息。

其作用是能够进行地物信息的验证、补充与更新 , 提高了遥感信息的实用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年春季学期期末考试






院校:
班级:
学号:
姓名:
遥感数字图像监督分类与非监督分类比较研究
内容摘要:本文主要介绍遥感图像分类的监督分类法与非监督分类法原理、步骤之间的差别,探讨数字图像分类在两种不同分类方法所得分类结果的精度分析。

关键词:数字图像分类、监督分类、非监督分类
引文:遥感作为近几十年迅速发展起来的一门综合性技术学科,因其具有观测范围广、采集信息量大、获取信息速度快等特点,已经在民用和军用的众多领域发挥了重大作用。

遥感图像处理是遥感科学与具体应用相结合的重要技术途径。

遥感图像分类是遥感图像处理的一个重要内容,其中监督分类作为一种先学习后分类的机器学习策略,是对遥感图像进行定量分析的主要手段,应用领域十分广阔。

随着传感器、遥感平台、数据通信等相关技术的发展,通过遥感手段获取的数据量急剧膨胀,迫切需要快速遥感图像处理技术的支持。

同时,各应用领域对遥感图像的处理速度和分析结果的量化程度要求越来越高。

高精度、快速的遥感图像监督分类技术是遥感科学走向实用化、产业化的一个重要突破口。

一、监督分类的原理与非监督分类原理
1、监督分类法:根据已知地物、选择各类别的训练区。

计算各训练区内像元的平均灰度值,以此作为类别中心并计算其协方差矩阵。

对于图像各未知像元,则计算它们和各类别中心的距离。

当离开某类别中心的距离最近并且不超过预先给定的距离值时,此像元即被归入这一类别。

当距离超过给定值时,此像元归入未知类别,最大似然率法是常用的监督分类法。

2、非监督分类法:根据各波段图像像元灰度分布的统计量,设定N个均值平均分布的类别中心。

计算每个像元离开各类别中心的距离,并把它归入距离最近的一类。

所有像元经计算归类后算出新的类别中心,然后再计算各个像元离开新类别中心的距离,并把它们分别归入离开新类别中心最近的一类。

所有像元都重新计算归类完毕后,又产生新的类别中心。

这样迭代若干次,直到前后两次得到的类别中心之间的距离小于给定值为止。

二、监督分类法与非监督分类法的比较
1、监督分类包括利用训练区样本建立判别函数的“ 学习” 过程和把待分像元代入判别函数进行判别过程。

监督分类中常用的具体分类方法包括:
(1) 最小距离分类法,最小距离分类法原理简单,分类精度不高,但计算速
度快,它可以在快速浏览分类概况中使用。

(2) 多级切割分类法,多级分割法分类便于直观理解如何分割特征空间,以及待分类像素如何与分类类别相对应。

(3) 特征曲线窗口法,特征曲线窗口法可以根据不同特征进行分类,如利用标准地物光谱曲线的位置(nm) 、反射峰或谷的宽度和峰值的高度作为分类的识别点,给定误差容许范围,分别对每个像素进行分类;或者利用每一类地物的各个特征参数上、下限值构造一个窗口,判别某个待分像元是否落入该窗口,只要检查该像元各特征参数值是否落入到相应窗口之内。

特征曲线窗口法分类的效果取决于特征参数的选择和窗口大小。

各特征参数窗口大小的选择可以不同,它要根据地物在各特征参数空间里的分布情况而定。

(4) 最大似然比分类法,最大似然比分类法(maximum likelihood classifier) 是经常使用的监督分类方法之一,它是通过求出每个像素对于各类别归属概率,把该像素分到归属概率最大的类别中去的方法。

最大似然比分类法在多类别分类时,常采用统计学方法建立起一个判别函数集,然后根据这个判别函数集计算各待分像元的归属概率。

这里,归属概率是指:对于待分像元x ,它从属于分类类别k 的(后验)概率。

2、非监督分类的前提是假定遥感影像上同类物体在同样条件下具有相同的光谱信息特征。

非监督分类方法不必对影像地物获取先验知识,仅依靠影像上不同类地物光谱信息(或纹理信息)进行特征提取的统计特征的差别来达到分类的
目的,最后对已分出的各个类别的实地属性进行确认。

非监督分类主要采用聚类分析方法,聚类是把一组像素按照相似性归成若干类别,即“ 物以类聚” 。

它的目的是使得属于同一类别的像素之间的距离尽可能的小而不同类别上的像素间的距离尽可能的大。

常用的方法有:
(1) 分级集群法( Hierarchical Clustering )
分级集群法采用“距离”评价各样本(每个像元)在空间分布的相似程度,把它们分布分割或者合并成不同的集群。

每个集群的地理意义需要根据地面调查或者与已知类型的数据比较后方可确定。

(2) 动态聚类法
在初始状态给出图像粗糙的分类,然后基于一定原则在类别间重新组合其样
本,直到分类比较合理为止,这种聚类方法就是动态聚类。

ISODATA
( ISODATA :Iterative - Orgnizing Data Analysize Technique 迭代自组织数据分析技术)方法在动态聚类法中具有代表性。

三、监督分类的步骤与非监督分类的步骤
1、遥感图像监督分类的步骤首先定义分类模板,显示要进行分类的图像;其次打开摸板编辑器并调整显示字段;然后获取分类模板信息;再次保存分类模板;最后执行监督分类。

具体表现为:
(1)首先明确遥感图像分类的目的及其需要解决的问题,在此基础上根据应用目的选取特定区域的遥感数字图像,图像选取中应考虑图像的空间分辨率、光谱分辨率、成像时间、图像质量。

(2)根据研究区域,收集与分析地面参考信息与有关数据。

为提高计算机分类的精度,需要对数字图像进行辐射校正和几何纠正( 这部分工作也可能由提供数字图像的卫星地面站完成)。

(3)对图像分类方法进行比较研究,掌握各种分类方法的优缺点,然后根据分类要求和图像数据的特征,选择合适的图像分类方法和算法。

根据应用目的及图像数据的特征制定分类系统,确定分类类别,也可通过监督分类方法,从训练数据中提取图像数据特征,在分类过程中确定分类类别。

(4)找出代表这些类别的统计特征。

(5)为了测定总体特征,在监督分类中可选择具有代表性的训练场地进行采样,测定其特征。

在无监督分类中,可用聚类等方法对特征相似的像素进行归类,测定其特征。

(6)对遥感图像中各像素进行分类。

包括对每个像素进行分类和对预先分割均匀的区域进行分类。

(7)分类精度检查。

在监督分类中把已知的训练数据及分类类别与分类结果进行比较,确认分类的精度及可靠性。

在非监督分类中,采用随机抽样方法,分类效果的好坏需经实际检验或利用分类区域的调查材料或专题图进行核查。

(8). 对判别分析的结果统计检验。

2、非监督分类的步骤
非监督分类运用1SODATA(Iterative Self-Organizing Data Analysis Technique )算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区
没有什么了解的情况。

使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。

由于人为干预较少,非监督分类过程的自动化程度较高。

非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。

四、监督分类结果精度与非监督分类结果精度
1、监督分类
遥感图像监督分类处理包括分类预处理、分类判别和分类后处理三个阶段。

分类判别阶段的学习算法是影响监督分类精度的关键因素。

分类预处理阶段的几何校正和分类判别阶段的学习与分类计算复杂度高,是导致遥感图像监督分类处理速度慢的主要原因。

2、非监督分类
非监督分类不需要更多的先验知识,它根据地物的光谱统计特性进行分类。

因此,非监督分类方法简单,且分类具有一定的精度。

五、结论:本文只是对遥感数字图像监督分类与非监督分类作简单的比较介绍,监督分类和非监督分类的根本区别点在于是否利用训练场地来获取先验的类别
知识,监督分类根据训练场提供的样本选择特征参数、建立判别函数,对待分类点进行分类。

非监督分类不需要更多的先验知识,它根据地物的光谱统计特性进行分类。

因此,非监督分类方法简单,且分类具有一定的精度。

参考文献:
[1] 汤国安等.遥感数字图像处理.科学出版社,2004-3
[2] 党安荣等.ERDAS IMAGINE遥感数字图像处理.清华大学出版社,2010-4
[3] 蒋艳凰.遥感图像高精度并行监督分类技术研究. 国防科学大学, 2004
[4]巢宁佳. 遥感影像监督分类江西测绘,2007-04期
[5] 杨鑫. 浅谈遥感图像监督分类与非监督分类四川地质学报, 2008, (03) .。

相关文档
最新文档