第一节 函数的概念
离散数学 第三章 函数

下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2
第2章 第1节 函数的概念及表示-2023届高三一轮复习数学精品备课(新高考人教A版2019)

►考向二 求函数的解析式[师生共研]
[例 2] (1)已知 f(x)是一次函数,且 f[f(x)]=4x+3,则 f(x) 的解析式为_f(_x_)=__-__2_x_-__3__或__f_(_x)_=__2_x_+;1.
(2)已知 f( x+1)=x+2 x,则 f(x)的解析式为_f(_x_)_=__x_2-__1_(;x≥1)
►规律方法 求函数解析式的常用方法
(1)换元法:已知复合函数 f[g(x)]的解析式,可用换元法, 此时要注意新元的取值范围.
(2)待定系数法:已知函数的类型(如一次函数、二次函数), 可用待定系数法.
(3)配凑法:由已知条件 f[g(x)]=F(x),可将 F(x)改写成关 于 g(x)的表达式,然后以 x 替代 g(x),便得 f(x)的解析式.
►规律方法 1.求给定解析式的函数定义域的方法 求给定解析式的函数的定义域,其实质就是以函数解 析式中所含式子(运算)有意义为准则,列出不等式或不等 式组求解;对于实际问题,定义域应使实际问题有意义. 2.求抽象函数定义域的方法 (1) 若 已 知 函 数 f(x) 的 定 义 域 为 [a , b] , 则 复 合 函 数 f[g(x)]的定义域可由不等式a≤g(x)≤b求出. (2)若已知函数f[g(x)]的定义域为[a,b],则f(x)的定义 域为g(x)在x∈[a,b]上的值域.
命题点 2 求抽象函数的解析式
[例 1-2] 已知函数 f(x+1)的定义域为(-2,0),则 f(2x
-1)的定义域为( C )
A.(-1,0)
B.(-2,0)
C.(0,1)
-1,0 D. 2
[自主解答] ∵函数f(x+1)的定义域为(-2,0), 即-2<x<0,∴-1<x+1<1, 则f(x)的定义域为(-1,1), 由-1<2x-1<1,得0<x<1, ∴f(2x-1)的定义域为(0,1).故选C.
2019新版高中数学人教A版必修一第三章 函数的概念与性质 第1节 函数的概念及其表示

2019新版高中数学人教A 版必修一 第1节 函数的概念及其表示一.知识点: 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f: A→B 为从集合A 到集合B 的一个函数,记作y =f(x),x ∈A. 2.函数的定义域与值域在函数y =f(x),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域.如果自变量x =a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作y =f(a)或y|x =a .所有函数值构成的集合{y|y =f(x),x ∈A}叫做这个函数的值域. 3.区间及表示设a ,b 是两个实数,而且a<b.(1) 满足不等式a≤x≤b 的实数x 的集合叫做闭区间,表示为[a ,b]; (2) 满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a ,b); (3) 满足不等式a≤x<b 或a<x≤b 的实数x 的集合叫做半开半闭区间,分别 表示为[a ,b),(a ,b];(4)实数集R 可以用区间表示为(-∞,+∞) 二.考点突破 考点一:函数的概念例1:下列各式中,函数的个数是( )①y =1;②y =x 2;③2y x =;④y =.A .4B .3C .2D .1答案:C练习:下列图象中,表示函数关系y =f (x )的是( )A .B .C .D .解:根据函数的定义知,一个x 有唯一的y 对应,由图象可看出,只有选项D 的图象满足这一点.故选:D . 作业:1.下列式子中能确定y 是x 的函数的是________. ①x 2+y 2=1;②y =x -2+1-x ; ③y =12gx 2(g =9.8 m/s 2);④y =x.解析:①中每一个x 对应两个y ,故①不是函数. ②中满足式子有意义的x 取值范围是⎩⎪⎨⎪⎧x -2≥0,1-x≥0即x≤1且x≥2,∴为∅,故②也不是,而③④可以确定y 是x 的函数. 答案:③④考点二:函数的定义域 例2:求下列函数的定义域: (1)y =2+3x -2; (2)y =3-x ·x -1; (3)y =(x -1)0+2x +1. 解:(1)当且仅当x -2≠0,即x≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x|x≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x≥0,x -1≥0.解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0.解得x>-1,且x≠1,所以这个函数的定义域为{x|x>-1,且x≠1}. 练习:求下列函数的定义域: (1)y =x +12x +1-1-x ;(2)y =x +1|x|-x.解:(1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x≥0,即⎩⎪⎨⎪⎧x≠-1,x≤1,所以函数的定义域为{x|x≤1,且x≠-1}. (2)要使函数有意义,需满足 |x|-x≠0,即|x|≠x, ∴x<0.∴函数的定义域为{x|x<0}. 作业:2.求下列函数的定义域: (1)f(x)=1x +1;(2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1. 解:(1)要使函数有意义,即分式有意义,需x +1≠0,x≠-1.故函数的定义域为{x|x≠-1}.(2)要使函数有意义,需⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x|x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x|x ∈R}.(4)因为当x 2-1≠0,即x≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x|x≠±1,x ∈R}.例3:已知函数y=f (x )定义域是{x|-2≤x ≤3},则y=f (2x ﹣1)的定义域是( ) A .{x|0≤x ≤52}B .{x|-1≤x ≤4}C{x|12-≤x ≤2} D . {x|-5≤x ≤5} 解:∵函数y=f (x )定义域是-2≤x ≤3, ∴由﹣2≤2x ﹣1≤3, 解得﹣≤x ≤2,即函数的定义域为12≤x≤2,故选:C .练习:已知函数y=f(x+1)的定义域是{x|-2≤x≤3},则y=f(x2)的定义域是()A.{x|-1≤x≤4} B.{x|0≤x≤16} C.{x|-2≤x≤2} D.{x|1≤x≤4} 解:∵函数y=f(x+1)的定义域是{x|-2≤x≤3},即﹣2≤x≤3,∴﹣1≤x+1≤4,即函数y=f(x)的定义域为{x|-1≤x≤4},由﹣1≤x2≤4,得﹣2≤x≤2.∴y=f(x2)的定义域是{x|-2≤x≤2}.故选:C.作业:3. 已知函数y=f(x+1)定义域是{x|-2≤x≤1} ,则y=f(2x﹣1)的定义域()A.{x|0≤x≤32} B.{x|-1≤x≤4} C.{x|-5≤x≤5} D.{x|-3≤x≤7}解:∵函数y=f(x+1)定义域是{x|-2≤x≤1},∴-2≤x≤1,∴-1≤x+1≤2,∴-1≤2x﹣1≤2,∴0≤x≤3 2∴y=f(2x﹣1)的定义域为{x|0≤x≤32}.故答案为:A考点三:函数值例4:若f(x)=1-x1+x(x≠-1),求f(0),f(1),f(1-a)(a≠2),f[f(2)].解:f(0)=1-01+0=1;f(1)=1-11+1=0;f(1-a)=1-1-a1+1-a=a2-a(a≠2);f[f(2)]=1-f21+f2=1-1-21+21+1-21+2=2.练习: 设函数f(x)=41-x,若f(a)=2,则实数a=________.解析:由题意知,f(a)=41-a=2,得a=-1. 答案:-1作业:4.已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f[g(2)],g[f(2)]的值. 解:(1)f(2)=11+2=13,g(2)=22+2=6; (2)f[g(2)]=f(6)=11+6=17,g[f(2)]=g(13)=(13)2+2=199. 考点四:简单的求函数的值域 例5:求下列函数的值域: (1)y =2x +1,x ∈{1,2,3,4,5}; (2)y =x +1;(3)y =-x 2-2x +3(-1≤x≤2); (4)y =1-x21+x2.解:(1)将x =1,2,3,4,5分别代入y =2x +1,算得函数的值域为{3,5,7,9,11}. (2)∵x ≥0,∴x +1≥1,即函数的值域为[1,+∞).(3)y =-x 2-2x +3=-(x +1)2+4.∵-1≤x≤2,∴0≤x+1≤3,∴0≤(x+1)2≤9.∴-5≤-(x +1)2+4≤4.∴函数的值域为[-5,4].(4)∵y =1-x 21+x 2=-1+21+x 2,∴函数的定义域为R.∵x 2+1≥1,∴0<21+x2≤2.∴y ∈(-1,1]. ∴函数的值域为(-1,1].练习:(1)已知函数y=2x+1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y|1≤y <7} B .{y|1≤y ≤7} C .{1,3,5,7} D .{1,3,5} 解:函数y=2x+1,x ∈{x ∈Z|0≤x <3}={0,1,2}. 当x=0时,y=1,当x=1时,y=3,当x=2时,y=5. ∴函数的值域为{1,3,5}.故选D .(2)函数y=x 2﹣4x+1,x ∈[1,5]的值域是( ) A .{y|1≤y ≤6} B .{y|-3≤y ≤1}C .{y|y ≥-3}D .{y|-3≤y ≤6}解:对于函数f (x )=x 2﹣4x+1,是开口向上的抛物线. 对称轴x=,所以函数在区间[1,5]上面是先减到最小值再递增的.所以在区间上的最小值为f (2)=﹣3.又f (1)=﹣2<f (5)=6,,所以最大值为6.故选D .作业:5.求下列函数的值域:(1)f(x)=(x -1)2+1,x ∈{-1,0,1,2,3}; (2)f(x)=(x -1)2+1,x ∈R ; (3)y =1-x 2,x ∈R ; (4)y =2x +1x,x≠0. 解:(1)函数的定义域为{-1,0,1,2,3},∵f(-1)=5, f(0)=2,f(1)=1,f(2)=2,f(3)=5, ∴这个函数的值域为{1,2,5}.(2)函数的定义域为R ,∵(x -1)2+1≥1, ∴这个函数的值域为{y|y≥1}. (3)函数的定义域为R ,∵1-x 2≤1, ∴函数y =1-x 2的值域为{y|y≤1}. (4)y =2x +1x =2+1x ,∵x≠0,∴1x≠0, ∴y =2+1x ≠2,∴函数的值域为{y|y≠2}.考点五:判断两函数是否相等例6:下列各组函数表示相等函数的是( ) A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1C .y =x 0(x≠0)与y =1(x≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z解析:选C A 中两函数定义域不同,B 、D 中两函数对应法则不同,C 中定义域与对应法则都相同.练习:下列四组函数中,表示同一函数的是( ) A .f (x )=|x|,g (x )=B .f (x )=|x|,g (x )=()2C .f (x )=,g (x )=x+1D .f (x )=,g (x )=解:要判断两个函数是否是同一个函数,需要从三个方面来分析,即定义域,对应法则和值域,B 选项两个函数的定义域不同,前面函数的定义域为R ,后面函数的定义域为[0,+∞),C 选项两个函数的定义域不同,前面函数的定义域为{x|x ≠1},后面函数的定义域为R ,D 选项两个函数的定义域不同,前面函数的定义域为[1,+∞),后面函数的定义域为(﹣∞,﹣1]∪[1,+∞),故选:A . 作业:6. 下列四组函数中,表示同一函数的是( ) A .y =,y =()2B .y =|x|,y =C .y =,y =x+1D .y =x ,y =解:对于A ,y ==|x|(x ∈R ),与y ==t (t ≥0)的定义域不同,对应关系也不同,不是同一函数; 对于B ,y =|x|(x ∈R ),与y ==|t|(t ∈R )的定义域相同,对应关系也相同,是同一函数; 对于C ,y ==x+1(x ≠1),与y =x+1(x ∈R )的定义域不同,不是同一函数;对于D ,y =x (x ∈R ),与y ==x (x ≠0)的定义域不同,不是同一函数.故选:B .考点六:区间及其表示例7:集合{x|-12≤x<10,或x>11}用区间表示为________. 答案:[-12,10)∪(11,+∞)练习:已知函数y =1-x 2x 2-3x -2,则其定义域为( )A .(-∞,1]B .(-∞,2]C .(-∞,-12)∪(-12,1)D .(-∞,-12)∪(-12,1]解析:选D 要使式子1-x2x 2-3x -2有意义,则⎩⎪⎨⎪⎧1-x≥0,2x 2-3x -2≠0即⎩⎪⎨⎪⎧x≤1,x≠2且x≠-12,所以x≤1且x≠-12,即该函数的定义域为(-∞,-12)∪(-12,1],故选D.作业: 7. 函数y=+1的值域为( ) A .(0,+∞) B .(1,+∞)C .[0,+∞)D .[1,+∞)解:函数y=+1,定义域为[1,+∞),当x=1时,函数y 取得最小值为1, 函数y=+1的值域为[1,+∞),故选D。
高等数学 第一章

数列中的每一个数称为数列的项,第 n 项 xn 称 为数列的一般项或通项.
(一)数列极限的概念
定义 2 对于数列 {xn} ,当 n 无限增大时,如果数列的一般项 xn 无限地接近于某一确定的数
值
a,则称常数
a
是数列 {xn} 的极限,或称数列 {xn} 收敛,其收敛于
(二)指数函数
y ax (a 0 ,a 1) 为指数函数,它的定义域为 ( , ) ,值域为 (0 , ) .当 a 1 时,y ax 单调增加;当 0 a 1 时, y ax 单调减少.指数函数的图形都经过点 (0 ,1) ,且均在 x 轴上方。
(三)对数函数
y loga x (a 0 ,a 1) 为对数函数,它是指数函数 y ax 的反函数,其定义域为 (0 , ) ,值 域为 ( , ) .当 a 1 时, y loga x 单调增加;当 0 a 1 时, y loga x 单调减少.对数函数 的图形都经过点 (1,0) ,且均在 y 轴的右方.
其中,D 称为函数的定义域,x 称为自变量,y 称为因变量.
(三)函数的定义
当 x 取定义域 D 内的某一定值 x0 时,按照对应法则 f ,所得的对应值 y0 称为函数 y f (x) 在
x0 处的函数值,记作
y0
y x x0
f (x0 ) ,
当 x 取遍定义域 D 中的所有数值时,按照对应法则 f ,所得的所有对应值 y 构成的集合称为函 数的值域,记作 M {y | y f (x) ,x D}.
则称函数 f (x) 在区间 I 上是单调增加的,区间 I 称为单调增区间;如果对于区间 I 内的任意两 点 x1 ,x2 ,当 x1 x2 时,恒有 f (x1) f (x2 ) ,
第一节函数

则称 f 为定义在D上的函数f : D R, x y, x D
其中称D为函数的定义域,记作D(f),D中的每一个 根据映射 f 对应于一个y ,记作y =f(x),称为函数 f 在 x的函数值,全体函数值的集合称为函数的值域
单调增加 (或单调减少).
如果对于区间I上任意两点 x1, x2,当 x1 x2均 有 f ( x1 ) f ( x2 ) (或 f ( x1 ) f ( x2 )), 则称函数y=f(x) 在区间I上严格单调增加(或严格单调减少).
单调函数图形特征: 严格单调增加的函数的图形是沿x 轴正向上升的; 严格单调减少的函数的图形是沿x 轴正向下降的;
x r cos t
y
r
s
in
t
, (0 t )
三、函数的特性 1.函数的有界性 定义 设函数y=f (x)的定义域为D, 数集 X D , 如果存在正数M, 使得对于任意的 x X , 都有不等式 | f ( x ) | M 成立, 则称 f (x)在X上有界, 如果这样的M不 存在, 就称函数 f (x)在X上无界. 注: 如果M为 f (x)的一个界, 易知比 M大的任何一 个正数都是 f (x)的界. 如果f(x)在X上无界, 那么对于任 意给定的正数M, X中总有相应的点 x, 使 | f ( x ) | M
第一章 函 数
第一节 函数的概念 第二节 反函数与复合函数 第三节 初等函数 第四节 函数模型
第一节 函数的概念 一、函数的概念 二、具有特性的几类函数
第一节 函数的概念
一、函数的概念 常量:如果一个量在某过程中保持不变, 总取同
一值, 则称这种量为常量. 常量通常用a, b, c, 表示.
高等数学 第一节 函数的概念

3
2.5
y∈[0,π]
2
arccos( x) arccos x
x [1,1].
1.5
π
1
0.5
-4
-3
-2
-1
-1
1
2
3
1
-0.5
-1
(4)单调性: 是减函数。
yx
o
4
x
y=cosx,x∈[0,π]
y∈[-1,1]
反正切函数y arctan x,定义域为R,值域为(
注意:
复合函数都必须要有内层和外层函数。
2、简单函数:
简单函数即基本初等函数或基本初等函数的四则运算构成的函数。
注意:
复合函数都可以分解为简单函数。
例题1:指出下列函数是由哪些简单函数复合而成的
1、y = cosx
2、y = e
2
3、y = 2 + e
x
sin
1
x
x 2 -1
4、y = arctan 2
2
3
x
-1
-1.5
y arcsin x, x [1,1], y [ , ]
2
2 2
其图象关于坐标原点对称,
-2
arcsin( x) arcsin x
x [1,1].
(4)单调性:
是增函数。
yx
反余弦函数 y arccos x,定义域为[1,1],值域为[0, ]
3
2.5
2
1.5
1
0.5
-1
-0.5
0.5
1
是y cos x的反函数,在定义域上 单调递减,非奇非偶, 无周期
函数与极限知识点

x2
x2
8811
例2.求 lim 5x x1 x 2 1
解
: 原式
lim 5x
x1
lim(x 2
1)
5 2
x1
例3.求 lim x3 1 x1 x 1
解 : (当x 1时, 分母的极限为0,故不能用极限的商定理)
原式 lim (x 1)(x 2 x 1) 3
x1
x 1
例5
:
定理: 设在某变化过程中有 lim f (x)=A , lim g (x)=B ,则有: ① lim [ f (x)±g (x)]=lim f (x) ±lim g (x) =A±B、 ② lim [f (x) g (x)] =lim f (x) lim g (x) =AB ③ lim f (x) / g(x) =lim f (x) / lim g (x) =A / B (B≠0)
x→x0+0 时,函数得极限
2 、 自变量 x →∞ 时函数得极限、
x→-∞ 时,函数得极限 x→+∞时,函数得极限
1 、 x →x0 时函数得极限:
⑴定义: 设函数 f (x) 在点 x0 附近有定义 (但在 x0 处可以没有定义) , 当自变量 x 以任何方式无限趋近于定值 x0 时 , 若函数 f (x) 无限趋近于一个常数 A ,就说当 x 趋近于 x0时 , 函数 f (x)以
右极限: x从右侧趋近于x0时产生得极限、
记作 : lim f (x) A xx0 0
▲. 极限 lim f (x) A存在的充要条件 : (当且仅当) x x0
lim f (x) lim f (x) A
xx0 0
xx0 0
即左极限与右极限都存在并且相等时,才能说函数得极限存在
3.1函数的基本概念 教案

第三章:函数的基本性质第一节:函数的概念【知识讲解】 1.复习引入:初中(传统)的函数的定义是什么?初中学过哪些函数?设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义.初中已经学过:正比例函数、反比例函数、一次函数、二次函数等问题1:1=y (R x ∈)是函数吗?问题2:x y =与xx y 2=是同一函数吗?2.函数的有关概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A 其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函数y=f(x)的值域.函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f .(1)函数实际上就是集合A 到集合B 的一个特殊对应 B A f →:这里 A, B 为非空的数集. (2)A :定义域,原象的集合;{}A x x f ∈|)(:值域,象的集合,其中{}A x x f ∈|)( ⊆ B ;f :对应法则 , x ∈A , y ∈B(3)函数符号:)(x f y = ↔y 是 x 的函数,简记 )(x f 3.已学函数的定义域和值域1.一次函数b ax x f +=)()0(≠a :定义域________值域_________; 2.反比例函xkx f =)()0(≠k :定义域_________, 值域__________;3.二次函数c bx ax x f ++=2)()0(≠a :定义域 值域:当0>a 时, ;当0<a 时, 4.函数的值:关于函数值 )(a f例:)(x f =2x +3x+1 则 f(2)=22+3×2+1=11注意:1︒在)(x f y =中f 表示对应法则,不同的函数其含义不一样2︒)(x f 不一定是解析式,有时可能是“列表”“图象” 3︒)(x f 与)(a f 是不同的,前者为变数,后者为常数5.函数的三要素: 对应法则f 、定义域A 、值域{}A x x f ∈|)( 只有当这三要素完全相同时,两个函数才能称为同一函数【例题讲解】例1.下列各图中,能成为某个函数的图像的为 ( )()C()D()A()B巩固练习:例2.求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(.小结:函数的定义域:要使函数有意义的自变量x 的取值的集合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y arctan 3x . y ln( x 1) , y sin 3 2 x ,
思考:函数 y x 是不是初等函数?
四. 分段函数
有些函数虽然也可以用解析式表示, 但不能用一个解析式表示,在定义域的不同 范围具有不同的解析式,这样的函数称为分 段函数。 1 x0
x 例如 y x
指出函数 y 2 cos 3( x 2) 1 的复合过
2 2 2
解 复合过程为 思考:
y 2u 2 1, u cos v,
v 3w2 , w x 2 2.
y arcsin( x 2 2) 没有意义,为什么?
例1.1.2 把下列复合函数表示或分解为若干个简单 函数. 2 x . (1) y ln 2 x ; (2) y ln sin 2 x ; (3) y arctan 2 x 解 1 1 (1)复合函数可表示为: y ln 2 x ln 2 ln x ; 2 2 (2)复合函数可分解为: y ln u, u sin v, v , 2 x;
2 x . (3)复合函数可分解为: y arctan u, u 2 x
三.初等函数
定义1.1.2 由基本初等函数和常数经过有限次的四则运算 或经过有限次的复合步骤所构成的,并且可用一个 解析式子表示的函数叫做初等函数.
y 2 x , y 3 sin x , 例如 y 2 ,
y (元)与物件重量 x(kg)之
间的函数关系是: 3x 0 x 20 y x 20 4.5x 30
x0 ,y 0 x0 1 x0 . x0
例1.1.3【快递邮费】 某快递公司规定:寄送到某 地的物件,当物件不超过20kg时,按基本邮费每千克3元 计算;当超过20kg时,超过部分按每千克4.5元计算.试 y 求寄送到该地的物件的邮费 (元)与物件重量 x(kg) 之间的函数关系. 解 当物件重量 0 x 20 时,邮费为 y 3 x; 当物件重量 x 20 时,邮费为: y 3 20 4.5 x 20 4.5x 30 所以,到该地的邮费
授课建议
1.根据中学所学的情况,函数的概念、函数极限、 极限的四则运算,可作简单的复习介绍; 2.重点介绍无穷小与无穷大,函数的连续性;
3.归纳总结求极限的一些基本初等方法. 建议授课时数:约8学时
第一节 函数的概念
一. 基本初等函数 1.幂函数 y x( 为实数)
2.指数函数 y a
二. 复合函数
定义1.1.1
y f (u) 复合 y f ( ( x)) u ( x)
注意:
x 称为自变量,u 称为中间变量,来自数.y 是 x 的复合函
注意:函数 u ( x) 的值域应在函数 y f (u ) 的定 义域内,否则就没有意义.
例1.1.1 程.
x (a
0 且 a 1)
3.对数函数 y loga x ( a 0 且 a 1) 4.三角函数: y tan x ; y sin x ; y cos x ; y cot x ; y sec x ; y csc x .
y arcsin x ; y arccos x ; 5.反三角函数: y arctan x ; y arc cot x .