高三数学二轮专题复习--数列

合集下载

高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

+2an+1=4S
n+1+3.
可得
a2 n 1
-
an2
+2(an+1- an)=4an+1,即
2(an+1+an)=
a2 n 1
-
an2
= (an+1+an)(an+1-an).
由于 an>0,可得 an+1-an=2.
又 a12 +2a1=4a1+3, 解得 a1=-1(舍去)或 a1=3.
所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an=2n+1.
第二个使用累积的方法、第三个可以使用待定系数法化为等比数列(设 an+1+λ =p(an+λ),展开比较系数得出λ);(3)周期数列,通过验证或者推理得出数列的 周期性后得出其通项公式.
热点训练 1:(1)(2018·湖南长沙雅礼中学、河南省实验中学联考)在数列{an}
中,a1=2, an1 = an +ln(1+ 1 ),则 an 等于( )
n
所以
1 =2(1- 1 + 1 - 1 +…+ 1 -
1

S k 1 k
223
n n1
=2(1- 1 ) n 1
= 2n . n 1
答案: 2n n 1
3.(2015·全国Ⅱ卷,理16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则
Sn=
.
解析:因为 an+1=S n+1-Sn,所以 Sn+1-Sn=Sn+1Sn,

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。

高三数学二轮复习数列[1]

高三数学二轮复习数列[1]

高三数学二轮复习教学案——等差数列与等比数列一、【填空】1.已知各项均为实数的数列{a n }为等比数列,且满足a 1+a 2=12,a 2a 4=1,则a 1=_______.2. 在等差数列{a n }中,若a 1,a 2 011为方程x 2-10x +16=0的两根,则a 2+a 1 006+a 2 010=__________________.3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=______________. 4.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为---------------5.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =____________.6. 已知等比数列{}n a 中,214S ,23a 33==,则1a =_____________________. 二、【解答】7. 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.8.设{}n a 数列为等比数列,{}n b 数列为等差数列,且10b =,n n n c a b =+,若{}n c 是1,1,2,, 求{}n c 的前10项和.9. 等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.10. 已知数列{a n}满足如下图所示的程序框图.(1)写出数列{a n}的一个递推关系式;(2)证明:{a n+1-3a n}是等比数列,并求{a n}的通项公式;(3)求数列{n(a n+3n-1)}的前n项和T n.。

数列的递推关系课件 高三数学二轮复习

数列的递推关系课件 高三数学二轮复习

an+
an+lg p,令bn=lg an,则bn+1=qbn+lg p,同上得bn,再求an.
高考专题辅导与测试·数学
9.已知正项数列{an}满足a1=2,an+1= ,则an=
答案:2
21−
.
(n∈N*)
1
两边取以2为底的对数得log2an+1= log2an,∴数
2
解析:将an+1=
P27页
高考专题辅导与测试·数学
3
(3)已知数列{an}满足a1=1,an+1=
,则a7=
2 +3
. P27页
1
答案:(3)
5
3
1
1
2
1
解析:(3)易知an≠0,由an+1=
,得
= + ,所以
2 +3
+1 3

是首
2
1
1
2 2��+1
项为1,公差为 的等差数列,所以 = +(n-1)× =
-an-1),所以{an+1-an}是首项为a2-a1,公比为p的等比数列,
先求an+1-an,再求an.
高考专题辅导与测试·数学
n·2n
(2)数列{an}满足an+1=2an+2+1 ,且a1=2,则an=———。
高考专题辅导与测试·数学
2.形如an+1=pan+q(n)(p≠1)的递归式,等号两边同除以pn+1,
1
+3=2( +3), +3=2,故{ +3}是以2为首项,2为公比
+1

1

1
1
n-1
的等比数列,于是 +3=2·
2 ,可得bn= ,n∈N*.

2 −3

高三数学专题——数列

高三数学专题——数列

第二讲 数列● 高考风向标数列的概念.等差数列及其通项公式、前n 项和公式;等比数列及其通项公式、前n 项和公式.数学归纳法及其应用.通项与前n 项和之间的关系是高考常考的热点内容,递推数列在各地的高考中闪亮登场. ● 典型题选讲例1 若数列{a n }满足112,0;2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若167a =,则20a 的值为( )A .67B .57C .37D .17讲解 逐步计算,可得167a =,231251,771031,77a a =-==-=456,71251,...77a a ==-=这说明数列{a n }是周期数列, 3.T =而20362=⨯+, 所以2075a =.应选B . 点评 分段数列问题是一种新问题,又涉及到周期数列,显示了以能力立意,题活而不难的特色.例2 在等比数列{a n }中,前n 项和为S n ,若S m ,S m+2,S m+1成等差数列,则a m , a m+2, a m+1成等差数列.(1)写出这个命题的逆命题;(2)判断逆命题是否为真,并给出证明.讲解 (1)逆命题:在等比数列{a n }中,前n 项和为S n ,若a m , a m+2, a m+1成等差数列,则 S m ,S m+2,S m+1成等差数列. (2)设{a n }的首项为a 1,公比为q由已知得2a m+2= a m + a m+1 ∴2a 1q m+1=a 11-m q +a 1q m ∵a 1≠0 q ≠0 ,∴2q 2-q -1=0 , ∴q=1或q=-21. 当q=1时,∵S m =ma 1, S m+2= (m+2)a 1,S m+1= (m+1)a 1, ∴S m +S m+1≠2 S m+2,∴S m ,S m+2,S m+1不成等差数列. 当q=-21时, 2 S m+2=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=+--++212121134211])21(1[2m m a a ,∴S m +S m+1=2 S m+2 , ∴S m ,S m+2,S m+1成等差数列. 综上得:当公比q=1时,逆命题为假; 当公比q ≠1时,逆命题为真.点评 对公比进行分类是本题解题的要害所在,问题好在分类,活在逆命题亦假亦真二者兼顾,可谓是一道以知识呈现、能力立意的新颖试题.例3 设数列{a n }前n 的项和为 S n ,且*).(32)3(N n m ma S m n n ∈+=+-其中m 为常数,0,3≠-≠m m 且(1)求证:{a n }是等比数列;(2)若数列{a n }的公比满足q=f (m )且11131,()(*,2),2n n n b a b f b n N n b -⎧⎫==∈≥⎨⎬⎩⎭求证,为等差数列,并求n b .讲解(1)由(3)23n n m S ma m -+=+,得11(3)23,n n m S ma m ++-+=+两式相减,得1(3)2,(3)n n m a ma m ++=≠-12,3n n a ma m +∴=+ {}n a ∴是等比数列.111111112(2)1,(),2,3233()22311133.311{}131121,333.2n n n n n n n n n n n n n mb a q f m n N n m b b f b b b b b b b b b n n b b n ------====∈≥+==⋅++=⇒-=∴-+∴=+==+由且时,得是为首项为公差的等差数列,故有点评 为了求数列{}n b 的通项,用取"倒数"的技巧,得出数列1n b ⎧⎫⎨⎬⎩⎭的递推公式,从而将其转化为等差数列的问题.例4 设数列{}n a 的前n 项和为S n ,若{}n S 是首项为S 1各项均为正数且公比为q 的等比数列.(1)求数列{}n a 的通项公式n a (用S 1和q 表示); (2)试比较122+++n n n a a a 与的大小,并证明你的结论.讲解 (1)∵{}n S 是各项均为正数的等比数列,∴)0(11>=-q q S S n n .当n=1时,a 1=S 1;当2112,(1)n n n n n a S S S q q --≥=-=-时. ∴⎩⎨⎧≥-==-)2()1()1(211n qq S n S a n n(2)当n=1时,213211312(1)2(1)[()]0,24a a a S S q q S q S q +-=+---=-+>Q∴2312a a a >+. 21211112,2(1)(1)2(1)n n n n n n n a a a S q qS q q S q q--++≥+-=-+---当时()3211.n S q q -=- ∵210,0,n S q ->>①当q=1时,321(1)0,2.n n n q a a a ++-=∴+= ②当,10时<<q .2,0)1(123++<+∴<-n n n a a a q ③当,1时>q .2,0)1(123++>+∴>-n n n a a a q综上以上,我们可知:当n=1时,2312a a a >+.当212,1,2;n n n n q a a a ++≥=+=时若则 若2101,2;n n n q a a a ++<<+<则 若211,2.n n n q a a a ++>+<则点评 数列与比较大小的综合是高考命题的一个老话题,我们可以找到较好的高考真题.本题求解当中用到n S 与n a 之间的关系式:11,(1).(2)n n n S n a S S n -⎧==⎨-≥⎩ 例5 已知数列}{n a 满足n a >0,且对一切n ∈N x ,有3211, nninn i i i a S S a ====∑∑其中,(1) 求证:对一切n ∈N x ,有n n n S a a 2121=-++;(2) 求数列}{n a 的通项公式; (3) 求证:31<∑=nk k ka .讲解 (1) 由321ni n i aS ==∑ ①得13211n in i aS ++==∑ ②②-①得 22131n n n S S a -=++=(S n +1+S n )(S n +1-S n )=(2 S n +a n +1) a n +1∵ a n +1 >0,∴n n n S a a 2121=-++ .(2) 由n n n S a a 2121=-++,得122-=-n n n S a a (n ≥2),两式相减,得(a n +1+ a n )( a n +1 - a n )= a n +1+ a n , ∵a n +1+ a n >0,∴a n +1 - a n =1.(n ≥2)当n=1,2时易得,a 1=1,a 2=2,∴a n +1 - a n =1(n ≥1) .从而{ a n }是等差数列,其首项为a 1=1,公差d=1,故a n =n . (3)1nnk k ===21nk =<+∑1122 3.2=++-<+< 点评 关于数列不等式的证明,常用的技巧是放缩法,而放缩应特别注意其适度性,不可过大,也不可过小.例6 如图,一粒子在区域{}(,)|0,0x y x y ≥≥上运动,在第一秒内它从原点运动到点1(0,1)B ,接着按图中箭头所示方向在x 轴、y 轴及其平行方向上运动,且每秒移动一个单位长度.(1)设粒子从原点到达点n n n A B C 、、时,所经过的时间分别为n n n a 、b 、c ,试写出}n n n a {}、{b }、{c 的通相公式;(2)求粒子从原点运动到点(16,44)P 时所需的时间;(3)粒子从原点开始运动,求经过xx 秒后,它所处的坐标. 讲解 (1) 由图形可设12(1,0),(2,0),,(,0)n A A A n L ,当粒子从原点到达n A 时,明显有13,a = 211,a a =+3111234,a a a =+=+⨯ 431,a a =+5332054,a a a =+=+⨯ 651,a a =+… … 2123(21)4,n n a a n --=+-⨯ 2211,n n a a -=+∴2114[35(21)]n a a n -=++++-L =241n -, 222114n n a a n -=+=.221212(21)441n n b a n n n --=--=-+, 2222244n n b a n n n =+⨯=+.222121(21)42(21)(21)n n c b n n n n n --=+-=-=-+-, 2222242(2)(2)n n c a n n n n n =+=+=+,即2n c n n =+.(2)有图形知,粒子从原点运动到点(16,44)P 时所需的时间是到达点44C 所经过得时间44c 再加(44-16)=28秒,所以24444282008t =++=秒.(3)由2n c n n =+≤xx ,解得112n -≤≤,取最大得n=44,经计算,得44c =xx<xx ,从而粒子从原点开始运动,经过xx 秒后到达点44C ,再向左运行24秒所到达的点的坐标为(20,44).点评 从起始项入手,逐步展开解题思维.由特殊到一般,探索出数列的递推关系式,这是解答数列问题一般方法,也是历年高考命题的热点所在.例7 已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n . (1)写出数列{}n a 的前三项321,,a a a ; (2)求数列{}n a 的通项公式; (3)证明:对任意的整数4>m ,有8711154<+++m a a a Λ . 讲解 (1)为了计算前三项321,,a a a 的值,只要在递推式1,)1(2≥-+=n a S n n n 中,对n 取特殊值1,2,3n =,就可以消除解题目标与题设条件之间的差异. 由111121,1;a S a a ==-=得由2122222(1),0;a a S a a +==+-=得 由31233332(1), 2.a a a S a a ++==+-=得(2)为了求出通项公式,应先消除条件式中的n S .事实上 当2≥n 时,有,)1(2)(211n n n n n n a a S S a -⨯+-=-=--即有 ,)1(2211---⨯+=n n n a a 从而 ,)1(22221----⨯+=n n n a a 32322(1),n n n a a ---=+⨯-…….2212-=a a接下来,逐步迭代就有122111)1(2)1(2)1(22-----⨯++-⨯+-⨯+=n n n n n a a Λ].)1(2[323])2(1[2)1(2)]2()2()2[()1(21211211--------+=----=-++-+--+=n n n nn n n n n Λ经验证a 1也满足上式,故知 .1],)1(2[3212≥-+=--n a n n n 其实,将关系式1122(1)n n n a a --=+⨯-和课本习题1n n a ca d -=+作联系,容易想到:这种差异的消除,只要对1122(1)n n n a a --=+⨯-的两边同除以(1)n-,便得1122(1)(1)n n n n a a --=-⋅---. 令,(1)nn na b =-就有 122n n b b -=--,于是 1222()33n n b b -+=-+, 这说明数列23n b ⎧⎫+⎨⎬⎩⎭是等比数列,公比2,q =- 首项11b =-,从而,得 111221()(2)()(2)333n n n b b --+=+⋅-=-⋅-, 即121()(2)(1)33n n na -+=-⋅--,故有.1],)1(2[3212≥-+=--n a n n n (3)由通项公式得.24=a 当3≥n 且n 为奇数时,]121121[2311121-++=+--+n n n n a a ).2121(232222312222223123221213221----------+=+⨯<--++⨯=n n n n n n n n n n当m m 且4>为偶数时,ma a a 11154+++Λ )212121(2321)11()11(14431654--++++<+++++=m m m a a a a a ΛΛ .878321)211(4123214=+<-⨯⨯+=-m 当m m 且4>为奇数时,1m +为偶数,可以转化为上面的情景 .87111111115454<++++<++++m m m a a a a a a a ΛΛ 故任意整数m >4,有.8711154<+++m a a a Λ 点评 本小题2004年全国(旧教材版)高考理科压轴试题.主要考查数列的通项公式,等比数列的前n 项和以及不等式的证明.考查灵活运用数学知识分析问题和解决问题的能力.当中的第2小题,显然与课本上的问题1n n a ca d +=+有着相同的本质.而第3小题又有着明显的高等数学的背景,体现了知识与技能的交汇,方法与能力的提升,显示了较强的选拔功能. 针对性演练1 某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高,当住第n 层楼时,上下楼造成的不满意度为n ,但高处空气清新,嘈杂音较小,环境较为安静,因此随楼层升高环境不满意度降低,设住第n 层楼时,环境不满意度为8n,则此人应选( ) (A) 1楼 (B) 2楼 (C) 3楼 (D) 4楼 2. 若等比数列的各项均为正数,前n 项之和为S ,前n 项之积为P ,前n 项倒数之和为M ,则 ( )(A )P =M S (B )P >M S (C )n M S P ⎪⎭⎫ ⎝⎛=2 (D )2P >nM S ⎪⎭⎫ ⎝⎛3. xx 年12月,全世界爆发"禽流感",科学家经过深入的研究,终于发现了一种细菌M 在杀死"禽流感"病毒N 的同时能够自身复制.已知1个细菌M 可以杀死1个病毒N ,并且生成2个细菌M ,那么1个细菌M 和2048个"禽流感"病毒N 最多可生成细菌M 的数值是 ( )(A )1024 (B )2048 (C ) 2049 (D )无法确定 4. 设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为xx ,那么数列2, 1a ,2a ,……,500a 的“理想数”为(A) xx (B) xx (C) xx (D) xx5. 某地为了防止水土流失,植树造林,绿化荒沙地,每年比上一年多植相同亩数的林木,但由于自然环境和人为因素的影响,每年都有相同亩数的土地沙化,具体情况为下表所示:而一旦植完,则不会被沙化. 问:(1)每年沙化的亩数为多少? (2)到那一年可绿化完全部荒沙地?6. 已知正项数列{}n a 满足a a =1 (10<<a ),且.11nnn a a a +≤+求证 (1)();11an aa n -+≤(2).111<+∑=nk kk a 答案1.C 2. C 3.C 4.A5.(1)由表知,每年比上一年多造林400亩.因为xx 年新植1400亩,故当年沙地应降为23800140025200=-亩,但当年实际沙地面积为24000亩,所以xx 年沙化土地为200亩.同理xx 年沙化土地为200亩.所以每年沙化的土地面积为200亩.(2)由(1)知,每年林木的“有效面积”应比实造面积少200亩.设xx 年及其以后各年的造林亩数分别为1a 、2a 、3a 、…,则n 年造林面积总和为:4002)1(1600⨯-+=n n n S n . 由题意:n S n 20024000+≥ 化简得012072≥-+n n ,解得: 8≥n .故8年,即到xx 年可绿化完全部沙地.6.(1)将条件n n n a a a +≤+11变形,得1111≥-+nn a a . 于是,有,1112≥-a a ,11123≥-a a ,11134≥-a a …………1111≥--n n a a . 将这n-1个不等式叠加,得,111-≥-n aa n 故 ().11an aa n -+≤(2)注意到10<<a ,于是由(1)得()nn aa n a a n 111111<-+=-+≤,从而,有 .1111111)1(11111<+-=⎪⎭⎫ ⎝⎛+-=+<+∑∑∑===n k kk k k a nk n k nk k。

2024届高三数学二轮专题复习数列求和—裂项相消法教学设计

2024届高三数学二轮专题复习数列求和—裂项相消法教学设计

高三二轮复习数列求和—裂项相消法教学设计内容教学目的掌握裂项相消求和的使用环境及一般过程和思路.教学重点难点识别裂项相消求和的使用环境.如何裂项?如何相消?教学过程过程一、强调本微课学习内容,学习目标,重难点,易错点。

学习目标:掌握裂项相消求和的使用环境及一般过程和思路.学习重点:识别裂项相消求和的使用环境.学习难点:如何裂项?如何相消?易错点:裂项时忘记配平,相消时留下哪些项?过程二、通过熟悉的典型例子入手,引导学生回顾裂项相消的具体类型。

裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消(注意消项规律),从而求得前n项和.看下面两个例子:)211(2121+-=+nnnn)(⎪⎭⎫⎝⎛+-+-+=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛+-++⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-=+++⨯+⨯+⨯211121121211......513141213112121......531421311nnnnnn)(()()))2)(1(1)1(1(21211++-+=++nnnnnnn()()⎪⎪⎭⎫⎝⎛++-=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛++-+++⎪⎭⎫⎝⎛⨯-⨯+⎪⎭⎫⎝⎛⨯-⨯=++++⨯⨯+⨯⨯+⨯⨯)2)(1(12121)2)(1(1)1(1......43132132121121211......543143213211nnnnnnnnn过程三、因为是二轮专题复习,学生经过一轮的复习,对于裂项的方法有一定的理解,在此基础上直接点出裂项的四种基本类型,并强调裂项的常用方法为通分的逆运算,分母有理化,对数的运算等。

本质是恒等变形,运用化归与转化思想、等式思想。

等差型:1a n a n+1=1d(1a n-1a n+1),其中a n≠0,d≠0. . (通分的逆运算)指数型:(a-1)a n(a n+b)(a n+1+b)=1a n+b-1a n+1+b. (通分的逆运算)无理型:1a+b=1a-b(a-b)(a>0,b>0). (分母有理化)对数型:log n a n +1a n=log n a n +1-log n a n (a n >0). (对数的运算法则)过程四、对照四种类型,分别用4道典型例题进行讲解与说明,并敲掉裂项时要配平,求和相消时要注意消去哪些项,剩下哪些项。

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。

数列的单调性讲义-高三数学二轮专题复习

数列的单调性讲义-高三数学二轮专题复习

数列的单调性所谓数列,由前面的基础知识可知,实则就是函数图像上一个个孤立的点,而单调性作为函数最重要的性质之一,自然而然的单调性也是数列的一个基本性质之一.本节就数列的单调性问题进行相关总结.一、研究数列单调性的基本方法1、 作差法:例1、已知数列{a n }满足a n =n+12n ,证明:数列{a n }单调递减. 证明:∵a n =n+12n ∴a n+1=n+22n+1.则a n+1−a n =n+22n+1−n+12n =−n 2n+1<0恒成立故数列{a n }单调递减2、 作商法:例2、已知a n =(n +1)(1011)n (n ∈N ∗),证明:数列{a n }先递增后递减.证明:令a n a n−1≥1(n ≥2) 即(n+1)(1011)n n∙(1011)n−1≥1整理得:n+1n≥1110,得n ≤10 同理,令a n a n+1≥1 即(n+1)(1011)n (n+2)∙(1011)n+1≥1整理得:n+1n+2≥1011,得n ≥9∴{a n }从第1项到第9项递增,从第10项开始递减,得证.3、 函数法(导数法)例4、记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求数列{}n a 的通项公式;(2)求n S ,并求n S 的最小值.解:(1)略(29n a n =-)(2) 方法一:我们可以借助一个二次函数函数()28,0f x x x x =-≥,很明显这个函数在[)0,4上单调递减,在[)4,+∞上单调递增,那么可以得到最小值()()min 416f x f ==-,从而2=8n S n n -的最小值为416S =-.方法二:由于数列{}n a 的通项公式29n a n =-,可以借助函数()29,0f x x x =-≥.在90,2⎡⎫⎪⎢⎣⎭,()0f x <;在9,2⎡⎫+∞⎪⎢⎣⎭,()0f x ≥,所以数列{}n a 的前4项均为负数,故而n S 的最小值为416S =-.变式:(1)如果一个数列的前n 项和为2=9n S n n -,那么求n S 取得最小值时序号n 是多少?很显然,4n =或5n =.(取得最值时为n =4.5,但n 只能取整数)(2)在(1)的前提下,求n nS 取得最小值时序号n 是多少?可以借助函数()329,0f x x x x =-≥,求导()'23183(6),0f x x x x x x =-=-≥.()f x 在[)0,6单调递减,在[)6,+∞上单调递增,从而()()min 6108f x f ==-.故而n nS 取得最小值时序号n 是6.例5、已知单调递增数列{}n a 的通项公式()2,4,01,6,4n n a n a a a a n a n -⎧<⎪=>≠⎨--≥⎪⎩其中且求a 的取值范围.解:这一个题我们很容易想到这样题目:设()y f x =在R 上是的一个增函数,且()()2,4,01,6,4x a x f x a a a x a x -⎧<⎪=>≠⎨--≥⎪⎩其中且 求a 的取值范围.只需要()4216064a a a a a -⎧>⎪->⎨⎪≤-⋅-⎩,可以求得a 的范围是(]1,3.对于数列{}n a 就有一点问题,因为数列在直角坐标系所对应的点是不连续的限制条件应该为34160a a a a >⎧⎪->⎨⎪<⎩,即()3216064a a a a a -⎧>⎪->⎨⎪<-⋅-⎩,求得a 的范围是()1,4.变式:(1)设函数f (x )={(a −2)x ,x ≥2,(12)x −1,x <2,,a n =f(n),若数列{}n a 是递减数列,求实数a 的取值范围.由题意()()2012a f f -<⎧⎪⎨>⎪⎩即可,可得a 的取值范围7,4⎛⎫-∞ ⎪⎝⎭. (2)已知数列{}n a 中,()()*11,,021n a n N a R a a n =+∈∈≠+-.对任意的*n N ∈,都有6n a a ≤成立,求a 的取值范围.由题意,可借助函数()()112112212f x a a x x =+=+-+-- 在2,2a -⎛⎫-∞ ⎪⎝⎭,2,2a -⎛⎫+∞ ⎪⎝⎭单调递减 再结合数列的离散性特点,可得限制条件2562a -<<,得到a 的范围为()10,8--. 总结:我们在利用函数与数列共性来解题时,还要注意数列的特殊性(离散性),它的图像是一系列孤立的点,而不像我们研究过的初等函数一般都是连续的曲线,因此在解题中应该充分利用这一特殊性.在研究数列单调性时,只要这些点每个比它的前一个点高(即1n n a a +<),则图象呈上升趋势;反之,呈下降趋势.二、课后练习1、 已知c n =(n +1)1n+1,则数列c n 的最大值为:_______.2、已知f (x )={(3−a )x −3,x ≤7,a x−6,x >7,,数列a n =f(n)(n ∈N ∗),且a n 是递增数列,则a 的取值范围为:_________.1、解:令f (x )=ln x x则f’(x)=1−ln xx2当x≥3时,ln x>1,1−ln x<0,f’(x)<0在[3,+∞)内,f(x)单调递减所以当n≥2时,{ln c n}单调递减即c n是递减数列又∵c1<c2,所以c max=c2=√33.2、解:由题意得:{3−a>0f(8)>f(7),解得a∈(2,3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考题剖析
例1、按一定的规律排列的一列数依次为:12,13,110,115,216,315 ┅┅,按
此规律排列下去,这列数中的第7个数是
.
解:注意观察,可以发现:
第1个数字是: 1 = 1 ,第2个数字: 1
2
12 1
3
第3个数字是: 1 10

1 32 1
,第4个数字是:1
15
第5个数字是: 1 = 1 ,第6个数字是:1
(Ⅰ)当a2=-1时,求λ及a3的值; (Ⅱ)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不 可能,说明理由;
解:(Ⅰ)由于 a n 1 (n 2 n )a n (n 1 ,2 ,),且a1=1, 所以当a2=-1时,得, 12 故 3. 从而 a 3(2 22 3 ) ( 1 ) 3 .
③ Sk, S2kSk, S3kS2k, … 成等差数列
考题剖析
例3、(2008海南宁夏卷)已知数列{an}是一个 等差数列,且a 2 1 ,a5 5 。
(1)求{an}的通项; (2)求{an的公差为d,由已知条件 解出a1=3,d =-2,.
a1 d 1
复习备考方略
1、理解数列的概念,特别注意递推数列,熟 练掌握等差数列、等比数列的性质、公式及公式的 延伸,应用性质解题,往往可以回避求首项和公差 或公比,使问题得到整体解决,能够减少运算量, 应引起考生重视。
2、解决数列综合问题要注意函数思想、分类 论思想、等价转化思想等。注重数列与函数、方程、 不等式、解析几何等其他知识的综合。数列与导数、 平面向量、概率等新知识相结合也不可忽视。
因为:f(2)-f(1)=4 ,f(3)-f(2)=8, f(4)-f(3)=12, f(5)-f(4)=16 所以,f(n)-f(n-1)=4(n-1)
点评:由特殊到一般,考查逻辑归纳能力,分析问题和解决问题的能力,本题的第 二问是一个递推关系式,有时候求数列的通项公式,可以转化递推公式来求解,体 现了转化与化归的数学思想。
考题剖析
二、等差数列相关问题
1、课标要求
(1)通过实例,理解等差数列的概念,掌握等差数列的通项公式,前n项 和公式。
(2)能在具体问题中,发现数列的等差数列关系,并能用有关的知识解 决相应的问题。
(3)掌握等差数列的一些性质,并能灵活运用解题; (4)体会实际生活中的等差数列,并能解决一些实际问题。
高考命题趋势
1、以客观题考查等差数列、等比数列的概念、 性质、通项公式,前n项和公式、数列极限的四 则运算法则等。
2、解答题将以等差、等比数列的基本问题为 主,突出数列与函数、数列与方程、数列与不等 式、数列与解析几何的综合应用,数列与导数、 平面向量、概率等新知识相结合也不可忽视。更 要特别重视数列的应用性问题。
试题特点
数列是高中代数的重要内容,又是学习高等数学的基 础,所以在高考中占有重要的地位,是高考数学的主要考 察内容之一,试题难度分布幅度大,既有容易的基本题和 难度适中的小综合题,也有综合性较强对能力要求较高的 难题。大多数是一道选择或填空题,一道解答题。解答题 多为中等以上难度的试题,突出考查考生的思维能力,解 决问题的能力,试题经常是综合题,把数列知识和指数函 数、对数函数和不等式的知识综合起来,探索性问题是高 考的热点,常在数列解答题中出现。应用问题有时也要用 到数列的知识。
复习备考方略
3、重视递推数列和数列推理题的复习。 4、数列应用题注意增长率、银行信贷、养老保 险、环保、土地资源等,首先要分析题意,建立数 列模型,再利用数列知识加以解决。 5、数列试题形态多变,时常有新颖的试题入卷, 学生时常感觉难以把握。为了在高考中取得好成绩, 必须复习、掌握好数列这一板块及其相关的知识技 能,了解近几年来高考中数列试题的能力考察特点, 掌握相关的应对策略,以培养提高解决数列问题的 能力。
考题剖析 一、数列的概念与简单表示 1、课标要求
(1)通过日常生活中的实例,了解数列的概念和几种简 单的表示方法(列表、图象、通项公式)。
(2)了解数列是一种特殊函数. 2、解题方法指导
并不是所有的数列都有通项公式,就象并不是所有的 函数都能用解析式表示一样;数列的通项公式实际上就是 相应函数的解析式,求通项公式的方法:观察法、由递推 公式求通项等。
2、解题方法指导 ((12) )等一前差些n数性项列质和的:公通式项:公sn式= :n (aa1 2n=a n ) a1=+n(a1+n-n (1n2) 1)dd ,. ①若m+n=p+q,则am+an=ap+aq,(m,n,p,q为正整数);
② a n a m (n m )d (m , n N )
则a5等于( )
(A)4
(B)5
(C)6
(D)7
解:由已知,由等差数列的性质,有a2+a8=2a5, 所以,a5=6,选(C)。
[点评]本题直接利用等差数列的性质,由等差中项 可得,属容易题。
考题剖析
例5、(2008北京文)数列{an}满足 a 1 1 , a n 1 ( n 2 n ) a n ( n 1 , 2 ,) ,是 常 数 .
a1
4d
5

所以,a n a 1 (n 1 )d 2 n 5。
(2)Snna1n(n21)dn24n4(n2)2
所以当n=2时时,sn取到最大值为4. [点评]本题主要考查等差数列的通项公式及前n 项
和公式,理解数列的通项公式与函数之间的关系。
考题剖析
例4、(2008重庆文)已知{an}为等差数列, a2+a8=12,,
26
52 1
35
因此,第7个数字应是: 1 = 1 。
72 1
50
=1 , 22 1
=1 , 42 1
=1 , 62 1
[点评]本题的数列主要是通过观察法找到规律,观察法是找数列 通项的常用方法。
考题剖析
例2、(2008深圳模拟)图(1)、(2)、(3)、(4)分别包含
1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,
按同样的方式构造图形,设第n个图形包含f(n)个“福娃迎迎”,则
f(5)=
;f(n)-f(n-1)=____
解:第1个图个数:1 第2个图个数:1+3+1 第3个图个数:1+3+5+3+1 第4个图个数:1+3+5+7+5+3+1 第5个图个数:1+3+5+7+9+7+5+3+1=41 所以,f(5)=41
相关文档
最新文档