高三数学二轮专题复习教案数列

合集下载

高中数学《数列》二轮复习教学设计

高中数学《数列》二轮复习教学设计
………………………………………………最新资料推荐………………………………………
必修 5 第 2 章 教学内容分析
《数列》是高考的热点,同时也是高考的难点,在高考中一般占 19 分,小题 5 分,
解答题 14 分,其中小题和解答题的第一问往往是基础题,所以这 9 分是学生必得的
分数。同时引导学生利用函数的思想去直观的认识数列的本质是高考能力立意的指导
(1) 设 数 列 bn1 an1 2an ,

b1=
3 2
证明{ bn
}是等比
数列。
(2)



cn
an 2n
,证明
学生分析问题,并合作解 决问题,教师适时点拨 第(1)问,注意 n 2 第(2)问,可利用第一问 结论,亦可用题设
用等差数列,等比数列的 定义证明数列,并求通项 公式和前 n 项的和;解题 时要总览全局,注意上一 问的结论可作为下面问 题的条件。
反 思
题在高考中考什么,怎么考。学生通过自主探索和合作交流中理解并掌握本节内容。 在课堂教学中充满了师生,生生之间的交流互动。
本节课不足:1、例 3 的幻灯片没设计好,存在有重叠看不清的问题,以后课前要
预看。2、还应更注重细节,讲究规范,强调反思。本节课基本达到了预定的目标,在
教学过程中学生参与度高,课堂气氛活跃。在以后的教学中努力提高教学技巧,逐步
4、 通过解题后的反思,找准自己的问题,总结成功经验,吸取失败教训。
4/5
………………………………………………最新资料推荐……………………………………… 运 用 深 化
1、在数列{ an }中, a1 =8, a4 2 且满足 an2 2an1 an
(1) 求数列{ an }的通项公式

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案数列

2024届高三数学二轮专题复习教案——数列一、教学目标1.知识目标掌握数列的基本概念、性质和分类。

熟练运用数列的通项公式、求和公式。

能够解决数列的综合应用题。

2.能力目标提高学生分析问题和解决问题的能力。

培养学生的逻辑思维能力和创新意识。

二、教学内容1.数列的基本概念数列的定义数列的项、项数、通项公式数列的分类2.数列的性质单调性周期性界限性3.数列的求和等差数列求和公式等比数列求和公式分段求和4.数列的综合应用数列与函数数列与方程数列与不等式三、教学重点与难点1.教学重点数列的基本概念和性质数列的求和数列的综合应用2.教学难点数列求和的技巧数列与函数、方程、不等式的综合应用四、教学过程1.导入新课通过讲解一道数列的典型例题,引导学生回顾数列的基本概念、性质和求和公式,为新课的学习做好铺垫。

2.数列的基本概念(1)数列的定义:按照一定规律排列的一列数叫做数列。

(2)数列的项:数列中的每一个数叫做数列的项。

(3)数列的项数:数列中项的个数。

(4)数列的通项公式:表示数列中任意一项的公式。

(5)数列的分类:等差数列、等比数列、斐波那契数列等。

3.数列的性质(1)单调性:数列的项随序号增大而增大或减小。

(2)周期性:数列中某些项的值呈周期性变化。

(3)界限性:数列的项有最大值或最小值。

4.数列的求和(1)等差数列求和公式:S_n=n/2(a_1+a_n)(2)等比数列求和公式:S_n=a_1(1q^n)/(1q)(3)分段求和:根据数列的特点,将数列分为若干段,分别求和。

5.数列的综合应用(1)数列与函数:利用数列的通项公式研究函数的性质。

(2)数列与方程:利用数列的性质解决方程问题。

(3)数列与不等式:利用数列的性质解决不等式问题。

6.课堂练习(2)已知数列{a_n}的通项公式为a_n=n^2+n,求证数列{a_n}为单调递增数列。

(3)已知数列{a_n}的前n项和为S_n=n^2n+1,求证数列{a_n}为等差数列。

高三数学二轮复习数列的综合应用课件

高三数学二轮复习数列的综合应用课件

P2
P1
Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,
求由该折线与直线y=0,x=x1,x=xn+1
所围成的区域的面积Tn.
O
x 1 x2
x3
x4
x
已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.
(1)求数列{xn}的通项公式;
(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2),…,
(1)求S1,S2及数列{Sn}的通项公式;
(2)若数列{bn}满足bn =
1
7
≤|Tn|≤ .
3
9
−1

,且{bn}的前n项和为Tn,求证:当n≥2时,
已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
(1)求S1,S2及数列{Sn}的通项公式;
(2)若数列{bn}满足bn =
Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=
xn+1所围成的区域的面积Tn.
y
P4
P3
P2
P1
O
x1 x2
x3
x4
x
数列求和的
基本方法
01
公式法
02
分组求和法
03
错位相减法
04
倒序相加法
05
裂项相消法
考点2:数列与不等式综合问题
已知数列{an}满足a1=1,Sn=2an+1,其中Sn为{an}的前n项和(n∈N*).
1
7
≤|Tn|≤ .
3
9
−1

,且{bn}的前n项和为Tn,求证:当n≥2时,

数列中的奇偶项问题 教案-2022届高三数学二轮复习微专题复习

数列中的奇偶项问题 教案-2022届高三数学二轮复习微专题复习

数列中的奇偶项问题一、新高考Ⅰ卷、全国Ⅰ卷数列考点分布 新高考Ⅰ卷考点分布与考查概况全国Ⅰ卷理科考点分布与考查概况年份 题号 分数 涉及知识点 题号分数 涉及知识点202014 5 两等差数列的公共项问题、 等差数列的前n 项和公式;核心素养:逻辑推理、数学运算 1712等差中项、等比数列的通项公式、 错位相减法求数列的前n 项和; 核心素养:逻辑推理、数学运算18 12 等比数列的通项公式、 数列求和;核心素养:逻辑推理、数学运算202116 5 构建数列模型,归纳通项公式错位相减法求数列的前n 项和; 逻辑推理、数学运算、数学建模 1912等差数列的通项公式、 数列的通项与前n 项和、积之间的关系; 核心素养:逻辑推理、数学运算1710数列的递推公式、 等差数列的定义、等差数列的前n 项和;核心素养:逻辑推理、数学运算二、真题回眸1.(2020·高考数学课标Ⅰ卷)数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = ______________.2.(2021·全国高考)已知数列满足, (1)记,写出,,并求数列的通项公式; (2)求的前20项和.三、例题分析例1:已知数列)12()1(+-=n a nn ,求数列{}n a 的前n 项和n S .变式1:已知数列12sin )12()1(++-=πn n a nn ,求数列{}n a 的前n 项和=100S .{}n a 11a =11,,2,.n n na n a a n ++⎧=⎨+⎩为奇数为偶数2n n b a =1b 2b {}n b {}n a变式2:已知数列12sin )12()1(++-=πn n a nn ,求数列{}n a 的前n 项和=102S .例2:已知数列{}n a 的前n 项和为2*4().n S n n n N =+∈ (1)求数列{}n a 的通项公式;(2)若数列{}n c 满足,11=c ,1n n n c c a ++=,求数列{c n }的通项公式及前n 项和.拓展:已知数列(),21+=n a n ().114321n n n a a a a a S +-++-+-= 求四、课堂小结:有关数列的奇偶项的问题是高考中经常涉及的问题,解决此类问题的关键在于搞清数列奇数项和偶数项的首项、项数、公差(比)等,涉及求通项公式、求和等。

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。

高三数学二轮复习数列[1]

高三数学二轮复习数列[1]

高三数学二轮复习教学案——等差数列与等比数列一、【填空】1.已知各项均为实数的数列{a n }为等比数列,且满足a 1+a 2=12,a 2a 4=1,则a 1=_______.2. 在等差数列{a n }中,若a 1,a 2 011为方程x 2-10x +16=0的两根,则a 2+a 1 006+a 2 010=__________________.3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=______________. 4.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为---------------5.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =____________.6. 已知等比数列{}n a 中,214S ,23a 33==,则1a =_____________________. 二、【解答】7. 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.8.设{}n a 数列为等比数列,{}n b 数列为等差数列,且10b =,n n n c a b =+,若{}n c 是1,1,2,, 求{}n c 的前10项和.9. 等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.10. 已知数列{a n}满足如下图所示的程序框图.(1)写出数列{a n}的一个递推关系式;(2)证明:{a n+1-3a n}是等比数列,并求{a n}的通项公式;(3)求数列{n(a n+3n-1)}的前n项和T n.。

苏州市高三数学二轮复习示范课教案--数列中的方程问题(江小娟)

苏州市高三数学二轮复习示范课教案--数列中的方程问题(江小娟)

数列中的方程问题江苏省苏州中学 江小娟一.基础训练:1.已知数列{a n }的前n 项和S n 满足:S m +S n =S m +n ,且a 1=1.那么a 10= .2.已知数列{a n }的前n 项和S n 满足:=m n m n S S S +⋅,且a 1=2.那么a 10= .3.已知数列{}n a 中,121,0a a ==,若对任意的正整数m 和n (n >m )满足:22n m n m n m a a a a -+-=⋅,则119a = . 二:例题讲解1.已知数列{}n a 的前三项分别为15a =,26a =,38a =,且数列{}n a 前n 项和n S 满足2221()()2n m n m S S S n m +=+--,其中,m n 为任意正整数.求数列{}n a 的通项公式n a .变:设数列{}n a 的各项都为正数,前n 项和为n S ,对于任意正整数m ,n , 有1n m S +.若1234=1a a a a ,求,,及n a .2. 数列{a n }中,a 1 = 1,a 2 = 2.数列{b n }满足1(1)n n n n b a a +=+-,n *∈N .(1)若数列{a n }是等差数列,求数列{b n }的前6项和S 6;(2)若数列{b n }是公差为2的等差数列,求数列{a n }的通项公式;(3)若b 2n - b 2n - 1 = 0,21262n n nb b ++=,n *∈N ,求数列{a n }的前2n 项和T 2n .变:已知数列{}n a 满足12,a =前n 项和为n S ,11()2()n n npa n n a a n n ++-⎧=⎨--⎩为奇数为偶数.(1)若数列{}n b 满足221(1)n n n b a a n +=+≥,试求数列{}n b 前n 项和n T ;(2)若数列{}n c 满足2n n c a =,试判断{}n c 是否为等比数列,并说明理由;(3)在(2)的条件下,若{}n c 为等比数列,问是否存在*n N ∈,使得212(10)1n n S c +-=,若存在,求出所有的n 的值;若不存在,请说明理由.一.填空题:1. 12.5123.-1 二.解答题1. 令1,2n m ==,324441()1,29,102S S S S a =+-==令1m =,21221()(1),2n n S S S n +=+--令2m =,22241()(2),2n n S S S n +=+--∴4222123262(2)2,2n n n S S a S S n n n ++++=-=-+=+=++ ∴22,(3)n a n n =+≥又26a =符合,15a =不符合,∴5,(1)22,(2)n n a n n =⎧=⎨+≥⎩变:由条件,令1m n ==,得21S + ∴2222(1)2(1)S a S +=+.则2212S a +=.∴211a a =+. ∵11a =,∴22a =.令1,2m n ==,得31S +.则2334(4)4(4)a a a +=++. 令2,1m n ==,得31S +.则234(4)8a a +=. 解得344,8a a ==.得1m n S ++ 令1m =,得11n S ++ 令2m =,得21n S ++∴2111n n S S +++=+*n ∈N )2, 则数列{1}n S +(2,*)n n ∈N ≥是公比为2的等比数列. ∴11222n n n S -+=⋅=.12n n a -=2.解:(1)∵a 1 = 1,a 2 = 2,数列{a n }是等差数列,∴n a n =.则b 1 = b 3 = b 5 = 1,b 2 = 5,b 4 = 9,b 6 = 13.∴S 6 = b 1 + b 2 + … + b 6 = 30.(2)∵b 1 = a 2 - a 1 = 2 - 1 = 1,数列{b n }是公差为2的等差数列,∴b n = 2n - 1. ∵b 2n - 1 = a 2n - a 2n -1,b 2n = a 2n +1 + a 2n , ∴a 2n - a 2n -1 = 4n - 3,a 2n +1 + a 2n = 4n - 1. ∴a 2n +1 + a 2n - 1 = 2.则a 2n +3 + a 2n + 1 = 2.∴a 2n +3 = a 2n - 1.(*) ∵a 1 = 1,∴a 3 = 1.则a 4n - 3 = a 1 = 1,a 4n - 1 = a 3 = 1.∴a 2n - 1 = 1.则a 2n = 4n - 2.∴1()22().n n a n n ⎧=⎨-⎩为奇数,为偶数(3)∵b 2n - b 2n - 1 = 0,21262n n nb b ++=,n *∈N , 而b 2n - 1 = a 2n - a 2n -1,b 2n = a 2n +1 + a 2n ,b 2n + 1 = a 2n + 2 - a 2n + 1, ∴a 2n +1 + a 2n -1=0,22262n n n a a ++=(n *∈N ). 当n 是偶数,则21321242()()n n n T a a a a a a -=+++++++L L 22213[1)]1404()214nn n T -⨯-=+=--(当n 是奇数,则21232142()()n n n T a a a a a a -=+++++++L L 12231[1()]124305()1214n n --⋅-=++=--综上,229(1)1()22n n nT ---=-.2解:(Ⅰ)据题意得2214n n n b a a n +=+=-,所以{}n b 成等差数列,故222n T n n =--(Ⅱ)当12p =时,数列{}n c 成等比数列;当12p ≠时,数列{}n c 不为等比数列 理由如下:因为122212n n n c a pa n +++==+2(4)2n p a n n =--+42n pc pn n =--+,所以12(12)n n nc n p p c c +-=-+,故当12p =时,数列{}n c 是首项为1,公比为12-等比数列;当12p ≠时,数列{}n c 不成等比数列(Ⅲ)当12p =时,121()2n n n a c -==-,121214()2n n n n a b a n -+=-=---因为21112...n n S a b b b +=++++=2222n n --+(1n ≥) 212(10)1n n S c +-= ,244164n n n ∴++=,当n =1,2,左边<右边,当n =3,左边=右边,下证n =3是方程惟一的解. 设2()44416xf x x x =---(3)x ≥,则()()4ln 484xg x f x x '==--,2()(ln 4)480x g x '∴=->(2)x ≥,且(2)(2)0g f '=>,()f x ∴在[2,)+∞递增,且(30f =),(1)0f ≠, ∴仅存在惟一的3n =使得212(10)1n n S c +-=成立.《数列中的方程问题》的构思及体会江苏省苏州中学 江小娟数列的本质是离散函数,数列的通项公式n a ,前n 项和n S ,都可以看成是关于n 的函数解析式.因此,含有n a ,n S 的数列方程,也可以转化为函数方程问题。

高三数学复习教案:高考数学数列复习教案

高三数学复习教案:高考数学数列复习教案

高三数学复习教案:高考数学数列复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。

因此小编在此为您编辑了此文:高三数学复习教案:高考数学数列复习教案希望能为您的提供到帮助。

本文题目:高三数学复习教案:高考数学数列复习教案【知识图解】【方法点拨】1.学会从特殊到一般的观察、分析、思考,学会归纳、猜想、验证.2.强化基本量思想,并在确定基本量时注重设变量的技巧与解方程组的技巧.3.在重点掌握等差、等比数列的通项公式、求和公式、中项等基础知识的同时,会针对可化为等差(比)数列的比较简单的数列进行化归与转化.4.一些简单特殊数列的求通项与求和问题,应注重通性通法的复习.如错位相减法、迭加法、迭乘法等.5.增强用数学的意识,会针对有关应用问题,建立数学模型,并求出其解.第1课数列的概念【考点导读】1. 了解数列(含等差数列、等比数列)的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数;2. 理解数列的通项公式的意义和一些基本量之间的关系;3. 能通过一些基本的转化解决数列的通项公式和前项和的问题。

【基础练习】1.已知数列满足,则 = 。

分析:由a1=0, 得由此可知: 数列是周期变化的,且三个一循环,所以可得:2.在数列中,若,,则该数列的通项 2n-1 。

3.设数列的前n项和为,,且,则 ____2__.4.已知数列的前项和,则其通项 .【范例导析】例1.设数列的通项公式是,则(1)70是这个数列中的项吗?如果是,是第几项?(2)写出这个数列的前5项,并作出前5项的图象;(3)这个数列所有项中有没有最小的项?如果有,是第几项? 分析:70是否是数列的项,只要通过解方程就可以知道;而作图时则要注意数列与函数的区别,数列的图象是一系列孤立的点;判断有无最小项的问题可以用函数的观点来解决,一样的是要注意定义域问题。

解:(1)由得:或所以70是这个数列中的项,是第13项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学二轮专题复习教案――数列 一、本章知识结构:二、重点知识回顾1.数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.(4)n a 与n S 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥. 2.等差数列和等比数列的比较(1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列. (2)递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.(3)通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.(4)性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②若m n p q +=+,则()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()n m a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②若m n p q +=+,则()m n p q a a a a m n p q *=∈N ··,,,.特别地,若2m n p +=,则2m n pa a a =·.③(0)n m nm a q m n q a -*=∈≠N ,,.④232k k k k kS S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,若k 为偶数,不是等比数列.若k 为奇数,是公比为1-的等比数列. 三、考点剖析考点一:等差、等比数列的概念与性质 例1. (2008深圳模拟)已知数列.12}{2n n S n a n n -=项和的前(1)求数列}{n a 的通项公式; (2)求数列.|}{|n n T n a 项和的前解:(1)当111112,1211=-⨯===S a n 时;、 当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、(2)令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ΛΛ时;当||||||||||,67621n n a a a a a T n ++++++=>ΛΛ时na a a a a a ----+++=ΛΛ87621.7212)12()6612(222226+-=---⨯⨯=-=n n n n S S n综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n 点评:本题考查了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。

第二问要分情况讨论,体现了分类讨论的数学思想. 例2、(2008广东双合中学)已知等差数列}{n a 的前n 项和为nS ,且35a =,15225S =. 数列}{n b 是等比数列,32325,128b a a b b =+=(其中1,2,3,n =…).(I )求数列}{n a 和{}n b 的通项公式;(II )记,{}n n n n nc a b c n T =求数列前项和.解:(I )公差为d ,则⎩⎨⎧=⨯+=+,22571515,5211d a d a 12,2,11-=⎩⎨⎧==∴n a d a n 故(1,2,3,n =)….设等比数列}{n b 的公比为q , ⎪⎩⎪⎨⎧=⋅=,128,82333q b q b b 则 .2,83==∴q bn n n q b b 233=⋅=∴-(1,2,3,n =)….(II ),2)12(n n n c ⋅-=Θ2323252(21)2,n n T n ∴=+⋅+⋅++-⋅L.2)12(2)32(2523221432+⋅-+⋅-++⋅+⋅+=n n n n n T Λ作差:115432)12(22222++⋅--+++++=-n n n n T Λ3112(12)2(21)212n n n -+-=+--⋅-31122122(21)(21)222822n n n n n n n -++++=+---⋅=+--+162(23)n n +=---⋅ 1(23)26n n T n +∴=-⋅+(1,2,3,n =)….点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n 项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想。

考点二:求数列的通项与求和例3.(2008江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为解:前n -1 行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3 个数是全体正整数中第22n n-+3个,即为262n n -+.点评:本小题考查归纳推理和等差数列求和公式,难点在于求出数列的通项,解决此题需要一定的观察能力和逻辑推理能力。

例4.(2008深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n 个图形包含()f n 个“福娃迎迎”,则(5)f = ;()(1)f n f n --=____解:第1个图个数:1 第2个图个数:1+3+1第3个图个数:1+3+5+3+1第4个图个数:1+3+5+7+5+3+1第5个图个数:1+3+5+7+9+7+5+3+1=41, 所以,f (5)=41f(2)-f(1)=4 ,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16 ()(1)f n f n --=4(1)n -点评:由特殊到一般,考查逻辑归纳能力,分析问题和解决问题的能力,本题的第二问是一个递推关系式,有时候求数列的通项公式,可以转化递推公式来求解,体现了转化与化归的数学思想。

考点三:数列与不等式的联系12 34 5 67 8 9 1011 12 13 14 15………………例5.(2009届高三湖南益阳)已知等比数列{}n a 的首项为311=a ,公比q 满足10≠>q q 且。

又已知1a ,35a ,59a 成等差数列。

(1)求数列{}n a 的通项(2)令na nb 13log =,求证:对于任意n N *∈,都有122311111 (1)2n n b b b b b b +≤+++p(1)解:∵315259a a a ⋅=+ ∴24111109a q a a q =+ ∴4291010q q -+= ∵10≠>q q 且 ∴13q =∴113n nn a a q --==(2)证明:∵133log log 3na n nb n === , 11111(1)1n n b b n n n n +==-++∴12231111111111...1122311n n b b b b b b n n n ++++=-+-++-=-++L 122311111...12n n b b b b b b +∴≤+++p点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(2)问,采用裂项相消法法,求出数列之和,由n 的范围证出不等式。

例6、(2008辽宁理) 在数列||n a ,||n b 中,a1=2,b1=4,且1n n n a b a +,,成等差数列,11nn n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测||n a ,||n b 的通项公式,并证明你的结论;(Ⅱ)证明:1122111512n n a b a b a b +++<+++….解:(Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=,由此可得2233446912162025a b a b a b ======,,,,,.猜测2(1)(1)n n a n n b n =+=+,.用数学归纳法证明:①当n=1时,由上可得结论成立. ②假设当n=k 时,结论成立,即2(1)(1)k k a k k b k =+=+,,那么当n=k+1时,22221122(1)(1)(1)(2)(2)kk k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n=k+1时,结论也成立. 由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立.(Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n+=++>+.故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭…… 111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭… 111111562216412n ⎛⎫=+-<+= ⎪+⎝⎭综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.例7. (2008安徽理)设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数(Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈;(Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c ++>+-∈-L解: (1) 必要性 :120,1a a c==-∵∴ ,又2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设 [0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]n a ∈当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立(2) 设103c <<,当1n =时,10a =,结论成立当2n ≥ 时,3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴103C <<∵,由(1)知1[0,1]n a -∈,所以21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-=L ∴1*1(3)()n n a c n N -≥-∈∴(3) 设103c <<,当1n =时,2120213a c =>--,结论成立当2n ≥时,由(2)知11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴222222112212[3(3)(3)]n n n a a a a a n c c c -+++=++>--+++L L L ∴2(1(3))2111313n c n n c c -=+->+--- 点评:本题是数列、充要条件、数学归纳法的知识交汇题,属于难题,复习时应引起注意,加强训练。

相关文档
最新文档